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Introduction

The progressive development of genome editing technolo-
gies, involving sequence-specific programmable nucleases, 
has enabled precise genome engineering. Four representative 
types of endonucleases, zinc-finger nucleases, engineered 
homing nucleases, transcription activator-like effector 
nucleases, and Cas nucleases, have been used for genome 
editing (Kim et al. 1996; Miller et al. 2007; Christian et al. 
2010). However, endonuclease-guided target recognition has 
a major disadvantage, in that it is expensive and difficult 
to modify the nucleases so that they recognize the desired 
target sequences (Mushtaq et al. 2018). The discovery of 
the clustered regularly interspaced short palindromic repeats 
(CRISPR)/CRISPR-associated protein (Cas) system, a form 
of prokaryotic immune system, enabled the far simpler 
RNA-guided genome editing, overcoming the limitations 
of the nuclease-guided genome editing tools (Marraffini 
and Sontheimer 2010). This system has been widely used 
in various forms of genome editing, such as gene knock-in/
knock-out, functional genome screening, and the correction 
of disease-causing mutations (Liu et al. 2018a, b; Ryu et al. 
2018). Further development of the CRISPR/Cas system to 
improve its editing efficiency through screening and engi-
neering is currently in progress. Structural engineering and 
random mutagenesis of the Cas nucleases, as well as the 
creation of Cas fusion proteins, has expanded the utility, 
versatility, and target range of this system. In particular, Cas 
fusions with various functional motifs have made possible 
base editing, prime editing, CRISPR/Cas-mediated transpo-
sition, recombination, and epigenetic regulation. Limitations 
in these systems, such as the occurrence of unwanted genetic 
byproducts and off-target effects, must be resolved prior to 
therapeutic applications. We provide a various CRISPR/Cas 
technologies that have been used for genome editing.
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Mechanism of actions: the CRISPR/Cas system

The CRISPR/Cas system is an evolved RNA-mediated adap-
tive defense system in bacteria and archaea that functions 
to protect cells from invading foreign phages and plasmids 
(Marraffini and Sontheimer 2010). This adaptive immune 
system is activated by the expression of the Cas gene operon 
and the CRISPR array, which consists of spacer sequences 
that exist between a series of direct repeats (Mohanraju et al. 
2016). This defense system functions in three progressive 
phases (Fig. 1): the adaptive phase, expression phase, and 
interference phase (van der Oost et al. 2009; Jinek et al. 
2012; Mohanraju et al. 2016; Rojo et al. 2018). In the adap-
tive phase, a short fragment of external genetic material (the 
protospacer) is integrated as a spacer in the CRISPR array 
(van der Oost et al. 2009; Jinek et al. 2012; Mohanraju et al. 
2016; Rojo et al. 2018). When the same foreign material re-
invades, the expression phase occurs, during which CRISPR 
array is transcribed and the precursor transcript is processed 
into a mature CRISPR RNA (crRNA) that corresponds to 
the foreign DNA (van der Oost et al. 2009; Jinek et al. 2012; 
Mohanraju et al. 2016; Rojo et al. 2018). In some systems, 
trans-activating RNA (tracrRNA) binds to a complementary 
region in pre-crRNAs to process them to their mature form. 
The mature crRNA is assembled with the Cas protein to 
form a CRISPR ribonucleoprotein (crRNP) complex (van 

der Oost et al. 2009; Jinek et al. 2012; Mohanraju et al. 2016; 
Rojo et al. 2018). Finally, in the interference phase, crRNPs 
are guided to specific sequences, complementary to the 
crRNA and adjacent to a protospacer adjacent motif (PAM) 
in the targeted DNA strand. The Cas protein then cleaves 
the foreign nucleic acid, eliminating it from cells (van der 
Oost et al. 2009; Jinek et al. 2012; Mohanraju et al. 2016; 
Rojo et al. 2018). As bacteria and phages co-evolved, phages 
have developed strategies for escaping CRISPR recognition. 
These strategies include spacer deletion, spacer mutation, 
and recombination between multiple phase species, making 
re-infection of previously infected, CRISPR-immune hosts 
possible (Han and Deem 2017; Westra and Levin 2020; 
Zhang et al. 2021). When the CRISPR/Cas system is used 
as a genome editing tool in cells, the CRISPR/Cas-medi-
ated double stranded breaks (DSBs) are repaired using one 
of two endogenous intracellular DNA repair mechanisms: 
non-homologous end joining (NHEJ) or homology-directed 
repair (HDR). The NHEJ pathway results in the generation 
of small insertions/deletions (indels) at a target site during 
the repair of a Cas-induced DSB, which can be useful for 
gene knock-out but undesirable in other cases. Although 
NHEJ generally more efficient than HDR, it has a disad-
vantages in that it can cause non-specific gene disruptions 
such as insertions, deletions, and translocations, resulting in 
frameshift mutations or nonsense mutations (Zhang 2020). 

Fig. 1  Schematic summary of 
the CRISPR/Cas immune pro-
cess. (i) Adaptive phase. When 
a virus or plasmid invades a 
bacterial cell, a short fragment 
of the foreign genetic material 
(the protospacer) is integrated 
as a spacer in the CRISPR 
array. (ii) Expression phase. 
When the same type of virus or 
plasmid subsequently re-invades 
the cell, the CRISPR array is 
transcribed and the precursor 
transcript is processed into a 
mature CRISPR RNA (crRNA) 
that corresponds to the foreign 
DNA. (iii) Interference phase. 
Finally, a RNP consisting of 
crRNA and Cas protein cleaves 
the foreign viral or plasmid 
DNA
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In contrast, the HDR pathway induces precise genome edit-
ing in the presence of a donor DNA template containing the 
desired sequence (Zhang 2020). However, as well as being 
less efficient than NHEJ, HDR is restricted to specific phases 
of the cell cycle (G2 and S phases) when sister chromatids 
are available to accept the template DNA (Chapman et al. 
2012; Porto et al. 2020; Yang et al. 2020). Various attempts 
to increase the efficiency of HDR, such as chemical modu-
lation to inhibit NHEJ (Chu et al. 2015), the use of linear 
repair templates, optimization of the lengths of the homol-
ogy regions in the repair template, and the use of modified 
Cas protein, are underway (Liu et al. 2019).

Classification of CRISPR/Cas systems

CRISPR/Cas systems have been classified into 2 class, 
6 types, and 33 subtypes, depending on the number of 
subunits constituting the Cas protein (the effector mod-
ule), and the usage of tracrRNA for pre-crRNA process-
ing (Makarova et al. 2015, 2018; Liu and Doudna 2020). 
The classification of CRISPR/Cas systems is briefly sum-
marized in Table 1. Class I CRISPR/Cas systems, which 
include types I, III, and IV, are primary systems involving 
multi-subunit effector complexes (Makarova et al. 2015; 
Mohanraju et al. 2016; Rojo et al. 2018). In contrast, class 
II CRISPR/Cas systems, which include types II, V and 
VI, perform all functions with a single effector protein 
(Makarova et al. 2015; Rojo et al. 2018; Liu and Doudna 
2020). This simplicity has resulted in type II CRISPR/
Cas systems being the most widely used for genome edit-
ing. The class II Cas9 derived from Streptococcus pyo-
genes (SpCas9) is the most well characterized and fre-
quently used Cas enzyme; it recognizes 5′-NGG-3′ PAMs 
located at the 3′ end of the target DNA sequence (Pyzo-
cha and Chen 2018). A programmable, single-guide RNA 
(sgRNA), created by a synthetic fusion of crRNA and 
tracrRNA, is now the most widely used form for genome 

editing, given its simplicity and that its use results in sim-
ilar or higher gene editing efficiencies compared to the 
two guide RNA system (Shapiro et al. 2020). When the 
sgRNA, target DNA, and Cas9 effector form a complex, 
the HNH and RuvC domains of Cas9 respectively cleave 
the complementary and noncomplementary DNA strands 
to generate DSBs at a site 3 bp upstream from the PAM 
(Fig. 2a) (Jinek et al. 2012). Although SpCas9 displays 
a high gene editing efficiency, it has several features that 
limit its usefulness for genome editing: (1) large size of 
Cas9 limits the choice of viral vectors for delivery, (2) 
the mismatch tolerance between the sgRNA and the target 
sequence may trigger off-target effects, and (3) pre-exist-
ing immunity against Cas9, which has been reported in 
humans, raises concerns for therapeutic applications. As 
an alternative to SpCas9, several Cas9 orthologs, includ-
ing Staphylococcus aureus Cas9 (SaCas9) and Campylo-
bacter jejuni Cas9 (CjCas9), can be used (Ran et al. 2015; 
Kim et al. 2017a; Dugar et al. 2018). Because they are 
smaller than SpCas9, the genes encoding these CRISPR 
components together with sequences encoding the appro-
priate sgRNA, can be packaged into small viral vector sys-
tems (Jo et al. 2019). Moreover, it has been reported that 
these nucleases exhibit reduced off-target nuclease activ-
ity compared to SpCas9 because they recognize longer 
PAMs, 5′-NNGRRT-3′ and 5′-NNNVRYAC-3′, respec-
tively (Ran et al. 2015; Yamada et al. 2017; Dugar et al. 
2018; Wang et al. 2019). In addition, Francisella novicida 
Cas9(FnCas9) (Hirano et al. 2016), Neisseria meningitidis 
Cas9 (Nme1Cas9, Nme2Cas9) (Zhang et al. 2013), Brevi-
bacillus laterosporus Cas9 (BlatCas9) (Gao et al. 2020), 
Streptococcus thermophilus Cas9 (St1Cas9) (Deveau et al. 
2008) and Staphylococcus auricularis Cas9 (SauriCas9) 
(Hu et al. 2020) are alternative options for genome editing.

Type V (class II) CRISPR/Cas systems have some similari-
ties with type II systems, but differ in key respects. Cas12a, 
which recognize T-rich PAMs at the 5′ end of the protospacer, 
is a representative example of type V CRISPR/Cas systems. 

Table 1  Summary of CRISPR/Cas classification

Classification Type Effector protein Target substrate Signature protein tracrRNA PAM motif References

Class I Type I Multi-subunit 
effector complex

DNA Cas3 No Subtype depend-
ent

Makarova and 
Koonin (2015); 
Xu et al. (2021)

Type III Cas10 No Subtype depend-
ent

Liu and Doudna 
(2020)

Type IV DinG No Subtype depend-
ent

Pinilla-Redondo 
et al. (2020)

Class II Type II Single effector 
protein

Cas9 Yes G rich PAM Koonin et al. (2017)
Type V Cas12 subtype dependent T rich PAM Zetsche et al. (2015)
Type VI RNA Cas13 No Subtype depend-

ent
Wang et al. (2020)
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Fig. 2  Schematic summary of CRISPR/Cas tools used for genome editing. a The CRISPR/Cas9 system recognizes a PAM and generates DSBs 
at a site 3 bp upstream from the PAM. b CBE consists of an inactive or nickase form of Cas9 (dCas9 or nCas9) fused to a cytidine deaminase 
and UGI. After the dCas9 or nCas9 domain of a CBE recognizes a specific sequence, the cytosine deaminase deaminates C to generate U. Then, 
the G in the opposite strand is converted to A by cellular mismatch repair, and C is converted to T. UGI prevents the U from undergoing cellular 
base excision repair. c ABEs are constructed by fusion of nCas9 to E. coli tRNA adenosine deaminase, which deaminates A to generate I, which 
is then converted to G by DNA repair or replication. d Prime editors are constructed by fusion of an engineered reverse transcriptase domain to 
nCas9. A pegRNA binds to the 3′ end of the exposed target DNA strand, which was generated by nCas9. Then, the desired gene edit (which is 
contained in the pegRNA) is incorporated into the DNA by reverse transcriptase. e The Cas-transposon system was developed by fusing a trans-
posase to Cas9. After the targeted sequence is recognized by Cas9 (dCas9, Cas12k or Cascades), the transpose inserts the desired sequence at the 
site. f Tools for CRISPR/Cas-mediated epigenetic regulation are constructed by conjugation of transcriptional repressors or activators to dCas9, 
generating CRISPRa and CRISPRi systems, respectively. In CRISPRa systems, transcriptional activators recruit RNA polymerase and tran-
scription factors to a promoter and promote transcription. In CRISPRi systems, transcriptional repressors prevent binding of RNA polymerase 
(RNAP) to the promoter of interest
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This protein functions as a nuclease by using only a RuvC 
domain; it lacks an HNH domain (Zetsche et al. 2015). In addi-
tion, Cas12a is guided by a single, relatively compact crRNA 
and does not require a tracrRNA (Zetsche et al. 2015). The 
enzyme also exhibits RNase III activity, allowing it to process 
the precursor crRNA into the mature crRNA. These features 
have been exploited to allow multiplexed genome editing in 
which crRNAs for different targets are placed into an array, 
which is then processed by Cas12a to generate multiple mature 
crRNAs (Zetsche et al. 2015, 2017). It has been reported that 
Cas12a exhibits efficiency comparable to that of SpCas9, but 
higher specificity (Banakar et al. 2020). In contrast to Cas9 
(which generates a blunt-ended DSB), Cas12a induces a stag-
gered DSB, generating cuts in the non-targeted and targeted 
DNA strands at positions 18 and 23, respectively, in the proto-
spacer (Zetsche et al. 2015). Advantageously, the gene encod-
ing Cas12a is relatively short (3.6–3.9 kb), so it has been pos-
sible to incorporate it in adeno-associated viral vectors that 
were used as a gene delivery tool, resulting in efficient in vivo 
genome editing (Koo et al. 2018).

Some CRISPR/Cas systems protect bacteria from infec-
tions by targeting RNA. Cas13a, which belongs to the type 
VI system, cleaves RNA using two HEPN nuclease domains. 
Like other systems, the RNA editing process requires crRNA 
(unlike in the type II systems, tracrRNA is not required). The 
pre-crRNA undergoes maturation via the RNase function of 
the Helical-1 domain in the REC lobe (in LshCas13a) or the 
HEPN2 domain in the NUC lobe (in LbuCas13a). (Shma-
kov et al. 2015; Kingdom et al. 2017; Liu et al. 2017). The 
mature crRNA binds to the target RNA after recognition of 
the protospacer flanking sequence (PFS) located at the 3′ 
end of the protospacer (Abudayyeh et al. 2016; Burmistrz 
et al. 2020). After formation of a complex between crRNA-
RNA and Cas13a, RNA degradation occurs (Knott et al. 
2017). Representative Cas13a enzymes include LseCas13a, 
LwaCas13a, LshCas13a, LbuCa13a, and LbaCas13a, and the 
mechanisms through which their pre-crRNAs undergo matu-
ration, the recognized PFSs, and the resulting RNA cleavage 
patterns are currently under investigation.

Engineered Cas9 and Cas12a variants

The CRISPR/Cas system has been rapidly developed 
by genetic engineering to expand its targeting scope and 
improve its specificity. Structure-guided and complimentary 
evolution-based engineering of Cas9 have led to increased 
PAM plasticity as summarized in Table 2. SpCas9-EQR, 
-VQR, -VRER and -VRQR were generated by modifying 
the Cas9 Arg1333 and Gln1335 residues, which respectively 
recognize the second and third guanine bases in the NGG 
PAM (Kleinstiver et al. 2015b, 2016; Anders et al. 2016). 
These Cas9 variants recognize 5′-NGNG-3′, 5′-NGAN-3′, 

5′-NGCG-3′, and 5′-NGAH-3′ PAMs, respectively (Klein-
stiver et al. 2015b, 2016; Anders et al. 2016). Through 
phage-assisted continuous evolution and selection of host 
cell containing evolved Cas9, xCas9 was developed to rec-
ognize 5′-NG-3′ PAMs (Hu et al. 2018). In addition, other 
SpCas9 variants (SpCas9-NRRH, SpCas9-NRCH and 
SpCas9-NRTH), which recognize most 5′-NR-3′ PAMs, 
have been generated by employing phage-assisted continu-
ous and non-continuous evolution (Miller et al. 2020). More-
over, throughout use of a high-throughput PAM determina-
tion assay, engineered SpG and SpRY, which respectively 
recognize 5′-NGN-3′ and 5′-NRN-3′ PAMs were developed 
(Walton et al. 2020).

Furthermore, high-fidelity Cas variants, with increased 
targeting specificity and reduced off-target nuclease activ-
ity, have been developed. The general strategies for generat-
ing high-fidelity Cas9 variants are summarized in Table 2. 
As one example, structure-guided mutagenesis was used to 
neutralize the positively charged residues in the non-target 
strand binding groove in Cas9, leading to a requirement for 
more stringent base pairing between the sgRNA and the tar-
get DNA strand. With this strategy, eSpCas9 1.0 (K810A/
K1003A/R1060A) and eSpCas9 1.1 (K848A/K1003A/
R1060A) were generated, resulting in reduced off-target 
effects while maintaining on-target efficiency (Slaymaker 
et al. 2016). Similarly, SpCas9-HF1 (Kleinstiver et al. 2016), 
HypaCas9 (Chen et al. 2017), Sniper-Cas9 (Lee et al. 2018), 
and enAsCas12a-HF1 (Kleinstiver et al. 2019) also showed 
high-fidelity genome editing.

Cas9 orthologs have also been engineered to widen their 
targeting scope and increase their editing efficiency. For 
example, E782K/N968K/R1015H mutations were intro-
duced into SaCas9 to create SaCas9-KKH, which recog-
nizes 5′-NNNRRT-3′ PAMs (Kleinstiver et al. 2015a). RHA 
FnCas9 (E1369R/E1449H/R1556A), which recognizes 
5′-YG-3′ PAMs, was generated by reducing the binding affin-
ity of FnCas9 with the third guanine base in the 5′-NGG-3′ 
PAM (Hirano et al. 2016).

Cas12a, which recognizes T-rich PAMs, has a wider PAM 
window than other Cas variants. To take advantage of its 
wide targeting scope, mutations were introduced into Acid-
aminococcus Cas12a (AsCas12a) to generate the E174R/
S542R/K548R variants, which recognize various PAMs, 
including 5′-TTYN-3′, 5′-VTTV-3′, and 5′-TRTV-3′ (Klein-
stiver et al. 2019). To further expand the targeting scope of 
AsCas12a, additional variants were generated by modify-
ing other residues (variant RR; S542R/K607R and variant 
RVR; S542R/K548V/N552R) that form hydrogen bonds 
with the PAM duplex; the RR and RVR variants recognize 
TYCV and 5′-TATV-3′ PAMs, respectively (Nishimasu 
et al. 2017; Kleinstiver et al. 2019). To reduce off-target 
effects of AsCas12a variants while maintaining their high 
levels of on-target activity, K949A was also introduced into 
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the AsCas12a RR and RVR variants (Gao et al. 2017). In 
addition, G532R/K595R mutations were introduced into 
Lachnospiraceae bacterium Cas12a (LbCas12a) to gener-
ate LbCas12a-RR variant so that it recognizes 5′-TYCV-3′ 
PAMs, broadening its targeting scope (Li et al. 2018).

Base editors

Recently, several DNA base editing systems have been 
developed that allow single base conversions, also known as 
base editing, in cells and organisms in a guide RNA-depend-
ent manner. By connecting a deaminase to a Cas9 protein, 
targeted base editing became possible, broadening the types 
of editing that could be achieved by CRISPR/Cas systems. 
Two general types of base editors (cytidine base editor 
(CBE), and adenine baes editor (ABE) have been devel-
oped, both with great potential for targeted base mutagen-
esis (Fig. 2b and 2c). CBE1, the first version of CBE, is 
a fusion between an inactive form of Cas9 (dead Cas9 or 
dCas9) and rat-derived cytosine deaminase apolipoprotein 
B mRNA editing enzyme catalytic subunit 1 (APOBEC1), 
a cytidine deaminase. CBE1 enables the direct conversion 
of a targeted C·G base pair to a T·A base pair in a process 
involving deamination of a C to create a U, which is then 
converted to T by the cell’s DNA mismatch repair process 
(Komor et al. 2016). CBE2 was generated by fusing a uracil 
DNA glycosylase inhibitor (UGI) to CBE1, which prevents 
the removal of the U by base excision repair involving uracil 
DNA glycosylase (Komor et al. 2016). Another form, CBE3, 
was created by exchanging dCas9 for Cas9 nickase (nCas9; 
D10A mutation). This version exhibits increased base edit-
ing efficiency compared to CBE1 and CBE2 (Komor et al. 
2016). The development of CBE3 resulted in a six-fold 
increase in genome editing efficiency compared to CBE2, 
but it had a limitation in that window in which bases were 
converted was narrow (positions 4 to 8 in the protospacer, 
counting from the PAM distal base) (Komor et al. 2016). 
An improved version of CBE (CBE4) was generated by 
extending the length of linkers (rAPOBEC-nCas9 linker to 
32 amino acids, nCas9-UGI linker to 9 amino acids) and 
attaching two UGIs to the C-terminus of the constructs. 
This modification in CBE4 resulted in a 1.5-fold increase 
in base editing efficiency and a 2.3-fold decrease in non-T 
product formation compared to CBE3 (Komor et al. 2017). 
As another base editing system, Target-activation-induced 
cytidine deaminase (Target-AID) was developed by fusing 
nCas9 (D10A) to a Petromyzon marinus cytidine deaminase 
1 (PmCDA1). Target-AID exhibits a different targeting win-
dow (positions 1 to 5 in the protospacer) compared to CBEs 
and ability to edit methylated cytosines. In addition, several 
attempts have been made to expand the base editing window 
and increase its specificity as summarized in Table 3.

ABEs were constructed using an evolved version of 
Escherichia coli tRNA adenosine deaminase (TadA). Wild-
type TadA can convert adenosine to inosine in tRNA. How-
ever, because no known natural adenosine deaminase recog-
nizes DNA, TadA was evolved to exhibit this characteristic 
through bacterial selection methods, creating TadA* (Gaud-
elli et al. 2017). The first ABE (ABE1.2) was generated by 
fusing a mammalian codon-optimized TadA*, containing 
A106V and D108N mutations, to nCas9 (D10A) (Gaud-
elli et al. 2017). A later version, ABE7.10, which consists 
of a heterodimer of the wild-type TadA and TadA* fused 
with nCas9 (D10A) and exhibits improved base editing 
efficiency, was constructed through bacterial evolution and 
protein engineering (Gaudelli et al. 2017). ABE7.10 shows 
broad sequence compatibility, targeting a window spanning 
positions 4 to 7 in the protospacer. In addition, ABE7.10 
exhibits highly efficient adenine base editing, in human cells 
(Gaudelli et al. 2017) and mice (Ryu et al. 2018). ABEs have 
been further engineered to exhibit even higher base editing 
efficiency as summarized in Table 3. For example, evolved 
TadA variants with increased deoxyadenosine deamination 
activity were used to generate several versions of ABE8e 
based on SpCas9, SaCas9, and LbCas12a, which exhibit 
higher efficiency and a wider activity window than ABE7.10 
(Richter et al. 2020).

Glycosylase base editor (GBE) has also been developed 
by fusing uracil-DNA glycosylase to a CBE. The uracil-
DNA glycosylase removes the U produced by the CBE and 
creates an apurinic/apyrimidinic site, which activates the 
DNA repair mechanism. GBE [that is, AID-nCas9-uracil 
DNA glycosylase] showed efficient C-to-A conversion in E. 
coli. Replacement of AID with rAPOBEC1 generated a GBE 
(APOBEC-nCas9- uracil DNA glycosylase), that enables 
C-to-G conversion in mammalian cells (Zhao et al. 2021).

A dual adenine and cytosine base editor (A&C-BE) 
has been developed that can simultaneously induce C-to-
T and A-to-G base editing in the same allele. This dual 
editor consists of a human AID-TadA-TadA*-nCas9-UGIs 
fusion (Zhang et al. 2020). For A&C-BE, the A-to-G edit-
ing window remained consistent as positions 4–7, whereas 
the base editing window for C-to-T editing was extended 
to positions 2–17 in the protospacer (Zhang et al. 2020). 
Furthermore, synchronous programmable adenine and 
cytosine editors (SPACEs) were generated by a fusion of 
miniABEmax (which was generated by removing wild-
type TadA domain from ABEmax and introducing V82G 
mutation) to target-AID (Grünewald et al. 2020). SPACEs 
can induce targeted A-to-G and C-to-T conversions at posi-
tions 4–7 and 2–7 in the protospacer, respectively, and 
exhibit reduced RNA off-target effects and comparable or 
lower DNA off-target effects compared to miniABEmax-
V82G and Target-AID (Grünewald et al. 2020).
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Prime editors

Prime editing is a recently developed genome editing tech-
nology that is capable of generating targeted insertions, 
deletions, and substitutions in a precise manner. A key 
feature of prime editing is that it does not require either 
a DSB or the HDR pathway for targeted editing. Prime 
editors are generated by fusing an engineered reverse tran-
scriptase (RT) domain to nCas9 (H840A) (Fig. 2d) (Anza-
lone et al. 2019). This process requires an engineered 
prime editing guide RNA (pegRNA), which is similar to a 
sgRNA but also contains a primer binding site (PBS) and 
an RT template containing the desired edit. nCas9 first 
generates a nick in the DNA strand containing the PAM. 
Then, RT binds to the 3′ end of the exposed target DNA 
strand and performs reverse transcription, after which the 
non-edited protruding 5′-flap on the strand containing the 
PAM is degraded by cellular endonucleases. Finally, DNA 
ligation and repair occur to generate the desired DNA 
sequence (Anzalone et al. 2019).

Three versions of prime editors have been developed. 
Prime editor 1 (PE1) was generated by fusing nCas9 
(H840A) to the wild-type Moloney murine leukemia 
virus-RT. The RT domain was further engineered in PE2, 
which exhibits increased editing efficiency (Anzalone et al. 
2019). PE3 uses an additional sgRNA that leads to the 
generation of a nick in the non-edited strand by nCas9, 
resulting in a further two- to four-fold increase in edit-
ing efficiency. PE3b uses an sgRNA that targets only the 
edited strand to decrease the frequency of indels in the 
non-edited DNA strand (Anzalone et al. 2019). Various 
attempts to improve prime editing are actively underway; 
efficient genome editing has been demonstrated in plants 
and mouse models (Lin et al. 2020; Liu et al. 2020).

Prime editing efficiency is greatly influenced by struc-
ture of the pegRNA. Several factors such as SpCas9-
induced indel frequencies, GC counts, and the PBS melt-
ing temperature must be considered to design the optimal 
pegRNA (Kim et  al. 2020). Several prediction tools, 
including pegFinder (Chow et al. 2020) and PrimeDesign 
(Hsu et al. 2020) can be useful for designing pegRNAs 
and for predicting possible prime editing effects in the 
whole genome.

Transposase and recombinase fusions to Cas9

The CRISPR/Cas system has also been harnessed to ena-
ble target-specific insertions of longer DNA fragments. 
CRISPR/Cas-associated transposases that function in cyano-
bacterial cells have recently been reported. Here, a nuclease-
deficient Cas effector directs transposition of a cargo gene in 
an RNA-guided manner (Strecker et al. 2019). Based on this 

system, a Cas-transposon system was developed by fusing a 
Tn7 transposase to type V-K Cas12k to facilitate target-spe-
cific transposition (Fig. 2e) (Strecker et al. 2019). Another 
type of reconstituted mariner-family transposase, Himar 1, 
conjugated to dCas9, resulted in site-specific insertion of 
DNA into the target TA motifs in the E.coli and mammalian 
cells (Chen and Wang 2019).

Genome editing tool that would enable programmable 
homologous recombination would also be a valuable addi-
tion to the CRISPR toolkit. Recombinase, which functions 
as a dimer, recognize a strict recombinase site, resulting in 
recombination; this process can cause the insertions, dele-
tions, or inversions of specific sequences through cleavage, 
strand exchange, and re-ligation (Chaikind et al. 2016). 
Because recombinases do not induce cellular DNA repair 
procedures, recombination does not typically lead to byprod-
ucts of error-prone DNA repair such as indels. A fusion of 
dCas9 with an engineered recombinase, Ginβ, has been gen-
erated to overcome the sequence constraints of recombinase 
(Chaikind et al. 2016). Use of this system resulted in modest 
genome editing efficiency in mammalian cells, demonstrat-
ing its potential as an alternative genome editing tool (Cui 
et al. 2018).

Epigenetic regulators

CRISPR/Cas-mediated epigenetic regulation became pos-
sible by the conjugation of several epigenetic regulator 
proteins to dCas9, generating CRISPR interference (CRIS-
PRi) and CRISPR activation (CRISPRa) systems (Fig. 2f). 
In CRISPRi systems, the Krüppel-associated box (KRAB) 
repressor, fused to dCas9, is commonly used as an effector 
(Gilbert et al. 2013; Thakore et al. 2015). KRAB interacts 
with heterochromatin-forming complexes, which can induce 
histone methylation and deacetylation to inhibit binding of 
RNA polymerases to enhancer or promoter regions, inac-
tivating transcription (Gilbert et al. 2013; Thakore et al. 
2015).

In contrast, CRISPRa systems promote transcription by 
using a transcriptional activator, such as the VP16 activa-
tion domain, which can activate transcription by interacting 
with the TATA-binding protein, TFIIB, and SAGA histone 
acetylase (Hall and Struhl 2002). Fusion of VP64 (4 copies of 
VP16) or VP192 (12 copies of VP16) to dCas9 led to tran-
scriptional activation in vivo that was increased compared to 
that of VP16-conjutated dCas9 (Maeder et al. 2013; Balboa 
et al. 2015). In addition, fusions of SunTag (an array of repeat-
ing peptides that can mobilize multiple copies of an antibody-
fusion protein) (Tanenbaum et al. 2014), VPR (composed 
of VP64, p65, and Rta and act as stronger activators than 
VP64) (Chavez et al. 2015), p300 (which promotes transcrip-
tion through increased transactivation capacity) (Hilton et al. 
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2015), and TET (which performs demethylation by oxidizing 
methyl groups on proteins) (Liu et al. 2016) to dCas9 also 
promote transcription.

Challenges

The CRISPR/Cas system is certainly a useful gene editing 
tool, but there are several limitations to overcome before 
it can be used in various applications. Off-target effects 
(unwanted genome editing at unintended sites) are one of 
the major limitations. These effects can be caused by a tol-
erance for mismatches between the sgRNA and target DNA 
sequences (outside of the seed region located 1 to 5 nucleo-
tides proximal to the PAM) (Fu et al. 2013). Furthermore, 
presence of non-canonical PAMs can decrease Cas speci-
ficity (Zhang et al. 2014). To minimize off-target effects, 
several bioinformatic tools such as Cas-OFFinder (Bae et al. 
2014), CCTop (Stemmer et al. 2015), and CT-Finder (Zhu 
et al. 2016) can be useful for designing appropriate sgRNAs.

To apply the CRISPR/Cas system therapeutically, immu-
nity against CRISPR components must also be resolved. 
Preexisting adaptive immune responses against Cas9 
(anti-SpCas9 and anti-SaCas9 antibodies and Cas9-spe-
cific T-cells) have been detected in the majority of human 
serum samples tested, because the bacterial species that are 
the sources of these components regularly infect humans 
(Charlesworth et al. 2019). Another report supports the 
idea that CRISPR RNAs elicit innate immune responses in 
human cells (Kim et al. 2018). Recently, a phase 1 clinical 
trial involving the CRISPR/Cas system has been conducted 
in lung cancer patients, who were infused with CRISPR-PD 
1-edited T cells (Lu et al. 2020). The safety and feasibility 
of this approach were confirmed without any detectable side 
effects in this study, but more extensive investigations of 
safety of CRISPR/Cas-modified cells should be conducted. 
In addition to the CRISPR/Cas trial in cancer therapy, a 
range of therapeutic approaches for treating various diseases 
are being tested in vitro and in vivo, and continuous devel-
opments of the CRISPR/Cas system are underway to make 
these therapeutic applications more feasible.

Conclusions

The development of CRISPR/Cas technology has revolution-
ized the field of genome engineering. CRISPR/Cas-based 
tools are the most sophisticated and versatile editing tools 
to be used in areas ranging from basic research to medical 
therapy development. In addition, CRISPR/Cas technol-
ogy allows researchers to perform genome-wide screens 
to study the impact of changes in gene expression on cell 
function and link genotypes and phenotypes. As one exam-
ple, CRISPR/Cas knockout screening was used to search 

for therapeutic targets in pancreatic cancer cells, leading to 
the finding that such cells were sensitive to MEK inhibi-
tors (Kanarek et al. 2018; Szlachta et al. 2018; Behan et al. 
2019).

Applications of the CRISPR/Cas system include tran-
scriptional regulation made possible by conjugation of func-
tional proteins to Cas9, disease modeling, and gene thera-
pies. Nevertheless, many challenges remain; these include 
off-target effects, bystander effects, the development of 
efficient delivery methods, and immunity against CRISPR 
components, all of which need to be fully addressed. Rapid 
improvements in CRISPR/Cas-based tools are ongoing to 
overcome these limitations. These tools should reach their 
full potential in various applications in the near future.
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