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Introduction

Capillaries in the brain have a specialized structure, namely 
the blood-brain barrier (BBB), which consists of tight junc-
tion (TJ) proteins, specific transporters, and ion channels 
that maintain homeostasis in the brain. The BBB estab-
lishes selective permeability between the brain parenchyma 
and blood circulation for tight regulation of the synaptic 
milieu (Abbott 2002). Given its crucial role in maintaining 
homeostasis in the brain, emerging evidence has shed light 
on the importance of the disruption of BBB in the patho-
physiology of numerous neurodegenerative disorders. For 
instance, recent studies have demonstrated that compromised 
functional integrity of the BBB leads to the presence of 
pathological markers for Alzheimer’s disease (AD) (Bow-
man et al. 2018; Nation et al. 2019) and the extent of BBB 
impairment was correlated with cognitive decline (Nation 
et al. 2019). Furthermore, BBB breakdown has been associ-
ated with cognitive decline in aged rodents (Senatorov et al. 
2019). Recurrent seizures result in BBB disruption (Marchi 
et al. 2007; Li et al. 2013). Although previous studies have 
reported evidence suggesting strong associations between 
the disrupted functional integrity of the BBB and various 
neurodegenerative disorders, it remains unclear whether 
BBB dysfunction plays an active role during pathological 
processes or whether it is a consequential phenomenon.

Numerous factors can alter the functional and struc-
tural integrity of the BBB. For example, systemic infection 
increases BBB permeability (Hofer et al. 2008). It has been 
previously established that various cytokines, including 
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TNF-α (Tsao et al. 2001; Daniels et al. 2014), IL-1β, and 
IL-6 (de Vries et al. 1996), in the brain often induce BBB 
disruption. Given that exaggerated inflammatory responses 
are associated with a broad range of neurological disorders 
as precipitating events and/or as complications, it seems rea-
sonable to postulate that compromised BBB integrity may 
play a role in increasing susceptibility to the development 
of neurodegeneration. As numerous neurological disorders 
have aging as a major risk factor (Zlokovic 2008; Zhao 
et al. 2015), altered BBB integrity might be a precipitating 
event for instigating a key pathological process in neuro-
degenerative disorders. Here, we first review how cellular 
components are involved in the regulation of BBB integrity 
and then current findings regarding the tight association of 
BBB dysfunction with various neurodegenerative disorders 
in order to share our perspectives on the role of the compro-
mised BBB in the pathology of brain disorders in an effort 
to identify a novel therapeutic target for neurodegeneration.

Cellular components of the blood‑brain barrier

Endothelial tight junction

The structural integrity of the BBB is primarily dependent 
on TJ proteins to establish a physical “barrier” between adja-
cent endothelial cells in brain capillaries. Among numerous 

TJ proteins, claudins are known to play a central role in the 
regulation of BBB permeability (Günzel and Yu 2013). Defi-
ciency of claudin-5, one of the most abundant TJ proteins 
expressed in the BBB, results in increased BBB permeabil-
ity in mice, suggesting its importance in barrier function 
(Nitta et al. 2003). Claudins tightly interact with other TJ 
proteins, such as occludins and cytoplasmic proteins, includ-
ing zonular occludens (ZOs) (Poliak et al. 2002). ZO-1, -2, 
and -3 are expressed in the brain and play critical roles in 
the assembly of TJ proteins by cross-linking them into actin 
filaments (Fanning et al. 1998). Indeed, ZO-1 directly binds 
F-actin and is known to be associated with the regulation of 
the actomyosin cytoskeleton (Van Itallie et al. 2009). ZO-1 
also regulates the mechanical tension of endothelial cell–cell 
contacts by acting on adherence junctions, and its deple-
tion has been found to result in the loss of other TJ proteins 
(Tornavaca et al. 2015). In fact, there are numerous proteins 
on the TJs junctions between endothelial cells and various 
factors released from and/or bound to other cells in proxim-
ity that are involved in the regulation of barrier properties in 
the neurovascular unit, as summarized in Fig. 1 and Table 1.

Pericytes

Pericytes are vascular mural cells in proximity to the base-
ment membrane of capillaries in the brain (Winkler et al. 
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Fig. 1  Schematic illustration of cellular components and molecules involved in the regulation of BBB integrity. Astrocytic end-feet and peri-
cytes encompass blood vessels in the brain and endothelial cell linings are connected by tight junctions (//). Various molecules are released from 
different cell types and regulate the BBB integrity based on their complex interactions within neurovascular units. * indicates molecules that are 
abundantly expressed in more than two types of cells
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2011). Due to their proximity to endothelial linings, peri-
cytes can regulate BBB permeability by altering the expres-
sion of TJ proteins on endothelial cells and directly regu-
lating transcytosis across the BBB (Armulik et al. 2010). 
Furthermore, such an important role for pericytes in the 
regulation of BBB permeability makes them one of the criti-
cal cells that contribute to the pathological progression of 
neuroinflammation by controlling the adhesion and migra-
tion of leukocytes through endothelial cells, which can result 
in altered immune responses in the brain (Olson and Sori-
ano 2011). Accordant with the abundance of interactions 
between pericytes and endothelial cells for maintaining the 
integrity of the BBB, pericytes express various cell-surface 
molecules, such as transmembrane chondroitin sulfate pro-
teoglycan NG2 and platelet-derived growth factor receptor β 
(PDGFRβ), which govern cell–cell and/or cell-extracellular 
matrix interactions (Sweeney et al. 2016); the expression 
of such molecules seems to be related to the functional 
integrity of the BBB. When the BBB is disrupted following 
circadian rhythm disturbance, the expression of PDGFRβ 
is downregulated in pericytes, along with increased BBB 
permeability (Nakazato et al. 2017). Traumatic brain injury 
(TBI) directly causes PDGFRβ signaling impairment and 
subsequently decreases the expression of various tight 
junction-related molecules, including connexin-43, adher-
ent junction proteins, and TJ proteins such as ZO-1, clau-
din-5, and occludin (Bhowmick et al. 2019). These findings 
highlight the importance of crosstalk between pericytes and 
endothelial cells in the maintenance of BBB integrity.

Astrocytes

Astrocytes are one of the most abundant cells in the brain 
and play a critical role in the regulation of homeostasis 
within neurovascular units. For instance, astrocytes regu-
late cerebral blood flow in accordance with changes in neu-
ronal activity by detecting the metabolic state of the brain 
parenchyma (Gordon et al. 2008). Given their proximity 
to endothelial cells via their perivascular end-feet (Fig. 1), 
interactions between astrocytes and endothelial cells can 
directly determine the integrity of the BBB. The perivascu-
lar end-feet of astrocytes have several specialized features 
that include not only expressing channels for water (e.g., 
aquaporin 4) and ions (e.g., inwardly rectifying Kir 4.1) but 
also producing molecules such as agrin (Barber and Lieth 
1997; Warth et al. 2004) that regulate barrier properties and 
other humoral factors, including ATP and endothelin-1 (Pae-
meleire and Leybaert 2000; Ostrow et al. 2000). In particu-
lar, given that astrocytes wrap around synapses and actively 
regulate neuronal activity (Araque et al. 1998), alterations 
in astrocytes may affect the physiology of both endothelial 
cells and neurons in an interactive way.

Implications of BBB dysfunction in neurological 
disorders

Epilepsy

Epilepsy is a common neurological disorder and is char-
acterized by recurring seizures occurring due to hypersyn-
chronized excitability of neurons. It is known that one-third 
of patients develop “pharmacoresistant” epilepsy, which 
refers to a disease state that does not respond effectively to 
antiepileptic drugs. While neuronal hyperexcitability is a key 
pathophysiological phenomenon, emerging evidence sug-
gests that not only neural components but also factors rooted 
in the synaptic milieu that disrupt homeostasis within neuro-
vascular units play a critical role in the pathology of epilepsy 
(Vezzani and Granata 2005; Eyo et al. 2017). For example, 
severe astrocytic dysfunction has been reported to occur dur-
ing the early phase of epileptogenesis, resulting in a dysregu-
lated supply of energy metabolites and impaired clearance 
of ions and glutamates (reviewed in Patel et al. 2019). It 
has been recently reported that altered mTOR signaling in 
microglia results in massive reactive astrocytosis and severe 
spontaneous recurrent seizures in mice (Zhao et al. 2018), 
indicating that noninflammatory changes in microglia are 
likely to underlie the development of epilepsy. Furthermore, 
it has been suggested that compromised integrity of the BBB 
is highly associated with the pathological processes occur-
ring in epilepsy. For instance, in various animal models of 
status epilepticus, chronic BBB dysfunction and increased 
inflammatory responses have been reported (Heinemann 
et al. 2012; Van Vliet et al. 2014). Notably, extravasation 
of blood-borne molecules into the brain parenchyma due to 
compromised BBB integrity has been found to contribute 
to the development of pharmacoresistant epilepsy (Salar 
et al. 2014). BBB dysfunction seems sufficient to result in 
recurrent seizures in animal models (Seiffert et al. 2004). 
Furthermore, the occurrence of seizures is heightened in 
patients with a compromised BBB due to severe chemo-
therapy (Marchi et al. 2007, 2011).

Seizures often worsen the disruption of BBB integ-
rity. Increased permeability of the BBB has been found in 
patients with epilepsy and is correlated with disease progres-
sion (Van Vliet et al. 2007). In animal models, recurrent 
seizures have been associated with a decrease in the expres-
sion of TJ proteins, including claudin-1 and -5, occludin, 
and ZO-1 (Rempe et al. 2018), and inducing the expres-
sion of proteases, including matrix metalloproteinases, that 
disrupt the integrity of the BBB (Li et al. 2013; Kim et al. 
2015; Rempe et al. 2018). A recent study employing in vivo 
intravital microscopy analyses demonstrated that recurrent 
seizures and consequent excessive glutamate release results 
in disruption of the BBB integrity through the activation 
of NMDA receptors (Vazana et al. 2016). These findings 
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suggest that compromised BBB and pathological hyperexcit-
ability can robustly affect disease progression in epilepsy in 
an interrelated way.

Aging

Aging is one of the main risk factors for various neurodegen-
erative disorders, including AD, Parkinson’s disease (PD), 
and amyotrophic lateral sclerosis (Hou et al. 2019). Notably, 
the normal aging process involves BBB disruption (Zloko-
vic 2008; Zhao et al. 2015). Increased BBB permeability 
seems to be associated with increased inflammation and 
reduced expression of TJ proteins in the aged brain (Elahy 
et al. 2015). A recent study has suggested that the decreased 
expression of sirtuin-1, which is found in the aged brain, 
plays a critical role in the development of BBB dysfunc-
tion (Stamatovic et al. 2019). Additionally, increased BBB 
permeability is likely to be linked to deteriorating changes 
related to aging. As summarized in Table 2, BBB dysfunc-
tion is closely associated with network hyperexcitability. 
Indeed, not only progressive BBB dysfunction and albumin 
extravasation but also heightened seizure susceptibility has 

been found during normal aging (Senatorov et al. 2019). 
Given that network hyperexcitability can also exacerbate 
neurodegenerative processes (Ping et al. 2015; McMackin 
et al. 2019), it seems reasonable to postulate that BBB dis-
ruption may underlie the role of aging as a precipitating 
factor for neurodegenerative disorders.

Alzheimer’s disease

AD is one of the most common neurodegenerative dis-
eases and is characterized by learning and memory deficits, 
impaired cognition, mood swings, and changes in behavior. 
The well-known molecular hallmarks of AD include extra-
cellular aggregates of amyloid beta (Aβ) fibrils and intra-
cellular aggregates of hyperphosphorylated tau, known as 
neurofibrillary tangles (Elahi and Miller 2017). Numerous 
previous studies have focused on such neuron-centric phe-
nomena. However, emerging evidence suggests that altera-
tions in BBB integrity play a central role in the pathology 
of AD. For instance, the degree of BBB disruption is tightly 
correlated with cognitive dysfunction in humans (Nation 
et  al. 2019). Soluble PDGFR-β (sPDGFR-β), which is 

Table 2  BBB dysfunction-related changes in neurodegenerative disorders

Disorders Changes in neurovascular units References

Epilepsy Increases in the BBB permeability are linked to the high frequency of seizures Vliet et al. 2007
The dysfunction of astrocytes leads to dysregulated clearance of ions and glutamates in 

neurovascular units
Patel et al. 2019

Severe chemotherapy induces both compromised BBB and recurrent seizures in 
humans

Marchi et al. 2007; Marchi et al. 2011

Excessive glutamate due to hyperexcitability, excitoxcitiy leads to decreases in the tight 
junction proteins such as claudin-1,-5 and ZO-1

Rempe et al. 2018

Hyperexcitability increased MMPs leading to BBB disruption Kim et al. 2015; Rempe et al. 2018
Excessive release of the glutamate leads to disrupt BBB integrity via the activation of 

NMDA receptors in the rat brain
Vazana et al. 2016

Chronic BBB dysfunction and exaggerated inflammatory responses have been found in 
various animal model of status epilepticus

Heinemann et al. 2012; Vliet et al. 2014

Altered mTOR signaling in microglia results in both massive reactive astrocytosis and 
spontaneous recurrent seizures

Zhao et al. 2018

Recurrent seizures induce BBB dysfunction, correlated with MMP9 levels in CSF Li et al. 2013
Serum albumin extravasation due to BBB dysfunction is associated with the develop-

ment of pharmacoresistant epilepsy
Salar et al. 2014

Aging The decline in Sirtuin-1 level triggers BBB dysfunction in aged mice Stamatovic et al. 2019
Increases in the network hyperexcitability through the activation of TGFβ signaling 

contribute to BBB dysfunction in hippocampus of aged mice
Senatorov et al. 2019

Dysregulated BBB permeability along with the heighted inflammation is found in the 
brain of aged mice

Elahy et al. 2015

Alzheimer’s 
Disease 
(AD)

The degree of BBB disruption measured as in the CSF levels of sPDGFRβ is correlated 
with cognitive dysfunction in humans

Nation et al. 2019

APOE4 carriers have increased MMP9 activity and BBB breakdown in the hippocam-
pus and medial temporal lobe in human

Montagne et al. 2020

The deficiency of GLUT1 worsens cerebrovascular degeneration, BBB breakdown, and 
neuronal dysfunction in a mouse model of AD

Winkler et al. 2015
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known to be abundantly expressed in BBB-associated peri-
cytes around brain capillaries (Fig. 1), has been reported as 
a potential cerebral spinal fluid marker of BBB dysfunction; 
this marker was correlated with dynamic contract-enhanced 
magnetic resonance imaging measures of BBB breakdown 
(Nation et al. 2019). Notably, individuals with cognitive 
impairment were found to have an increased concentration 
of sPDGFR-β without any significant surge in aggregates 
of Aβ and tau protein (Nation et al. 2019). These findings 
suggest that BBB disruption may be a biomarker of cogni-
tive dysfunction, presumably even in the early stages of AD 
pathology. A recent study employing the E4 variant of apoli-
poprotein E (APOE4), a well-known genetic risk factor for 
AD (Corder et al. 1993; Roses 1998), reported that APOE4 
is involved in BBB dysfunction (Montagne et al. 2020). Indi-
viduals with APOE4 exhibit BBB breakdown characteristic 
features, particularly in the hippocampus and medial tempo-
ral lobe, that are distinct from those of individuals without 
such a variant protein, and the degree of cognitive decline in 
APOE4 carriers is significantly correlated with BBB break-
down markers, including the increased activity of matrix 
metalloproteinase (MMP)-9, which directly induces BBB 
disruption (Montagne et al. 2020). These findings suggest 
that BBB dysfunction is likely to be a precipitating event in 
the development of cognitive decline during the pathological 
progression of AD.

Potential factors associated with neurological disorders 
and their influence on BBB integrity

Inflammation

Inflammation has been implicated in various neurological 
disorders, including multiple sclerosis (Voet et al. 2019), 
ischemic stroke (Jin et al. 2013), and AD (Akiyama et al. 
2000). It is usually associated with a worse prognosis than 
that associated with neurodegeneration (Glass et al. 2010; 
Amor et al. 2014). Notably, inflammation in the brain often 
leads to drastically compromised functional integrity of 
the BBB. For instance, increased BBB permeability and 
decreased expression of major TJ proteins, such as clau-
din-5, occludin, and ZO-1, have been found in cerebral 
amyloid angiopathy, for which an exaggerated inflamma-
tory response to amyloid beta accumulation is known to be 
a major pathological marker (Carrano et al. 2012). Seizure-
induced inflammation has been found to worsen BBB dis-
ruption, as well as increase the duration and frequency of 
seizures, via the increased expression of IL-1β (Librizzi 
et al. 2012). Furthermore, the activation of microglia, a key 
step in the development of neuroinflammation, has been 
found to induce BBB dysfunction, concomitantly resulting 
in the loss of TJ proteins on endothelial cells and pericytes, 

and the increased release of chemokines and cytokines such 
as IL-6 and MCP-1 (Shigemoto-Mogami Y et al. 2018).

In addition to structural damage, inflammation can alter 
the functional integrity of the BBB. Adenosine triphosphate-
binding cassette (ABC)-type transport proteins, which are 
highly expressed on endothelial cells, are known to prevent 
drugs or unwanted substances from entering the brain (Kooij 
et al. 2011). P-glycoprotein is an ABC transporter family, 
and it has been reported that systemic inflammation can 
directly alter P-glycoprotein trafficking in cerebral endothe-
lial cells (McCaffrey et al. 2012). ABC transporters regulate 
the secretion of chemokine ligands from reactive astrocytes, 
which is formed in response to chronic inflammation (Kooij 
et al. 2011). These findings indicate that inflammation trig-
gered by and/or associated with various etiologies related to 
neurodegeneration can affect the structural and functional 
integrity of the BBB.

Extracellular matrix and matrix metalloproteinases

Extracellular matrix (ECM) components in neurovascular 
units play an active role in regulating the structural and 
functional integrity of the BBB. While the ECM has long 
been known to provide the vasculature with structural sta-
bility, various ECM components can govern cell–cell and 
cell–matrix interactions. For instance, the laminin family, 
which is abundantly expressed in the basement membrane, 
can interact with endothelial cells via integrins, which is 
followed by binding with other matrix components such as 
perlecan and agrin (Reed et al. 2019). Furthermore, emerg-
ing evidence suggests that ECM molecules actively regulate 
synaptic plasticity (Kurshan et al. 2014; Ferrer-Ferrer and 
Dityatev 2018) and that they are dynamically changed in an 
activity-dependent manner (Lazarevich et al. 2020).

MMPs are key players in the regulation of ECM remod-
eling. MMPs are endopeptidases that play critical roles in 
various physiological and pathological processes, including 
cell migration (Sternlicht and Werb 2001), angiogenesis and 
cancer metastasis (Sabeh et al. 2004), and wound healing 
(Rohani and Parks 2015). In neurovascular units, MMPs 
can degrade both TJ proteins and the basement membrane 
of the vasculature in the brain (Feng et al. 2011; Dhanda 
and Sandhir 2018). Notably, the expression and activity of 
MMPs dynamically change with disease state. For instance, 
the transcription levels of MMPs are altered during epilep-
togenesis (Gorter et al. 2007), neuroinflammation (Chandler 
et al. 1997), and activation of TGFβ signaling (Kim et al. 
2017a, b). Given that TGFβ signaling is activated upon BBB 
disruption (Cacheaux et al. 2009) and that neuroinflamma-
tion is exacerbated by increased infiltration of leukocytes 
and cytokines through a compromised BBB (Ransohoff 
et al. 2003), it seems reasonable to postulate that the patho-
logical events initiated by or involved in BBB dysfunction 



493Blood‑brain barrier dysfunction as a potential therapeutic target for neurodegenerative…

1 3

exacerbate disease progression by worsening BBB disrup-
tion via increases in levels of MMPs.

Increased expression or activity of MMPs has been 
found in various brain neurodegenerative disorders, which 
are closely associated with BBB dysfunction in its pathol-
ogy (Table 2). Indeed, the expression and activity levels of 
MMP-2 and MMP-9 are significantly increased in animal 
models of status epilepticus (Rempe et al. 2018). Increased 
MMP-9 levels induced by genetic overexpression have been 
found to induce epileptogenesis following TBI (Pijet et al. 
2018). MMP-9 expression is also significantly increased 
after stroke or TBI, both of which involve BBB breakdown, 
and the increased MMP-9 expression is likely to exacerbate 
the loss of TJ proteins and BBB dysfunction (reviewed in 
Prakash and Carmichael 2015). In addition, the expression 
level of MMP-3 was found to be increased in the substantia 
nigra of rats in an experimental model of PD, in which the 
degeneration of dopaminergic neurons was induced either 
by 6-hydroxydopamine (Sung et al. 2005) or lipopolysac-
charide-triggered inflammation (McClain et al. 2009). On 
the other hand, MMP-3 deficiency induced by genetic or 
pharmacological manipulation ameliorated the degeneration 
of dopaminergic neurons in an animal model of PD (Kim 
et al. 2007). Given that BBB disruption has been found in 
patients with PD (Koretekaas et al. 2005), such increased 
MMP-3 expression seems to contribute to BBB dysfunction 
during the pathological progression of neurodegeneration 
occurring in brain disorders such as PD.

BBB as a critical therapeutic target 
for neurodegenerative disorders

Due to its lack of disease specificity, BBB dysfunction has 
long been regarded as a common phenomenon that is merely 
involved in various types of neurological disorders. How-
ever, as reviewed herein, evidence has emerged that BBB 
disruption occurring in the early disease stages can actively 
instigate or trigger a key pathological process. Indeed, sev-
eral studies have investigated whether BBB dysfunction-
related signaling pathways can be a therapeutic target. Albu-
min extravasation through a compromised BBB can induce 
pathological hyperexcitability, which is mediated by TGFβ 
signaling (Ivens et al. 2007). Pharmacological inhibition of 
TGFβ signaling, through the administration of losartan (Bar-
Klein et al. 2014) or small synthesized molecules to specifi-
cally inhibit the receptor (Senatorov et al. 2019), prevented 
epileptogenesis and reduced seizure susceptibility, respec-
tively. Furthermore, the previous finding that BBB dysfunc-
tion precedes other pathological markers, such as heightened 
inflammation and amyloid β and/or tau-related pathology in 
patients with mild cognitive impairment (Nation et al. 2019), 
corroborates the importance of BBB dysfunction as an early 
diagnostic marker to enable early intervention in AD. Given 

that APOE4 variants, a well-known genetic risk factor for 
AD, also result in BBB disruption (Montagne et al. 2020), 
altered integrity of the BBB may be a critical pathological 
point in the progression of AD.

Several studies have suggested therapeutic approaches 
that are associated with improved structural and functional 
integrity of the BBB. For example, deep brain stimulation 
of the anterior thalamic nuclei, which is well known for its 
anti-seizure effects, has been found to reduce BBB disrup-
tion and albumin extravasation (Chen et al. 2017). Vitexin, 
a naturally derived flavonoid compound, was also found to 
effectively reduce seizure susceptibility by restoring BBB 
integrity by increasing the expression of TJ-related proteins 
(Luo et al. 2018). Furthermore, donepezil, an acetylcholine 
esterase inhibitor that has been previously shown to attenu-
ate the cognitive and psychiatric symptoms of AD (Kim 
et al. 2017a), has been reported to reduce injury-induced 
BBB disruption by elevating the expression of claudin-5 
(Ongnok et al. 2021). A recent study has suggested that 
a combination of etodolac and α-tocopherol can be used 
as a novel therapeutic strategy for the treatment of AD to 
enhance BBB integrity and amyloid β clearance, highlight-
ing the important role of compromised BBB integrity in the 
pathology of AD (Elfakhri et al. 2019). Additionally, alter-
ing the activity of MMPs that are tightly associated with 
the BBB, as noted above, has been proven to exert promis-
ing therapeutic effects. For instance, a specific inhibitor of 
MMP2/9 prevented recurrent seizures in animal models of 
epilepsy (Broekaart et al. 2021). Rapamycin, a well-known 
inhibitor of mTOR signaling, has been found to protect the 
structural integrity of the BBB in animal models of AD and 
prevent vascular cognitive impairment via the downregula-
tion of MMP9. These previous findings further indicate the 
active and critical role of a compromised BBB in neurode-
generative disorders. However, it remains unclear whether 
the reduced BBB disruption is a cause for or a consequence 
of the observed therapeutic effects.

Given that BBB disruption often occurs as a precipitat-
ing event in the pathology of neurogenerative disorders, 
targeting directly on aftereffects of BBB breakdown can be 
a potential disease-modifying approach. The TGFβ recep-
tor-mediated signaling pathway, one of the major pathways 
immediately triggered by the infiltration of blood-borne mol-
ecules due to BBB disruption, is likely to be an effective tar-
get to dampen the consequences of a compromised BBB, as 
demonstrated in several studies (Cacheaux et al. 2009; Bar-
Klein et al. 2014; Kim et al. 2017a, b; Senatorov et al. 2019). 
In addition, inhibition of potent factors, such as MMPs, that 
directly instigate BBB disruption could be another poten-
tial therapeutic target for alleviating reciprocal interaction 
between BBB disruption and neurodegeneration, as sug-
gested by studies using genetic or pharmacological manipu-
lation of MMPs in models of ischemic stroke (Murata et al. 
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2008; Chaturvedi and Kaczmarek 2014), PD (Kim et al. 
2007; Choi et al. 2008), and epilepsy (Pijet et al. 2020). It 
should be noted, however, that MMPs are also known to play 
a critical role in the degradation of Aβ (White et al. 2006), 
as well as the processing of Aβ precursor proteins (García-
González et al., 2019), which indicates the complex role of 
MMPs in the pathology of AD. Further studies are warranted 
to identify a pathway that can regulate the integrity of the 
BBB without undermining favorable processes involved the 
course of disease progression.
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