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Introduction

A well-structured network of epithelial and stromal cells in 
the gut facilitates efficient and selective nutrient absorption 
while providing a physical barrier against noxious agents. 
The intestine is covered by a single layer of epithelial cells 
which are differentiated from pluripotent intestinal epithe-
lial stem cells (IESCs) at the base of the crypt (Santos et al. 
2018). The small intestine and colon differ in the gross 
organ structure and composition/distribution of intestinal 
epithelial cells (IECs) (Fig. 1). In the small intestine, thin 
and long villi increase the mucosal surface area for efficient 
nutrient absorption. In contrast, villi are absent in the colon, 
but extended crypts efficiently absorb water and metabolic 
products produced by the microbiome (Allaire et al. 2019).

The small intestine has fewer goblet cells than the colon, 
but both Paneth cells and M cells are located here. In par-
ticular, Peyer’s patches and Paneth cells are mostly found 
in the ileum and are closely associated with a high bacte-
rial density (Ramanan and Cadwell 2016). As there are no 
Paneth cells in the colon, the expression of antimicrobial 
molecules is lower here than in the small intestine (Cunliffe 
and Mahida 2004). However, there are more goblet cells 
in the colon than in the small intestine and the colon has a 
thick double mucus layer, firm inner layer, and loose outer 
layer. As the inner layer is anchored to the intestinal epithe-
lium, which has polymerized mucin 2 (MUC2), microorgan-
isms cannot easily invade the intestinal epithelium. There-
fore, there are no microorganisms in the inner mucus layer 
(Johansson et al. 2008). The inner mucus layer is converted 
to the outer layer by a MUC2 proteolytic process by the host 
or bacteria. As a result, the loosened mucus of the outer 
layer contains microorganisms (Atuma et al. 2001; Johans-
son et al. 2008).
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Regarding physicochemical barriers, the gut mucosa has 
multiple layers to maintain tissue homeostasis (Fig. 2) (Allaire 
et al. 2019). The outer layer is a microbial ecosystem that com-
petes for and represses pathogens. The next layer is a mucous 
barrier containing antimicrobial peptides produced by secre-
tory epithelial cells. The third layer is a monolayer epithe-
lium tightly interconnected with tight and adherens junctions, 
including claudins, occludin, zonula occludens (ZO), and 
E-cadherin. The final barrier is an immunological surveillance 
system that controls for and combats external invaders. These 
multi-layered gut barriers sustain sterile conditions in most 
organs within the body. In the low-oxygen microenvironment 
of the gut, fermented short-chain fatty acid (SCFA) metabo-
lites from dietary fibers or other signals help epithelial cells 
fortify barrier functions in the epithelium. Here we discuss 
the crucial environmental sensors maintaining the gut barrier, 
focusing on regulation of the epithelial barrier and its relation-
ship with inflammatory intestinal diseases.

Gut epithelium

The repertoire of intestinal epithelial cells

The most prominent subtypes of intestinal epithelial cells 
are enterocytes, which absorb water and nutrients (Kong 
et al. 2018; Serra et al. 2019). Secretory subtypes of IECs 
include enteroendocrine cells, goblet cells, and Paneth cells 
(Table 1). Enteroendocrine cells regulate digestive function 
and the immune and nervous systems via hormone secretion 
and are divided into at least eight subsets according to their 
secretory hormones. For example, enterochromaffin cells 
secrete 5-hydroxy-tryptamine (5-HT, also called serotonin), 
D cells secrete somatostatin (SST), G cells secrete gastrin, 
I cells secrete cholecystokinin (CCK), and K cells secrete 
gastric inhibitory peptide (GIP). Enterochromaffin-like cells 
secrete histamine, L cells secrete glucagon-like peptide 
(GLP) and peptide YY (PYY), Mo cells secrete motilin, N 

Fig. 1   The difference in epithelial cell composition between the small intestine and colon. Gross features of the small intestine (a) and colon 
(b). There are several differences between the two. First, thin and long villi extend from the luminal surface area for nutrient absorption in the 
small intestine but are absent in the colon. Second, antimicrobial peptide (AMP) producing Paneth cells are in the small intestinal crypt but not 
the colon. Instead, Reg4+ deep crypt secretory cells in the colon play the same role as the Paneth cells. Third, the colon has a more abundant 
bilayer mucus than the small intestine due to a larger number of goblet cells. Therefore, the small intestine absorbs nutrients better than the 
colon. The small intestine and colon both have Lgr5+ stem, TA, enteroendocrine, and tuft cells. Lgr5+ stem cells can self-renew and differentiate 
into TA cells, which move from the crypt to the villi and can differentiate into tuft, enteroendocrine, and goblet cells
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cells secrete neurotensin (NTS), and S cells secrete secretin 
(SCT) (Helander and Fandriks 2012; Gribble and Reimann 
2016). Goblet cells secrete mucins and Paneth cells secrete 
antimicrobial molecules to form physical and biochemical 
barriers (Ma et al. 2018; Lueschow and McElroy 2020). 
Goblet cells secrete glycosylated mucins into the intestinal 
lumen, forming a mucus layer through the disulfide bond 
between glycosylated mucins (Fu et al. 2011).

The most abundant MUC2 plays an important role in 
mucus layer organization on the epithelial surface of the 
colon but also binds to the glycan receptors of dendritic 
cells to maintain gut homeostasis and induce anti-inflam-
matory signaling (Heazlewood et al. 2008; Shan et al. 
2013). Mucin secretion by goblet cells can be regulated 

by gut microbes or their metabolites (SCFAs or cytokines) 
(Shimotoyodome et al. 2000; Fallon et al. 2002). Gob-
let cell-derived products such as intestinal trefoil factor 
(ITF) and resistin-like molecule-β (RELM-β) also regulate 
intestinal physical barriers. ITF regulates tight junctions 
and cell apoptosis and promotes epithelial repair. RELM-β 
controls TH2-mediated responses (Artis et al. 2004; Aihara 
et al. 2017). Antimicrobial peptides (AMPs) secreted by 
IECs are small and basic amino acid-rich proteins. Epi-
thelial cells produce AMPs, such as regenerating islet-
derived protein IIIγ (REGIIIγ), in the small intestine, and 
β-defensin and cathelicidin in the colon (Hase et al. 2002; 
Cunliffe and Mahida 2004; Vaishnava et al. 2008, 2011).

Fig. 2    Disrupted gut barriers induce inflammation and an IBD outbreak. There are three physicochemical barriers in the gut other than the 
commensal microbiome that protect against pathogens in the gut. First, antimicrobial peptides produced by Paneth cells can disrupt microbial 
cell walls and membranes by forming pores that induce cell lysis. Second, the mucus layer produced by goblet cells can prevent pathogen inva-
sion. The third barrier is a physical barrier composed of epithelial cells connected by tight and adherens junctions. Gut barrier integrity failures 
increase gut permeability and bacterial translocation, which lead to an inflammatory response induced by innate immune cells. IBD is induced if 
these responses lead to chronicity. In the lumen, short-chain fatty acids (SCFAs) produced by anaerobes also contribute to the intestinal barrier 
integrity
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Paneth cells in the crypts of the small intestine secrete 
lysozymes and a variety of AMPs, such as α-defensin, 
cathelicidin, REGIIIγ, and sPLA2 (Bevins and Salzman 
2011). Defensins and cathelicidin interact with the nega-
tively charged microbial cell membrane to form a pore-like 
structure, causing cell membrane disruption (Lai and Gallo 
2009). REGIIIγ binds to the cell wall peptidoglycans of 
gram-positive bacteria and catalyzes the formation of pores, 
inducing bacterial cell lysis (Cash et al. 2006; Mukherjee 
et al. 2014). Paneth cells are also an important cellular niche 
for Lgr5+ stem cells via molecules such as Wnt3, EGF, 
and Notch ligands (Sato et al. 2011). However, there are 
no typical Paneth cells located in the colon. Instead, Reg4+ 
deep crypt secretory cells function as the colon equivalent 
of Paneth cells (Sasaki et al. 2016). Microfold cells (M 
cells) found in the follicle-associated epithelium specialize 
in the uptake of luminal antigens and delivery to antigen-
presenting cells (APCs) (Mabbott et al. 2013). Cup cells are 

wine-like cells, accounting for 6 % of ileum epithelial cells, 
but their function is unknown (Madara 1982). Tuft cells 
(taste-chemosensory epithelial cells) secrete cytokines to 
initiate an immune response to parasites (Gerbe et al. 2016; 
Howitt et al. 2016; Middelhoff et al. 2017).

Homeostasis of intestinal epithelium from stem cells

Intestinal epithelial cells are some of the most proliferative 
cells in the body. To maintain the integrity and homeosta-
sis of the intestinal barrier against pathogen and xenobi-
otic attack, epithelial cells constantly regenerate from the 
crypt region’s intestinal stem cells (ISC) (Fig. 3a) (Volk and 
Lacy 2017). Self-renewal and differentiation of intestinal 
epithelial cells are associated with the leucine-rich repeat-
containing G-protein coupled receptor (GPR) 5 (LGR5). 
LGR5 is expressed in various body tissues and is a member 
of the Wnt signaling pathway which plays an essential role 

Table 1   Subtypes of intestinal epithelial cells

5-HT 5-hydroxy-tryptamine; SST somatostatin; CCK cholecystokinin; GIP gastric inhibitory peptide; GLP glucagon like peptide; PYY peptide 
YY; NTS neurotensin; SCT secretin; GP2 glycoprotein2; DCLK1 Doublecortin-like kinase 1 protein; MUC2 mucin2; MUC3 mucin3; ITF intesti-
nal trefoil factor; RELM β resistin-like molecule-β; REGIIIγ regenerating islet-derived protein IIIγ

Types Subtypes Functions Marker References

Enterocyte – Absorb water and nutrients AldolaseB (Kong et al. 2018; Serra et al. 
2019)

Enteroendocrine cell Enterochromaffin cell Aid intestinal motility 
reflexes and secretion

5-HT (Helander and Fandriks 2012; 
Gribble and Reimann 2016)

Enterochromaffin like cell Stimulate gastric acid secre-
tion

Histamine

D cell Inhibit gastrin release SST
G cell Stimulate gastric acid secre-

tion
Gastrin

I cell Stimulate pancreatic enzyme 
secretion

CCK

K cell Stimulate insulin release GIP
L cell Aid carbohydrate uptake, 

mucosal enterocyte prolif-
eration, and insulin release

GLP-1, GLP-2, PYY

Mo cell Initiate migrating myoelec-
tric complex

Motilin

N cell Inhibit intestinal contractions NTS
S cell Reduce acid in the upper 

small intestine
SCT

M cell – Antigen uptake and delivery 
to APC

GP2 (Mabbott et al. 2013)

Tuft cell – Aid initiation of immune 
response to parasite

DCLK1 (Gerbe et al. 2016; Howitt 
et al. 2016; Middelhoff et al. 
2017)

Goblet cell – Mucin production and secre-
tion

MUC2, ITF, RELM β (Artis et al. 2004; Linden et al. 
2008; Aihara et al. 2017)

Paneth cell – AMP production and secre-
tion

α-defensin, cathelicidin, 
REGIIIγ

Porter et al. 2002; Bevins and 
Salzman 2011; Lueschow 
and McElroy 2020)
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in recovering intestinal epithelium (Hsu et al. 1998; Cord-
ero and Sansom 2012). LGR5 is a representative marker of 
ISCs, especially in adult tissue, and cancers, as differentia-
tion of the epithelial cells is mediated by multipotent LGR5+ 
ISCs (Barker et al. 2007; Beumer and Clevers 2016). ISCs 
divide to proliferate at the bottom of the crypt, and their 
daughter cells climb to the upper villi, much like a conveyer 
belt. These rapidly dividing daughter cells, called transit-
amplifying (TA) cells, then differentiate into an absorptive 
progenitor or a secretory progenitor (Hsu et al. 2014).

TA cell plasticity and differentiation are strictly controlled 
by three major signaling pathways: Wnt, Notch, and bone 
morphogenetic protein (BMP) (Fig. 3c). Notch-HES1 sign-
aling promotes the TA cells’ absorptive lineage (Demitrack 
and Samuelson 2016; Kim and Jang 2020) post-differentia-
tion to an absorptive enterocyte (Gui et al. 2017). The Wnt-
Math1 signaling pathway leads the TA cells to differentiate 
into a secretory lineage (Yang et al. 2001; Gui et al. 2017). 

ATOH1 and DLL1 coordinate to form a secretory progeni-
tor (van Es et al. 2012; Tomic et al. 2018). The differentia-
tion process then forms the enteroendocrine cells, goblet 
cells, and Paneth cells, which are regulated by NEUROG3, 
GHI1, SPDEF, SOX9, and EPHB3. BMP is critical for bal-
ancing Wnt-driven homeostatic proliferation (Medema and 
Vermeulen 2011). At the crypt domain, Wnt concentration 
is more dominant than BMP although both Wnt and BMP 
signals are important for axis between self-renewal and dif-
ferentiation. In contrast, at the villi domain, BMP concentra-
tion is more dominant than Wnt which mediates prolifera-
tion versus differentiation (Spit et al. 2018). The strict, rapid 
differentiation and proliferation of epithelial cells promote 
intestinal homeostasis. Impaired or damaged cells can be 
removed or replaced by newly differentiated cells (Gu et al. 
2011; Bischoff et al. 2014). Increased epithelial proliferation 
removes parasitized or infected epithelial cells (MacDonald 
1992), while crowding of epithelial cells extrudes the villi, 

Fig. 3   Dynamic homeostasis of the gut epithelium. a Proliferation and differentiation of Lgr5+ stem cells into TA cells simultaneously occur in 
the intestinal crypt. TA cells are differentiated into secretory and absorptive epithelial lineages during migration from the crypt to villi. When 
these differentiated cells reach the villi tips, apoptosis occurs via cell signaling. b There are various junctions in the paracellular spaces between 
adjacent cells. The tight junction is composed of claudin, occludin, and ZO-1, and the adherens junction is composed of E-cadherin. There are 
also desmosomes, gap junctions, and hemidesmosomes in the paracellular space that are involved in transporting nutrients and forming the 
physical intestinal barrier. c TA cells derived from Lgr5+ stem cells can differentiate into secretory or absorptive epithelial lineages. Math1 acti-
vation by Wnt/β-catenin signaling, ATOH1, and DLL1 can induce TA cell differentiation into secretory epithelial progenitors. HES 1 activation 
by Notch signaling can induce TA cell differentiation into absorptive epithelial progenitors
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preventing excessive epithelial cell accumulation and tumor 
formation (Eisenhoffer et al. 2012).

Intestinal organoid is one of useful in vitro models for 
patient specific investigation of the intestinal epithelium 
hereafter the first establishment in 2009 for self-organizing 
‘mini-guts’ (Sato et al. 2009). Single Lgr5+ ISCs or isolated 
crypt containing ISCs are seeded into a supporting Matrigel 
matrix which provides stem cell niche. The isolated ISCs 
have the ability to survive, proliferate, self-organize into 
3-dimensional structures in vitro. They require Wnt/Notch 
for self-renewal and differentiation (Angus et al. 2019). Wnt 
in the small intestine can be provided by mesenchymal cells 
and Paneth cells. Unlike intestinal organoid originated from 
small intestine, colonic organoid does not contain Wnt-pro-
ducing Paneth cell, which therefore require more exogenous 
Wnt supplement (Takahashi and Shiraishi 2020). Patient-
derived gut organoids can be utilized for investigating infec-
tious disease, whole-genome sequencing, drug screening and 
regenerative medicine.

Epithelial cell junctions

Cell-cell junctions are a well-organized, structural con-
tinuum of the extracellular connection between adjacent 
cells. They are composed of different cytoskeleton elements 
(Fig. 3b). These junctions maintain homeostasis by regulat-
ing tissue integrity and ion, solute, and microbe diffusion 
across the tissue.

Tight junction

Mammals have tight junctions in the apex of the lateral 
plasma membranes between adjacent cells. Tight junctions 
surround each cell form a proteinaceous film that regulates 
ion and solute diffusion via a paracellular pathway. Tight 
junctions maintain the division of apical and basolateral 
membrane proteins and lipids (Zihni et al. 2016). Tight 
junctions are composed of transmembrane protein families, 
including claudin, occludin, and the peripheral membrane 
adaptor protein ZO (Van Itallie and Anderson 2014; Lee 
et al. 2018a). In human studies, claudin 1, 2, 3, 4, 5, 7, 8, 
12, and 15 are expressed in the small intestine (Lu et al. 
2013). Claudin and occludin form homotypic complexes 
between cells. ZO-1, 2, and 3 connect occludin and claudin 
to the actin cytoskeleton, which maintains the tight junction 
formation. The mutual assembly of tight junction proteins 
forms different pore-sized networks, mediating the differen-
tial diffusion of ions and solutes (Zihni et al. 2016). Since 
the permeability of ions of different sizes and charges is 
determined according to the amino acids in the claudins, 
diffusion varies with the expressed claudin type (Van Itallie 
and Anderson 2006). While the precise mechanism of action 
remains elusive, occludin regulates tight junction stability, 

permeability, and barrier function through phosphorylation 
and a ZO-1 interaction (Lee et al. 2018a).

Adherens junction

Adherens junctions are protein complexes that are usually 
more basal than the tight junction (Guo et al. 2007). The 
adherens junction plays a role in cell-cell adhesion, actin 
cytoskeleton regulation, cell signaling, and gene transcrip-
tion (Takeichi 2014). Cadherin, such as E-cadherin, is the 
main type of transmembrane protein comprising the adhe-
rens junction. The cadherins connect to adjacent cadherins 
in a calcium-dependent manner. These cadherins indirectly 
bind α-catenin via β-catenin, and in turn α-catenin links to 
the actin cytoskeleton (Knudsen et al. 1995). P120-catenin 
linked with the cadherin ternary complex is associated with 
the cadherin juxtamembrane domain, which suppresses 
cadherin endocytosis (Davis et al. 2003). E-cadherin adhe-
sion can be intensified through the protein vinculin’s link 
to a force-dependent conformation of α-catenin (le Duc 
et al. 2010). Nectins bind to afadins which are involved in 
Ca2+-independent cellular adhesion (Takai and Nakanishi 
2003). These nectin-based adhesions make the first cell-cell 
junction, which then recruit the cadherin-catenin complex 
to form the adherens junction (Tachibana et al. 2000; Honda 
et al. 2003).

Environmental sensors for gut barriers

Epithelial cells are the primary cellular determinant of the 
epithelial barrier function in the gut. Epithelial cells express 
toll-like receptors (TLRs), which are essential for the recog-
nition of conserved microbial factors. There are several envi-
ronmental sensors involved in maintaining the gut epithelial 
barrier, such as hypoxia-induced factor (HIF), aryl hydrocar-
bon receptor (AhR), and SCFAs. Here, we will focus on the 
cellular mechanism and relationship of these environmental 
sensor signals for gut barrier integrity.

Short‑chain fatty acids (SCFAs)

SCFAs are microbiota-derived metabolites, such as acetate, 
propionate, butyrate, and valerate, which are produced 
from dietary fibers through the fermentation of anaerobic 
flora (Fig. 4). SCFAs are passively diffused from the lumen 
to the cell and then transported into the cells via carrier 
proteins, such as proton-coupled monocarboxylate trans-
porter 1 (MCT1) and sodium-coupled monocarboxylate 
transporter 1 (SMCT1) (Sivaprakasam et al. 2017; Parada 
Venegas et al. 2019). These are agonists for the G-protein 
coupled receptors (GPR) 41/FFAR3, GPR43/FFAR2, and 
GPR109A/NIACR1, leading to various immune responses 
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in IECs, dendritic cells, and macrophages (Priyadarshini 
et al. 2018). Butyrate can facilitate differentiation of IL-10 
producing Tregs and reduce the pro-inflammatory cytokine 
TNF-α from macrophages, which promotes inflammation 
by recruiting neutrophils in the gut (Vinolo et al. 2009; Lee 
and Hase 2014). SCFAs enhance antimicrobial peptides 
such as REGIIIγ and β-defensin via activation of mTOR 
and STAT3 in the epithelium barrier. (Zhao et al. 2018; Chen 
and Vitetta 2020). In ISCs of colon crypt, butyrate can sup-
press cell proliferation by inhibiting histone deacetylases 
(HDAC) and enhancing promoter activity for the negative 
cell-cycle regulator FoxO3. Fully differentiated colonocytes 
metabolize and reduce butyrate levels through Acyl-CoA 
dehydrogenase (ACADS) (Kaiko et al. 2016; Xiao et al. 
2018). However, lactate accelerates stem cell proliferation 
dependent on GPR81 (Lee et al. 2018b). Butyrate can pro-
mote TGF-β expression through HDAC inhibition and SP1 
(Martin-Gallausiaux et al. 2018). In association with other 
environmental signals, butyrate can stabilize HIF as O2 con-
sumption for its metabolic process causes cellular hypoxic 
conditions (Kelly et al. 2015). These findings suggest that 
crosstalk between microbiota-derived SCFAs and intestinal 
epithelial HIF augments gut barrier function.

Toll‑like receptor (TLR)

TLRs are representative pattern recognition receptors 
(PRR) with a transmembrane protein form that can recog-
nize pathogen-associated molecular patterns (PAMPs) and 

damage-associated molecular patterns (DAMPs) (Kawa-
saki and Kawai 2014). TLRs are identified from TLR1 to 
TLR13, with TLR1 to TLR10 found in human cells. Each 
TLR is combined in a heterodimer or homodimer that can 
recognize various ligands according to its combination. If 
TLR ligands are recognized, two major types of adaptor pro-
teins, such as Toll/IL-1 receptor domain-containing adaptor 
inducing IFN-β (TRIF) and myeloid differentiation factor 
88 (MyD88), can mediate downstream signals (Kamdar 
et al. 2018). NF-κB is a transcription factor that expresses 
pro-inflammatory cytokines such as IL-1, IL-6, IL-12, and 
TNF-α (Mukherjee et al. 2016).

In both Crohn’s disease and ulcerative colitis (UC) 
patients, expression of TLR1, TLR2, TLR6, TLR8, and 
TLR9 remains unchanged, while expression of TLR4 and 
TLR5 is increased compared to healthy controls (Kordjazy 
et al. 2018). In immunocompetent cells, TLR signaling 
generally induces innate immune responses. In chronic 
inflammation, it mediates intestinal barrier breakdown via 
inflammatory mediators, such as TNF-α (Peterson et al. 
2010). However, activation of TLRs by the commensal 
microflora controls intestinal epithelial homeostasis and 
protects against injury (Rakoff-Nahoum et al. 2004). In 
intestinal epithelial cells, TLR2 stimulation efficiently 
preserves ZO-1-associated barrier integrity against stress-
induced damage, which is controlled by PI3K/AKT and 
conventional protein kinase C (PKC) isoforms via MyD88 
(Cario 2008). TLR1-deficient mice have increased perme-
ability and reduced transmucosal resistance followed by 

Fig. 4   The role of SCFAs in gut barrier function. SCFAs produced by the microbiota after anaerobic fermentation of dietary fiber can be recog-
nized by G-protein coupled receptors such as GPR41, 43, 81, and 109 A. When butyrate is recognized by GPR43, STAT3 expression is induced 
by the mTOR pathway and STAT3 can induce REGIIIγ and β-defensin expression. This can induce SP1 expression, the transcription factor for 
TGF-β expression in colonocytes that inhibits ISC proliferation by HDAC inhibition and FoxO3 expression. Lactate, which is recognized by 
GPR81, can induce ISC proliferation. Mitochondrial oxygen consumption during butyrate metabolism can indirectly stabilize HIF-α
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increased bacterial translocation to systemic organs (Kam-
dar et al. 2018). These findings suggest that TLR1–TLR2 
signaling sustains epithelial integrity through the tight-
ening of intercellular junctions. Conversely, TLR4 acti-
vation induces enhanced barrier permeability and leaky 
gut through upregulation of myosin light chain kinase 
(MLCK), which mediates the opening of tight junctions by 
promoting actin-myosin filament contraction(Nighot et al. 
2017). In indirect association with other environmental 
sensors, TLR3 and TLR4 activation can upregulate HIF-1α 
gene expression at the mRNA level via the NF-κB pathway 
(Han et al. 2016). LPS induces TLR4 signaling, which 
drives ferritin-mediated iron sequestration and results in 
deprivation of an essential PHD cofactor, free iron, fol-
lowed by HIF-1α stabilization (Siegert et al. 2015). These 
findings demonstrate that different TLR signals are associ-
ated with the differential control of the intercellular barrier 
integrity by enhancing or disrupting intestinal epithelial 
barrier junction molecules. This depends on the type of 
microbe.

Aryl hydrocarbon receptor (AhR)

AhR is a ligand-dependent intracellular transcription 
factor (Rothhammer and Quintana 2019). AhR is usu-
ally combined with the heat shock protein 90 (HSP90) 
dimer and X-associated protein 2 (XAP2) in the cytoplasm 
(Fig.  5). AhR contains two regions, the Per-Arnt-Sim 
(PAS) domain and the basic Helix/Loop/Helix (bHLH) 
domain. The PAS domain is located in AhR’s C-terminal, 
which plays a role in maintaining the cytosolic AhR com-
plex in the absence of ligands. The bHLH domain is in 
AhR’s N-terminal, which contains a nuclear localization 
sequence (NLS) dependent on AhR ligands and a nuclear 
export sequence (NES) (Hao and Whitelaw 2013). Once 
AhR ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin 
(TCDD), 6-Formyl indolo[3,2-b]carbazole (FICZ), and 
2-(1ʹH-indole-3ʹ-carbonyl)-thiazole-4-carboxylic acid 
methyl ester (ITE) are bound to the AhR-HSP90 dimer-
XAP2 complex, AhR NLS is exposed and the ligand-AhR 
complex is transported into the nucleus (Ikuta et al. 1998; 

Fig. 5   The role of AhR signaling in gut barrier function. Ligands such as TCDD, FICZ, and ITE are essential for AhR activation. When ligands 
bind to the AhR/Hsp90/XAP2 complex, it moves from the cytoplasm to the nucleus and binds to ARNT. This complex acts as the transcription 
factor for XRE, which is involved in CYP1A1 and AhRR expression. If the AhR-ARNT complex is not formed by AhRR, AhR moves from the 
nucleus to the cytoplasm and it is degraded by the proteasome. CYP1A1 can also metabolize the AhR ligand, inactivating AhR signaling. AhR 
activation can induce tight junction component expression and goblet cell differentiation and inhibit Lgr5+ stem cell proliferation by regulating 
Wnt/β-catenin signaling
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Ehrlich et al. 2018). In the nucleus, the AhR-ligand com-
plex that has dissociated from the HSP 90 dimer-XAP2 
combines with the AhR nuclear translocator (ARNT, also 
known as HIF-1β). The AhR-ARNT complex is recruited 
to the xenobiotic response element (XRE) and acts as a 
transcription factor for the expression of molecules such 
as cytochrome P450 family-1 subfamily-A polypeptide-1 
(CYP1A1), CYP1B1, and AhR repressor (AhRR) (Zhu 
et al. 2019). CYP1A1 is a representative metabolizing 
enzyme in the cytoplasm that can reduce AhR signaling 
via ligand consumption (Schiering et al. 2017). AhRR also 
competes with the AhR-ligand complex for ARNT. When 
ARNT is combined with AhRR, exposure to AhR NES 
mediates the relocation of the AhR-ligand complex from 
the nucleus to the cytoplasm. It is then finally degraded 
by proteosomes in the cytoplasm (Ikuta et al. 1998; Roth-
hammer and Quintana 2019).

AhR is expressed in epithelial and immune cells in the gut 
and plays a role in the intestinal barrier’s homeostatic and 
inflammatory conditions. AhR promotes anti-inflammatory 
DC and induces Th17 differentiation and Treg stabilization. 
In a 2, 4, 6-trinitrobenzenesulphonic acid (TNBS) colitis 
model, activation of AhR by FICZ reduced inflammatory 
cytokines and induced IL-22 expression in DCs and CD4+ 
T cells, which triggers AMP production and reinforces the 
mucus barrier (Monteleone et al. 2011). In dextran sulfate 
sodium (DSS)-induced colitis, AhR activation by FICZ 
enhanced the expression of tight junction proteins such as 
ZO-1, claudin-1, and occludin to reduce barrier permeability 
(Yu et al. 2018). AhR-deficient IECs abnormally function in 
the Wnt/β-catenin and ubiquitin E3 ligase signaling path-
ways (Metidji et al. 2018). AhR controls IEC self-renewal 
by limiting ISC proliferation and promoting its differentia-
tion. AhR in IECs enhances IL-10 receptor expression to 
boost their responsiveness to IL-10 and enhance epithelial 
barrier function (Lanis et al. 2017). In the IECs of a Crohn’s 
disease patient, miRNA-124 induced pro-inflammatory tran-
scriptional programs by targeting AhR (Zhao et al. 2016). In 
contrast with AhR’s barrier protection, dietary and microbial 
oxazoles activate indoleamine 2, 3-dioxygenase 1(IDO-1) 
to generate tryptophan metabolites, which inhibited IL-10 
production and induced intestinal inflammation (Iyer et al. 
2018). SCFAs, especially butyrate, enhance the AhR path-
way and AhR-dependent genes in IECs, which suggests 
that butyrate may be a potential AhR ligand (Marinelli 
et al. 2019). In association with other environmental sen-
sors, AhR competes with HIF-1α to interact with ARNT 
(HIF-1β) (Chan et al. 1999). This integration of HIF-1α and 
AhR might lead to interference between the two signaling 
pathways in a variety of cellular responses. AhR promotes 
HIF-1α degradation in Tr1 cells (Mascanfroni et al. 2015). 
Research must examine the crosstalk between HIF-1α and 
AhR in IECs and its effect on gut barrier function.

Hypoxia‑inducible factor (HIF)

HIF is an oxygen-sensitive transcription factor and a cellular 
survival mechanism for hypoxic stress that is related to cel-
lular metabolism, the intestinal barrier, erythropoiesis, and 
angiogenesis (Glover and Colgan 2011). Receptor tyrosine 
kinase (RTK) in the plasma membrane recognizes growth 
factors and activates the phosphatidylinositol 3-kinase 
(PI3K)/protein kinase B (AKT)/mammalian target of the 
rapamycin (mTOR) signaling pathway. Activated mTOR can 
induce production of the HIF-α molecule as a transcription 
factor (Guo et al. 2015). These factors consist of three oxy-
gen-sensitive α-subunits of HIF molecules called HIF-1α, 
HIF-2α, and HIF-3α and a conserved β-subunit, HIF-1β, 
also known as aryl hydrocarbon receptor nuclear translocator 
(ARNT) (Rankin and Giaccia 2008).

In normoxia, HIF-α is hydroxylated at the proline or 
asparagine residues by prolyl hydroxylase (PHD) and aspar-
aginyl hydroxylase factor inhibiting HIF (FIH) (Fig. 6). 
Hydroxylated HIF-α in the cytoplasm is ubiquitinated by 
the von Hippel-Lindau protein (pVHL), leading to their 
proteasomal degradation. In hypoxia, HIF-α accumulates 
in stable condition and translocates from the cytoplasm to 
the nucleus, where it binds to HIF-1β and 300-kilodalton 
coactivator protein (p300)/CREB binding protein (CBP). 
This complex acts as a transcription factor for hypoxia 
response element (HRE), expressing genes that allow for 
adaptation or survival under hypoxic conditions (Cavadas 
et al. 2013). HIF’s hypoxia-induced responses can induce or 
regulate inflammation according to different cells in the gut. 
Hypoxia may represent an environmental cause for inflam-
matory bowel disease (IBD) pathogenesis. Both HIF-1α and 
HIF-2α are found in high levels in IECs in active UC or 
Crohn’s disease patients (Xue et al. 2013).

Hypoxia promotes IECs to produce TNF, leading to an 
increase in epithelial barrier permeability (Taylor et al. 
1998). HIF signals in the innate immune cells, including 
neutrophils, macrophages, and dendritic cells, enhance pro-
inflammatory cytokine production (Bosco et al. 2011). In 
contrast, hypoxia-exposed IECs in the physiological gut 
lumen induce barrier-preservative factors to reduce the 
inflammatory burden of ITF, MUC3, and CD73 expression. 
Even transmigrating neutrophils rapidly deplete microenvi-
ronmental oxygen, which leads to the stabilization of HIF 
molecules in the gut epithelium (Campbell et al. 2014). 
In experimental animal models of oxazolone and TNBS-
induced colitis, HIF-1α isoform expression was beneficial 
in ameliorating inflammation via induction of barrier-
protective genes (Karhausen et al. 2004). In experimental 
murine DSS-induced colitis, HIF-2α augmented intestinal 
inflammation via increased inflammatory responses (Shah 
et al. 2008). The PHDs consist of three isoforms, PHD1, 
PHD2, and PHD3, which mediate diverse functions in 
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immunocompetent and non-immune cells. Deficiency of 
PHD1 or PHD3 protects intestinal epithelial barrier integrity 
in mice (Tambuwala et al. 2010; Chen et al. 2015). These 
results suggest differential effects of HIF isoforms in gut 
homeostasis.

Relation with human IBD and therapeutic 
strategies

Gut barriers in IBD

Defects in the gut barrier are associated with a broad range 
of human diseases, such as IBD, and extra-intestinal dis-
eases, such as non-alcoholic fatty liver disease and neuro-
logic brain diseases (Fig. 2) (Vancamelbeke and Vermeire 
2017). IBD is a chronic inflammatory disease in the gastro-
intestinal tract comprising uncreative colitis and Crohn’s 
diseases. Possible causes include combined host genetic 
alterations and environmental factors. IBD is thought to be 
closely related to immune function alterations caused by 

commensal microbiota (Zhang and Li 2014). In a healthy 
adult gut, Firmicutes, Bacteroidetes, Proteobacteria, and 
Actinomycetes co-exist in balance. Patients with IBD, 
especially UC patients, have decreased Firmicutes and 
Bacteroidetes and increased Proteobacteria and Actino-
mycetes (Machiels et al. 2014). This dysbiosis disrupts the 
balanced microbial composition and accumulates bacterial 
toxins such as LPS. IBD patients have higher intestinal 
permeability than healthy groups (Michielan and D’Inca 
2015). Occludin expression systemically decreases at 
the mRNA and protein levels in patients with uncreative 
colitis and Crohn’s diseases. Expression of tight junction 
and adherens junction components such as ZO-1, claudin, 
E-cadherin, and β-catenin decreases in epithelial cells in 
inflammatory regions. This is mainly caused by circulat-
ing pro-inflammatory cytokines, such as IFN-γ, TNF-α, 
and IL-13 (Fries et al. 2013). TNF-α increases epithelial 
permeability through alterations in tight junction function, 
structure, and dynamics upon infection (Capaldo and Nus-
rat 2015).

Fig. 6   The role of HIF signaling in gut barrier function.  In normoxia, proline or asparagine hydroxylation occurs in HIF-α by PHD or FIH. 
pVHL is also conjugated into hydroxylated HIF-α, leading to ubiquitination and proteasomal degradation. In hypoxia, HIF-α are stabilized and 
accumulate without hydroxylation. They move from the cytoplasm to the nucleus and bind to p300/CBP and HIF-β, forming a heterodimer. This 
acts as the transcription factor for HRE, with the gene expression depending on subtype. HIF-1α induces the expression of genes involved in 
enhancing intestinal barrier function, such as β-defensin, MUC3, and ITF. HIF-2α induces pro-proliferative and pro-inflammatory gene expres-
sion, which decreases barrier integrity in the IBD model
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Gut barrier fortification as a target of IBD therapeutics

Current novel IBD drugs have mainly focused on controlling 
inflammation, as this is the most important disease symptom 
(Neurath 2017). Recently, biologics to block key mediators 
of pathogenic inflammation, such as TNFs or integrin, have 
been increasingly used in IBD patients. TNF-α blockers 
can reduce the excessive inflammatory response and gut 
permeability (Suenaert et al. 2002). In addition, therapies 
that block cytokine signaling have been developed, such 
as Janus kinases (JAKs) inhibitors and tofacitinib (Danese 
et al. 2016). Fecal microbiota transplant involves feces from 
healthy donors being transplanted into IBD patients. The 
changes in intestinal bacterial composition are expected to 
have beneficial effects in IBD patients (Lopez and Grinspan 
2016). However, novel fundamental modulators need to be 
further investigated.

One current IBD therapeutic strategy is to restore the gut 
barrier function (Fig. 7). The protective role of HIF-1α dur-
ing gut inflammation has led to the investigation of PHD 
inhibitors as a potential therapeutic strategy. Pan-PHD inhib-
itors, such as dimethyloxalylglycine (DMOG) and FG-4497, 
can reduce the symptoms of experimental murine colitis 

(Cummins et al. 2008; Robinson et al. 2008). Oral adminis-
tration of AKB-4924 or TRC160334 protects against murine 
colitis and reduces systemic off-target effects in extra-intes-
tinal organs (Gupta et al. 2014; Marks et al. 2015). Several 
pan-PHD inhibitors are currently being examined for the 
treatment of various diseases, including IBD (Marks et al. 
2015). Further, local treatment of AKB-4924 is currently 
under phase I clinical trials (NCT02914262).

Based on the beneficial effect of SCFA on the gut barrier, 
Phase 2 clinical trials with GLPG0974, a GPR43-specific 
antagonist, in individuals with mild-to-moderate UC did 
not change clinical outcomes over a short period (Bolognini 
et al. 2016).While SCFAs have presented beneficial effects 
in experimental systems of intestinal inflammation, clinical 
effects remain controversial (Galvez et al. 2005).

Oral treatment with the microbial metabolite Urolithin 
A (UroA) derived from polyphenolics in berries and pome-
granate fruits and its analog UAS03 significantly enhanced 
gut barrier function and inhibited gut inflammation, suggest-
ing a potential therapeutic application for the IBD treatment 
(Singh et al. 2019). AhR ligands such as indigo from plants 
can promote mucosal healing by inducing IL-22 production 
from type 3 innate lymphocytes cells (ILC3) (Zelante et al. 

Fig. 7   Overview of IBD and therapeutic approaches.  IBD, a chronic inflammatory disease in the lower gastrointestinal tract, has complex 
genetic and environmental reasons. On a cellular level, decreased mucus, dysbiosis in the lumen, infection, and a severe inflammatory response 
via innate immune cells are related to IBD pathogenesis. Recent research regarding the role of gut environmental sensors in reducing inflamma-
tion via fortification of the gut barrier has shed light on the development of novel IBD therapeutics
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2013). In a prospective, randomized, double-blind, placebo-
controlled trial, indigo naturalis effectively induced a clini-
cal response in UC patients. However, its safety has not been 
established because of potential adverse effects, including 
pulmonary arterial hypertension (Naganuma et al. 2018). 
TLR2-p treatment significantly reduced colitis-associated 
conditions, suggesting that the TLR2 signaling pathways 
are promising therapeutic targets (Laroui et al. 2012). TLR9 
activation improved mucosal healing and symptomatic 
remission in UC patients (Atreya et al. 2016). Palmitoyle-
thanolammide (PEA) improves the acute phase of the intes-
tinal inflammation that occurs in UC through enteric glia/
toll-like receptor 4-dependent PPAR-α activation (Esposito 
et al. 2014). MLCK is a potential therapeutic target as epi-
thelial MLCK–dependent barrier dysfunction following TLR 
signaling mediates intestinal inflammation (Clayburgh et al. 
2005). Divertin blocks MLCK1 recruitment without inhibit-
ing enzymatic function, which corrects barrier dysfunction 
and prevents intestinal inflammation (Graham et al. 2019).

Concluding remarks

Biological barrier homeostasis is critical for protecting 
against infection. In the gut mucosa, barrier integrity is 
critical since the gut has a unique environment consist-
ing of nutritional and microbial factors. Barrier function 
breakdown initiates local inflammation in luminal products 
followed by the onset of intestinal inflammatory disease. 
Research indicates that epithelial cells utilize gut environ-
mental sensors to maintain these barriers. Currently, novel 
therapeutic targets for barrier modulation via environmental 
sensors have been studied in animal models and human tri-
als. Barrier and anti-inflammatory modulators are a promis-
ing therapeutic option for treating IBD.
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