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Introduction

Autophagy is the process that involves the delivering 
of cytoplasmic cargoes to the lysosome for degradation 
(Eskelinen 2005). There are three types of autophagy pro-
cesses: microautophagy, macroautophagy, and chaperone-
mediated autophagy (CMA; Galluzzi et al. 2017; Yan et al. 
2019). Microautophagy delivers cytoplasmic cargoes to the 
lysosome through direct invasion, whereas CMA selectively 
translocates the proteins containing KFERQ-like pentapep-
tide to the lysosome with the help of heat shock cognate 
protein (hsp70) (Kaushik and Cuervo 2012; Galluzzi et al. 
2017).

Macroautophagy (hereafter referred as autophagy) 
involves the degradation of cellular components where the 
cytoplasmic components such as the portion of cytosol, 
endoplasmic reticulum (ER), Golgi apparatus, mitochondria, 
or other non-selective cargoes are first sequestered into a 
double-membrane vesicle called ‘autophagosome’, followed 
by its fusion with the lysosome and degradation by the action 
of lysosomal enzymes (Militello and Colombo 2011; Reg-
giori and Ungermann 2017). Autophagy is induced under the 
external or internal stress conditions, such as nutrient starva-
tion, pathogen infection, ER stress, and so on (Mizushima 
2007; Rashid et al. 2015; Park 2018; Yang et al. 2019a, b). 
The complete autophagy process leads to the production of 
macromolecules, such as amino acids and peptides, which 
can be later utilized by the cells for gluconeogenesis, energy 
production, protein synthesis, and nutrient mobilization to 
prevent starvation and hypoxia (Mizushima 2007). It is a 
dynamic process, which involves combination of the steps 
as follows: autophagosome formation, autophagosome–lyso-
some fusion, and cargoes degradation (Fig. 1).

Abstract Autophagy is a self-degradation process in which 
the cytoplasmic cargoes are delivered to the lysosomes for 
degradation. As the cargoes are degraded/recycled, the 
autophagy process maintains the cellular homeostasis. Anti-
cancer therapies induce apoptosis and autophagy concomi-
tantly, and the induced autophagy normally prevents stress 
responses that are being induced. In such cases, the inhibi-
tion of autophagy can be a reasonable strategy to enhance 
the efficacy of anti-cancer therapies. However, recent studies 
have shown that autophagy induced by anti-cancer drugs 
causes cell death/apoptosis induction, indicating a controver-
sial role of autophagy in cancer cell survival or death/apop-
tosis. Therefore, in the present review, we aimed to assess 
the signaling mechanisms involved in autophagy and cell 
death/apoptosis induction during anti-cancer therapies. This 
review summarizes the process of autophagy, autophagy flux 
and its blockade, and measurement and interpretation of 
autophagy flux. Further, it describes the signaling pathways 
involved in the blockade of autophagy flux and the role of 
signaling molecules accumulated by autophagy blockade in 
cell death/apoptosis in various cancer cells during anti-can-
cer therapies. Altogether, it implies that factors such as types 
of cancer, drug therapies, and characteristics of autophagy 
should be evaluated before targeting autophagy for cancer 
treatment.

Keywords Autophagy · Autophagy flux · Apoptosis · 
Anti-cancer therapy · Lysosomal dysfunction

Online ISSN 1976-3786
Print ISSN 0253-6269

 * Chul-Ho Jeong 
 chjeong75@kmu.ac.kr

1 College of Pharmacy, Keimyung University, 1095 
Dalgubeil-daero, Taegu 42601, South Korea

http://orcid.org/0000-0003-4709-3497
http://crossmark.crossref.org/dialog/?doi=10.1007/s12272-020-01239-w&domain=pdf


476 N. Tilija Pun et al.

1 3

Formation of autophagosome

The first crucial step in the process of autophagy is the 
formation of autophagosome, which is initiated by the 
formation of a double-membrane vesicle, known as pha-
gophore or isolation membrane. Phagophore is further 
elongated and closed by the action of different groups of 
the autophagy-related protein (ATGs) complexes (Miz-
ushima et  al. 2002). The first ATG protein complex, 
identified to initiate the phagophore elongation in yeast 
is Atg1 complex that consists of Atg1, Atg13, Atg17, 
Atg29, and Atg31, whereas, in mammals is Unc-51-like 
kinase (ULK) complex consisting of ULK1, Atg13, and 
retinoblastoma-inducible coiled-coil protein 1 (RB1CC1) 
(Wong et al. 2013). The main function of Atg1/ULK1 is 
to transduce signals and recruit other ATG proteins to the 
phagophore. It recruits the class III PI3K complex that 
consists of vacuolar protein sorting 34 (Vps34), Vps 15, 
Vps30 (Beclin1), or Atg14, and activates it to further pro-
duce phosphatidylinositol 3 phosphates (PtdIns3p), an 
important lipid required for the elongation of the phago-
phore membrane (Russell et al. 2013; Zhao and Zhang 
2018). Further elongation and closure of phagophore have 
been shown to be mediated by two ubiquitin-like conju-
gation systems, namely Atg12-Atg5 complex and Atg8/
LC3-phosphatidylethanolamine (PE) lipidation, result-
ing in complete formation of double membrane structure, 
known as autophagosome. The phosphatidylethanolamine 
lipidated LC3 (LC3II) is incorporated into the outer and 
inner membrane of the autophagosome as a final step. 
Thereafter, the intraluminal LC3II is degraded along with 
the cargoes, whereas, the cytosolic LC3II are de-lipidated 

and are returned back to the cytosol (Nakatogawa et al. 
2009; Zhao and Zhang 2018).

Various sources of the phagophore/isolation 
membrane

The formation of phagophore/isolation membrane initiates 
from the small membranous portions that rupture from the 
organelles, such as plasma membrane, mitochondria, ER, 
Golgi bodies, recycling endosomes, etc. (Simonsen and 
Tooze 2009; Tooze and Yoshimori 2010; Militello and 
Colombo 2011) (Fig. 2). ER is subjected to changes under 
starvation leading to the release of a portion of ER enriched 
with phosphatidylinositol 3-phosphate (PI3P), known as 
omegasome. This structure protrudes from the ER and 
serves as a scaffold for the formation of autophagosome 
(Tooze and Yoshimori 2010; Militello and Colombo 2011). 
The association of mitochondrial outer membrane with Atg5 
protein on the ER membrane assists in the delivery of mito-
chondrial lipid via mitofusin2 to the ER membrane to gen-
erate the autophagosomal compartments. Also, trans-Golgi 
bodies and a portion of the plasma membrane contribute to 
the membrane required for the generation of autophagosome 
(Tooze and Yoshimori 2010; Militello and Colombo 2011).

Autophagosome maturation/autophagy flux

The next step after the formation of autophagosome is 
its fusion with the lysosome and the degradation of the 
enclosed components or the cargoes. This is known as the 

Initiation

Phagophore or isolation 
membrane

Vesicle elongation

Autophagosome Autolysosome

Lysosome

Amino 
acids etc.

Fig. 1  Stepwise representation of the autophagy process. Autophagy begins with the formation of an isolation membrane (phagophore), which 
elongates into an autophagosome. During the elongation step, phagophore engulfs the intracellular cargo, such as portions of cytosol, endoplas-
mic reticulum, mitochondria, Golgi bodies, protein aggregates, lipid droplets, and also microorganisms invading the host cells forming a com-
plete enclosed double-membrane autophagosome. The mature autophagosome fuses with the lysosome to form autophagolysosome, where the 
autophagolysosomal cargos are being lysed and degraded by lysosomal enzymes producing amino acids for example as the reusable byproducts
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autophagosome maturation or autophagy flux. Not only 
the formation of autophagosome is important, but also its 
fusion with lysosome and the turnover is equally crucial. For 
the fusion of the autophagosome with the lysosome, there 
should be a match between the completion of the closure of 
the phagophore and activation of the fusion machinery. The 
formation of autophagosome occurs mainly in the cytosolic 
compartment whereas lysosomes are present predominantly 
perinuclear. Therefore, newly formed autophagosomes are 
required to reach the endosomes and lysosome. Microtubules 
and actin filaments have been shown to be associated with 
the autophagosomes to assist their transfer to the lysosome 
and to further facilitate their fusion, although they are not 
essential for the fusion step (Ganley 2013).

Three protein family complexes have been identified to be 
working together to facilitate the fusion of the autophago-
some with the lysosome that are as follows: SNAP recep-
tors complex (SNAREs), tethering factors, and Rab GTPases 
(Cai et al. 2007; Zhao and Zhang 2019) (Fig. 3).

SNARE complex consists of syntaxin 17 (STX17), 
SNAP29, and vesicle-associated membrane proteins 8 or 

7 (VAMP8/7). STX17 is localized on the autophagosomal 
membrane; VAMP is localized on the endosomal/lysoso-
mal membrane (Itakura et al. 2012; Takats et al. 2013); 
and SNAP-29 is localized in between STX17 and VAMP8 
through binding (Guo et al. 2014; Zhao and Zhang 2019).

The Rab GTPases, namely Rab2 and Rab21, are found 
to be located on the lysosomal membrane (Jean et al. 2015; 
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Fig. 2  Various sources of phagophore are depicted. Origination of phagophore membrane from different organelles
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Fig. 3  Three classes of proteins, namely SNARE, tethers, and Rab 
act together to mediate the fusion between autophagosome and lyso-
some (Zhao and Zhang 2019)
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Lorincz et al. 2017). A genetic screen in the drosophila 
muscles has revealed that Rab2 binds to the homotypic 
fusion and protein sorting (HOPS) complex to facilitate 
the autophagosome fusion (Fujita et al. 2017), and further 
promotes autophagic- and endocytic-lysosomal degradation 
(Lorincz et al. 2017). Conversely, Rab21, has been shown 
to trigger the endolysosomal trafficking of VAMP8 (Jean 
et al. 2015).

Tethering factors acts as a bridge or connection between 
the intracellular trafficking vesicle and its target membrane 
(Yu and Hughson 2010). Multiple tethering proteins, such as 
Mon1-Ccz1, ectopic P granules protein 5 homolog (EPG5), 
HOPS, pleckstrin homology domain-containing family 
member 1 (PLEKHM1), Golgi reassembly-stacking protein 
of 55 kDa (GRASP55), BIR repeat containing ubiquitin-
conjugating enzyme (BRUCE), Armus, etc., have been iden-
tified to be localized on the membrane of autophagosome 
and/or lysosome to promote fusion (Zhao and Zhang 2019). 
For example, HOPS interacts with STX17 to promote the 
autophagosome–lysosome fusion in mammalian cells and 
drosophila (Jiang et al. 2014; Takats et al. 2014). Interest-
ingly, autophagy-related protein Atg4 also acts as a tethering 
factor to promote the autophagosome–endolysosome fusion 
(Diao et al. 2015). Moreover, PLEKM1 has been shown to 
regulate the autophagosome–lysosome fusion via HOPS 
complex and LC3/GABARAP protein (McEwan et al. 2015).

Approaches for assessing autophagy flux

Autophagy flux is usually defined as a measure of the 
autophagic system’s degradation property, where the 
autophagic substrates are delivered to the lysosome for deg-
radation, and its measure is crucial to estimate the func-
tionality of the autophagy process. As LC3 is the only pro-
tein that specifically associates with autophagosomes and 
autolysosomes, its levels are correlated to the number of 
autophagosomes. The levels of LC3II can increase in two 
possible conditions:

(a) Increase in autophagosome synthesis (LC3II synthesis 
exceeds the number degraded).

(b) Block in LC3II turnover (the block can occur at any 
point after autophagosome formation, such as delay in 
the delivery of autophagosome to the lysosome, reduc-
tion in the fusion between both the compartments, and 
impaired lysosomal proteolytic activity).

.
To elucidate the different possible interpretation of 

increased (or decreased) LC3II levels, one can measure 
LC3II levels by western blot in the presence of lysosomal 
protease inhibitors, such as bafilomycin A1, chloroquine 

(CQ), or lysosomotropic chemical, ammonium chloride 
 (NH4Cl) (Rubinsztein et al. 2009; Haspel et al. 2011) and 
the result can be interpreted as follows:

(a) Comparison of LC3II in between the chemical com-
pound treated cells (in presence of bafilomycin A1) and 
cells treated with bafilomycin A1 alone.

 (i) If LC3II levels increase in the cells treated with 
specific chemical compound and bafilomycin 
A1 compared to those treated with bafilomycin 
A1 alone, it indicates that the level of LC3II 
(autophagosome formation) is increased by the 
chemical treatment.

 (ii) If LC3II levels decrease in cells treated with 
specific chemical compound and bafilomycin 
A1 compared to those treated with bafilomycin 
A1 alone, it indicates that the level of LC3II 
(autophagosome formation) is decreased by the 
chemical treatment.

(b) Comparison of LC3II in between chemical compound 
treated cells (in presence of bafilomycin A1) and cells 
treated with the compound alone.

 (i) If a specific chemical compound increase LC3II 
levels alone, and is not increased further in the 
presence of bafilomycin A1 treatment, it means 
that the chemical compound blocks LC3II deg-
radation (blocks autophagy flux).

 (ii) If LC3II levels decrease (or no change) in the 
cells treated with chemical compound alone but 
it is further increased in the presence of bafilo-
mycin A1, it means that the chemical compound 
increases both autophagosome synthesis and deg-
radation.

 (iii) If LC3II levels increase in the cells treated 
with chemical compounds alone and are fur-
ther increased in presence of bafilomycin A1, 
it means that the chemical compound increases 
LC3II synthesis simultaneously with a decrease 
in degradation or an increase in autophagy flux 
(Rubinsztein et al. 2009; Haspel et al. 2011).

However, this approach indicates only the increase or 
decrease in LC3II levels, but not the rate of autophagy 
flux, making this method insufficient to exactly interpret 
the autophagy flux. Therefore, the use of GFP (green fluo-
rescence protein)-tagged LC3 (GFP-LC3) or mCherry (red 
fluorescence)-tagged LC3 (mCherry-LC3) plasmids have 
been introduced (Iwai-Kanai et al. 2008). Once GFP-LC3 
or mCherry-LC3 plasmids are transferred into the cells, LC3 
protein is processed into LC3I and then LC3II, and finally 
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recruited to the autophagosome membrane and the level of 
fluorescence punctate measured by microscopy denotes the 
number of autophagosomes/autolysosomes formed. Thus, 
the accumulation of GFP-LC3-labeled green fluorescence 
punctate represent the number of autophagosomes, whereas, 
the accumulation of mCherry-LC3-labeled red fluorescence 
punctate represents the number of autophagosomes and 
autolysosomes, as mCherry can be retained without degrada-
tion in the acidic environment of the lysosome (Iwai-Kanai 
et al. 2008).

Recently, a more advanced plasmid construct having both 
green and red fluorescence proteins tagged in the same plas-
mid, namely mRFP-GFP-LC3B (tfLC3B; tandem fluores-
cent-tagged LC3B) or mCherry-GFP-LC3B has been intro-
duced, and thus, has been used to measure the autophagy 

flux from the same population of autophagy pool (Yang et al. 
2018) (Fig. 4). However, the measurement of autophagy 
flux is still challenging because of its dynamic nature and 
the number of approaches that have currently been used 
to access the autophagy flux has limitations as well. Thus, 
further evaluation of the complete pool of autophagosomes 
over different time periods in the presence and absence of 
lysosomal protease inhibitors is required for further accuracy 
(Chen et al. 2010; du Toit et al. 2018).

Role of lysosomal biogenesis in autophagy flux

The final destination of autophagosome is the lysosome. 
Lysosome is a cytoplasmic organelle, responsible for the 
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Fig. 4  Use of the recent advanced method utilizing the mRFP-GFP-LC3 plasmids to measure autophagy flux that has been shown here with 
examples. a Once the plasmid is introduced into the cells, LC3 is lapidated and located on the inner and outer membrane of the autophagosome 
showing LC3-dots. After the fusion of autophagosome with the lysosome, green fluorescence is quenched by the acid environment of the lyso-
some, leading to the appearance of only red fluorescence. This represents the occurrence of autophagy flux. However, if this pathway is blocked 
somehow, both green and red fluorescence produced from the plasmids leads to the appearance of yellow LC3-dots (du Toit et  al. 2018). b 
Example of the measurement of autophagy flux by using the same plasmid in HeLa cells under starvation showing both autophagosomes (yellow 
dots) and autolysosomes (red dots) formation (Dupont et al. 2014). Bar indicates 10 µm
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degradation of various biological macromolecules, such 
as proteins, lipids, nucleic acids, carbohydrates, etc. More 
than 60 acid hydrolases have been reported to be present 
in lysosome, which function together when the macromol-
ecules reach the lysosome by various means, such as phago-
cytosis, endocytosis, autophagic pathway, etc. (Cabukusta 
and Neefjes 2018; Ballabio and Bonifacino 2020). Along 
with the luminal hydrolases, it also possesses specific sets 
of integral membrane proteins, lysosome-associated mem-
brane proteins (LAMPs; Ballabio and Bonifacino 2020). The 
function of the lysosome is solely dependent on its acidic pH 
as it is crucial for the enhanced enzyme activity (optimal 
acid pH of 4.2–5.3) (Xiong and Zhu 2016; Colacurcio and 
Nixon 2016).

An increase in the luminal pH, and decrease in the 
LAMP1 expression, endopeptidase cathepsin B activity, and 
transcriptional activity of transcription factor EB (TFEB) 
are the consequences of lysosomal dysfunction (Yuan 
et al. 2019). For example, ER stress-mediated decrease 
in lysosomal function suppresses autolysosome formation 
(Nakashima et al. 2019).

Autophagy flux blockade and cancer cell death/
apoptosis during anti-cancer drug therapy

Induction of autophagy process along with apoptosis has pre-
viously been shown to protect and impart resistance in can-
cer cells against anti-cancer drug treatments. Therefore, the 
inhibition of autophagy has been shown to further increase 
the efficacy of anti-cancer drug therapies (Yang et al. 2010; 
Luan et al. 2019; Niu et al. 2019). However, recent stud-
ies have demonstrated different roles of autophagy, where, 
it either augments the cancer cell death/apoptosis during 
anti-cancer therapies or the death/apoptosis is mediated via 
the autophagy process. In such cases, it is assumed that the 
different actions of autophagy might be due to the defects 
in the late stages of autophagy (autophagy flux) induced by 
anti-cancer therapies as described below in details.

Brain cancer

In temozolomide-resistant glioblastoma cells, lovastatin 
improves the anti-cancer effect of temozolomide via suppres-
sion of autophagy flux (Zhu et al. 2019). The autophagy flux 
blockade induced by lovastatin has been shown to be caused 
by the suppression of LAMP2 and dynein (two important 
proteins required for autophagosome–lysosome fusion) 
(Huynh et al. 2007; Nakamura and Yoshimori 2017). The 
supernatant derived from microglia (the brain macrophages) 
has been shown to induce death in glioma cells via inhibition 
of autophagy flux, especially by inhibiting the autolysosomal 
fusion leading to the unstable growth of autolysosomes, and 

permeabilization and release of lysosomal contents into the 
cytosol (Mora and Régnier-Vigouroux 2009).

Oral cancer

Tetrandrine, an alkaloid compound, is known to exhibit 
cytotoxic effect and induces both apoptosis and autophagy. 
Inhibition of cell viability and induction of apoptosis 
mediated by tetrandrine was abrogated by the treatment 
with autophagy inhibitors, such as bafilomycin A1 and 
3-methyladenine (3-MA), and by genetic knockdown of the 
autophagy-related genes, including beclin1 and Atg5. This 
suggests a crucial role of autophagy process in the induction 
of apoptosis by tetrandrine in SAS human oral cancer cells 
(Huang et al. 2013). Also, interferon-alpha (IFNα) has been 
shown to induce apoptosis and autophagy in head and neck 
cancer cells, and the induction of apoptosis was attributed to 
the suppression of autophagy flux. It was also confirmed that 
the gene silencing of Atg5 leads to a decrease in autophagy 
flux induced by IFNα therapy leading to the induction of 
apoptosis. This implies that IFNα therapy promotes apop-
tosis by blocking autophagy flux in oral cancer cells (Yang 
et al. 2019a, b).

Lung cancer

The resistance of lung cancer during anti-cancer therapy 
can be overcome by blocking autophagy flux. For example, 
in tumor necrosis factor-related apoptosis-inducing ligand 
(TRAIL)-resistant lung cancers, candesartan and gingerol 
are found to be effective to reduce the resistance by block-
ing autophagy flux and thus, has improved the treatment of 
TRAIL-resistant lung cancers (Nazim et al. 2015; Rashed-
uzzaman and Park 2018). The antihypertensive drug can-
desartan, and a serotonin-norepinephrine reuptake inhibitor 
duloxetine, block autophagy flux leading to the accumu-
lation of death receptor DR5, that later induces caspase-
mediated apoptosis (Rasheduzzaman and Park 2018; Zinnah 
and PARK 2019). Gingerol, a major ginger component with 
anti-inflammatory and anti-tumorigenic activity, also inhib-
its autophagy flux, thereby enhances the cytotoxic effect of 
TRAIL in the treatment of TRAIL-resistant lung cancer cells 
(Nazim et al. 2015). Also, temozolomide–perillyl alcohol 
conjugate (TMZ–POH) has been shown to impair lysoso-
mal acidification and maturation leading to the blockade of 
mitophagy flux and improve the susceptibility of non-small 
cell lung cancer (NSCLC) cells during radiation therapy 
(Chang et al. 2018). Graphite carbon nanofiber (GCNF) 
induces nanotoxicity in human lung cancer cells through 
autophagy flux blockade leading to the induction of apop-
tosis via generation of intracellular reactive oxygen species 
(ROS; Mittal et al. 2017).
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Breast cancer

In breast cancers, gold nanocages (TANs) induce both types 
I (apoptosis) and type II (autophagic) cell death that are 
mediated by ROS production, an increase in mitochondrial 
membrane permeabilization (MMP), and cytochrome release 
from mitochondria. The autophagic cell death induced by 
gold nanocages is shown to be mediated by the lysosomal 
dysfunction leading to the autophagy flux blockade and the 
release of cathepsins (Raveendran et al. 2019). Combina-
tion treatment of histone deacetylase inhibitors (HDACi) and 
mevastatin increases the cytotoxicity and apoptosis which is 
attributed to the inhibition of Vps34/Beclin 1 complex and 
downregulation of Rab7, an active form of GTPase, which 
is necessary for autophagosome–lysosome fusion and leads 
to the inhibition of autophagy flux. As a result, cell cycle 
arrest occurs in the G2/M phase leading to the induction 
of apoptosis both in vitro and in vivo (Lin et al. 2017). In 
addition to the contribution of autophagy flux blockade 
in cell death/apoptosis, a recent study has suggested that 
seleno-purine molecule suppresses triple-negative breast 
cancer cells via cytostatic autophagy without autophagy flux 
blockade (Chang et al. 2019). This raises questions regarding 
the more complex nature of autophagy in breast cancer cell 
death/apoptosis undergoing various chemotherapies, making 
it more challenging to consider targeting autophagy during 
the treatment.

Liver cancer

In human hepatocellular carcinoma, aleuritolic acid (AA) 
has been shown to block autophagy flux and the inhibition 
of autophagy either by its inhibitors, such as 3-MA and 
Ly294002, or by Atg5 gene knockdown abrogated AA-medi-
ated suppression of cell viability and induction of apoptosis, 
suggesting that the dysfunction in autophagy flux induced by 
AA leads to hepatocellular carcinoma cell death and apopto-
sis (Yi et al. 2018). Further, cationic liposomes (CLs) have 
been shown to induce necrosis in hepatocellular carcinoma 
via inhibition of autophagic flux and induction of lysosomal 
membrane permeabilization, further leading to the release of 
cathepsin, mitochondrial dysfunction, and ROS production 
(Yang et al. 2016).

Gastric cancer

Non-steroidal anti-inflammatory drugs (NSAIDs), such as 
indomethacin, in combination with oxaliplatin enhances 
the cytotoxicity and apoptosis of gastric cancer cells, 
which is caused by an increase in lysosomal pH and 
blockade in autophagy flux induced by indomethacin 
(Vallecillo-Hernandez et al. 2018). The use of non-toxic 
concentration of nanoparticle  (TiO2) has been shown to 

improve the cytotoxic and apoptotic effect of 5-fluoroura-
cil (5-FU) in gastric adenocarcinoma via ROS production, 
impairment of lysosomal function, and subsequently the 
autophagy flux blockade (Azimee et al. 2020). The plausi-
ble mechanism of autophagy flux blockade has been shown 
to be mediated by SP1, a zinc finger transcription factor, 
that induces p62 expression through its direct binding to 
the promoter of p62 in gastric cancer cells (Xu et al. 2018).

Pancreatic cancer

In human pancreatic cancer cells, the treatment with IMB-
6G (N-substituted sophoridinic acid derivative having 
potent antitumor activity) decreases the cathepsin activity 
and inhibits the autophagy flux. Further, the inhibition of 
autophagosome elongation process through genetic knock-
down of Atg5 has been shown to retract the lysosomal 
membrane permeability and the release of cytosolic cath-
epsin, suggesting a role of the autophagosomal–cathep-
sin axis in IMB-6G-mediated cell death and apoptosis in 
pancreatic cancer cells (Liu et al. 2017). In gemcitabine-
resistant pancreatic cancer cells, LW6 (chemical inhibitor 
of hypoxia-inducible factor 1α) has been shown to improve 
the chemosensitivity along with autophagy flux inhibition 
(Zhang et al. 2019).

Colorectal cancer

Ganoderma lucidum polysaccharide (GLP) induces both 
autophagy and apoptosis along with a reduction in lyso-
somal acidity and cathepsin activity in colorectal cancer 
cells. Further, inhibition of autophagy by the action of 
inhibitors, such as 3-MA, in the early step reduces the 
GLP-induced poly (ADP-ribose) polymerase (PARP) 
cleavage, while the inhibition of the late step by another 
inhibitor, chloroquine further enhances it. The further 
enhancement of GLP-induced PARP cleavage by late 
step inhibition (CQ) might be due to the lysosomal dys-
function-mediated autophagy flux blockade in colorectal 
cancer cells (Pan et al. 2019). Accumulating evidences 
also suggest that ER stress induced by the accumulated 
ubiquitinated proteins triggers cell death and apoptosis 
in colorectal and renal cancer cells (Rossi et al. 2019; 
Lee et al. 2019). WIN, which is a synthetic cannabinoid, 
increases LC3II and p62 levels along with the suppression 
of cell viability and induction of apoptosis. The suppres-
sion of peroxisome proliferator-activated receptor gamma 
(PPARγ) as a result of autophagy flux blockade is one of 
the factor causing the induction of apoptosis and cell death 
in colon cancer cells (Pellerito et al. 2014).
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Lymphoblastic leukemia

6-Cinnamamido-quinoline-4-carboxamide (CiQ) has been 
shown to induce apoptosis and blocks autophagy flux in 
human lymphoblastic leukemia, which is confirmed by the 
increase in LC3II and p62 levels in the presence or absence 
of bafilomycin A1 or CQ (inhibitors that block the fusion of 
autophagosome and lysosome). Inhibition of autophagy by 
genetic knockdown of Atg5 or beclin1 has also been shown 
to prevent CiQ-mediated cell death. Therefore, it suggests 
that cell death/apoptosis mediated by CiQ might be due to 
autophagy flux blockade in human lymphoblastic leukemia 
(Kuo et al. 2016).

Bladder cancer

Chloroquine (inhibitor that blocks the fusion of autophago-
some and lysosome) itself has been shown to enhance the 
radiosensitivity of bladder cancer cells, and its effect is 
assumed to be due to autophagy flux blockade (Wang et al. 
2018).

Cervical cancer

Anti-cancer drugs such as, menadione and  NH4Cl, have been 
shown to suppress the lysosomal function and autophagy 
flux along with the induction of apoptosis in cervical cancer 
cells. Its effect is known to be mediated by the accumula-
tion of ubiquitinated proteins and ER stress due to improper 
autophagy flux (Yu et al. 2013). Recently, tubeimoside I 
(TBM), which is a traditional Chinese herb, is used as an 
anti-viral or anti-inflammatory herb, and has been shown 
to exhibit cytotoxic effect in cervical cancers via autophagy 
flux blockade (Feng et al. 2018a, b). The autophagy flux 
blockade mediated by TBM has been attributed to the lyso-
somal hydrophilic enzymes dysfunction rather than the 
changes in acid pH or lysosomal membrane proteins (Feng 
et al. 2018a, b).

Ovarian cancer

Temozolomide–perillyl alcohol conjugate (NEO212)-medi-
ated inhibition of autophagy flux has been associated with 
the inhibition of cell cycle arrest at the G2/M phase, and the 
induction of mitochondrial fission, DNA damage, and apop-
tosis in ovarian cancer cells. The inhibition of autophagy 
flux mediated by NEO212 has also been associated with the 
inhibition of expression and activity of TFEB, an important 
transcription factor of genes-related to lysosomal biogenesis 
(Song et al. 2019). Ormeloxifene (ORM), which is a selec-
tive estrogen receptor modulator, does not inhibit autophagy 
flux, but has been shown to induce cell death and apop-
tosis in ovarian cancer cells, suggesting that autophagy is 

ultimately responsible for cell death (Bhattacharjee et al. 
2018).

Other cancers

Autophagy flux blockade has been implicated in cell death/
apoptosis in other cancer cells as well. For example, in 
myeloma cells, macrolide (an antibiotic) has been shown 
to block the autophagy flux, and its combination with Bort-
ezomib (a proteasome inhibitor) has been shown to further 
enhance the cytotoxicity. Autophagy flux blockade-mediated 
ubiquitination of protein aggregates leads to ER stress, C/
EBP homologous protein (CHOP) induction, and apopto-
sis, and has been shown to be involved in the induction of 
cytotoxicity during the combination treatment (Moriya et al. 
2013). Physakengose G (PG) alters lysosome acidification, 
increases LAMP1 expression, and inhibits autophagy flux 
in bone cancers, and thus, it is assumed that autophagy flux 
blockade might contribute to cell death in this cancer type 
(Lin et al. 2018).

Biological signaling responsible for autophagy flux 
blockade

Any kind of means that block autophagy flux has been 
involved in cell death or apoptosis. A decrease on the levels 
of syntaxin 17 has been attributed to the autophagy flux 
blockade in adenocarcinoma (Tian et al. 2018). In TRAIL-
resistant lung cancer cells, candesartan has been shown to 
block the autophagy flux via inhibition of AMPK activity, 
and it has been shown to further induce cell death and apop-
tosis (Rasheduzzaman and Park 2018). This is supported by 
another study in which the activation of AMPK was shown 
to induce autophagy flux to further support the survival and 
growth of epithelial cells, and also to develop resistance 
(Herrero-Martin et al. 2009).

Biological molecules responsible for autophagy 
flux blockade-mediated cell death/apoptosis

The accumulation of p62 protein caused by autophagy flux 
blockade leads to the formation of ubiquitin-protein aggre-
gates by implementing the combination treatment of pul-
satilla saponin D and camptothecin in breast cancer cells. 
Therefore, in this case, the aggregation of ubiquitin-proteins 
occur that further initiates the apoptotic cell death (Wang 
et al. 2019). Furthermore, another study has shown that the 
autophagy flux blockade-mediated p62 accumulation causes 
caspase 9-mediated apoptosis in graphene oxide (GO) treat-
ment (Feng et al. 2018a, b).
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Additional mechanisms of apoptosis induction as a con-
sequence of autophagy flux blockade have been further 
elaborated (Young et al. 2012; Iurlaro and Munoz-Pinedo 
2016). Young and colleagues have demonstrated that the 
accumulation of p62 due to autophagy flux blockade causes 
caspase-8-mediated apoptotic induction in mouse embryonic 
fibroblasts (Young et al. 2012). In this model, Fas-associ-
ated death domain protein (FADD) is shown to integrate 
into the autophagosomal membrane through Atg5 binding. 
Thereafter, FADD recruits caspase-8 to the autophagoso-
mal membrane, where p62 induces self-oligomerization of 
caspase-8 leading to its activation and initiation of caspase-
mediated apoptosis (Young et al. 2012). The role of inter-
action of autophagy-related protein complex, Atg12-Atg5 
with death receptor FADD to recruit caspase-8, activate and 
to induce apoptosis has been studied previously (Bell et al. 
2008). Bortezomib, which is an inhibitor of proteasome, 
has been found to increase the interaction between Atg12-
Atg5 complex and FADD that recruits caspase-8 to induce 
apoptosis in adenocarcinoma (Laussmann et al. 2011). Also, 
it increases the interaction between Atg12-Atg5 complex 
and FADD that further leads to the interaction of caspase-8 
with ubiquitin-binding protein SQSTM1/p62 and the micro-
tubule-associated protein light chain 3 (LC3) inducing cas-
pase-8 and caspase-3 activation (Pan et al. 2011).

Restoration of lysosomal function and autophagy 
flux blockade protects cells from apoptosis

The mechanism underlying the role of autophagy flux 
blockade in contributing apoptosis induction in diverse 
cancer cells during anti-cancer drug therapy has not been 
clearly understood yet. Although autophagy flux block-
ade by anti-cancer therapies is proved to be beneficial to 
destroy the selected cancer cells, incomplete autophagy 
process can cause diverse range of disorders in normal 
cells. In such cases, the restoration of autophagy flux 
blockade is a beneficial strategy to block the apoptosis pro-
cess. Apoptosis induced by ischemia–reperfusion (I/R) in 
myocardial tissues along with the blockade of autophagy 
flux and lysosomal dysfunction has been overcome by 
using sevoflurane postconditioning (SpostC), which helps 
in restoring the autophagy flux and lysosomal function 
(Zhang et al. 2014). Induction of apoptosis and inhibi-
tion of autophagy flux by the use of excessive antibiotics 
(erythromycin and clindamycin) in different human cell 
lines is replaced by overexpressing TFEB of lysosomal 
biogenesis (Prajapati et al. 2019). Overexpression of TFEB 
has been shown to increase the number of lysosomes lead-
ing to the restoration of autophagy flux and mitochondrial 
function (Prajapati et al. 2019). Further, rapamycin has 
been shown to restore the autophagy flux and to improve N
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the morphological abnormalities of muscles in cytochrome 
C oxidase (COX) knockout (KO) model (Civiletto et al. 
2018). In this model, inhibition of mTORC1 activity led 
to an increase in the nuclear localization of TFEB, lead-
ing to an increase in the lysosomal biogenesis and further 
restoration of autophagy flux so that the dysfunctional 
mitochondria are dispersed (Civiletto et al. 2018). Re-
acidification of the lysosome by the treatment with drugs 
(Folts et al. 2016), acidic nanoparticles (Colacurcio and 
Nixon 2016), or by mTORC1 inhibition (Nakadera et al. 
2016) have improved the lysosomal function leading to 
the restoration of autophagy flux. Altogether, these results 
indicate the importance of optimal enzymatic function of 
the lysosome in the biogenesis of autophagy flux. There-
fore, a decrease in the lysosomal activity leads to the inhi-
bition of autophagosome–lysosome fusion, and further 
inhibition of the autophagy cargoes degradation (Table 1). 

Concluding remarks and future perspective

The effect of diverse anti-cancer drugs on autophagy flux 
blockade and lysosomal dysfunction in different cancer types 
has been discussed here. Autophagy seems to play a role 
not only in cancer cell survival but also in death/apoptosis, 
which is believed to be mediated by the defect in the late 
stage of autophagy steps. Thus, the stages, levels, and nature 
of autophagy can be the triggering factor to decide whether 
the cancer cells would undergo survival or death/apopto-
sis under anti-cancer therapies. Cancer immunotherapy has 
become an interesting field in recent years as autophagy 
has been shown to potentiate processing and presentation 
of tumor antigens thereby stimulating anti-tumor immunity 
(Pan et al. 2016; Hu et al. 2017). Either the induction of 
autophagy or blockade of autophagy at its late-stage has 
been shown to exert anti-tumor activity by oncolytic viruses 
(OV) treatment (Hu et al. 2017) and this indicates the prom-
ising steps of immune system activation by autophagy, with 
the great hope in the field of cancer treatment.

To minimize the confusion for the role of autophagy in 
cancer cell survival and death during anti-cancer therapies, 
autophagy should be compared in different cancer types 
of the same origin both in vitro and in vivo. The com-
plete process of autophagy (induction and autophagy flux) 
should be well studied so that anti-cancer therapies can be 
developed for clinical trials depending on the cancer types 
and action of autophagy.
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