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regulatory role of Nrf2 in adipogenesis, recent key findings 
on Nrf2 in insulin signal transduction and energy metabo-
lism of adipocytes are also summarized.
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Introduction

White adipose tissue (WAT) is composed mostly of adipo-
cytes and is considered to be an active organ that engages in 
storing and releasing energy, maintains glucose homeosta-
sis, and secretes a variety of adipokines influencing appe-
tite, insulin sensitivity, inflammation, and various other 
biologically and/or clinically significant pathways (Rosen 
and Spiegelman 2006; Lee et al. 2019; Chen et al. 2020). 
With regard to WAT functions in the regulation of metabolic 
homeostasis of lipid and glucose, excess or ectopic accu-
mulation of WAT is a risk factor for a variety of metabolic 
disorders, including Type 2 diabetes mellitus (T2DM). Con-
versely, a severely decreased mass of WAT as observed in 
lipodystrophy is associated with reduced capacity of WAT 
to store triglycerides (TGs) and a variety of metabolic dis-
orders (Fig. 1). Therefore, maintaining an appropriate mass 
and function of WAT is essential for insulin sensitivity and 
metabolic homeostasis.

Nuclear factor erythroid 2-related factor 2 (Nrf2, also 
known as NFE2L2), a CNC-basic region/leucine zipper 
(bZIP) protein, is ubiquitously expressed and serves as a 
master regulator in both constitutive and inducible expres-
sion of antioxidant response element (ARE)-dependent 
genes, which include many antioxidant and phase II detoxi-
fication enzymes (Yamamoto et al. 2018). Thus, Nrf2 has 
been well investigated as a key factor in many disease 
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dysfunction is clearly associated with severe metabolic dis-
orders. Mature adipocytes are derived from differentiated 
preadipocytes and are pivotal in energy storage and metabo-
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dant response elements (ARE) in partnership with small 
musculoaponeurotic fibrosarcoma proteins. The activation 
of Nrf2-ARE coordinated by specific repressor Kelch-like 
ECH-associated protein 1 (Keap1) regulates networks of 
genes controlling diverse homeostatic processes involving 
adaptive antioxidant response and detoxification among 
many other adaptive responses. Interestingly, accumulating 
evidence indicates that Nrf2 may act as a transcription factor 
in regulating the formation and function of adipose tissues, 
including adipogenesis, lipid metabolism and insulin sensi-
tivity. In this mini-review, an overview on the distinct roles 
of Nrf2 in adipocytes is provided. While highlighting the 
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settings (Li et al. 2020; Wu et al. 2020). Interestingly, accu-
mulating data indicates that Nrf2 may also play critical roles 
in lipid and glucose metabolism, including adipogenesis and 
adipocyte function (Pi et al. 2010; Hou et al. 2012; Xue et al. 
2013). In this mini-review, we provide an overview on the 
distinct roles of Nrf2 in adipocyte formation and function. 
While highlighting the regulatory role of Nrf2 in adipogen-
esis, recent key findings on Nrf2 in insulin signaling and 
energy metabolism in adipocytes are also summarized.

Nrf2 and adipogenesis

Signaling cascades in adipogenesis

Adipogenesis is tightly regulated by a multi-step process 
comprising progenitor commitment and adipogenic differ-
entiation during which fibroblast-like resident preadipocytes 
are converted to mature, spherical adipocytes with character-
istic lipid accumulation (Farmer 2006; Lefterova and Lazar 
2009). Firstly, the fibroblast-like multipotent mesenchymal 
stem cells (MSCs), which are characterized by the expres-
sion of platelet-derived growth factor receptor-α (PDGFRα) 
and/or PDGFRβ, restrict themselves to the adipocyte lineage 
without any obvious morphological changes, and then form 
preadipocytes. This cellular commitment is subsequently 
followed by terminal differentiation, during which selected 
preadipocytes undergo growth arrest, accumulated lipid 
droplets and form functional, insulin-responsive mature 
adipocytes (Farmer 2006; Rosen and MacDougald 2006; 

Lefterova and Lazar 2009). This complex adipogenic pro-
cess is regulated by intricate transcription factor networks 
that coordinate expression of hundreds of proteins responsi-
ble for establishing the mature adipocyte phenotype (Farmer 
2006; Vishvanath and Gupta 2019). At the center of this net-
work, there are peroxisome proliferator-activated receptor γ 
(PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) 
which together oversee the entire terminal differentiation 
process (Brown et al. 2018).

PPARγ belongs to a member of the nuclear receptor 
superfamily and is characterized as the master regulator 
of adipogenesis, as it is both necessary and sufficient for 
adipocyte differentiation in vitro (Tontonoz et al. 1994; 
Al-Ghadban et al. 2020) and in vivo (Sikder et al. 2018) 
and is also required for maintaining the differentiated state 
(Tamori et al. 2002). The Pparg gene is driven by alterna-
tive promoters that give rise to two major protein isoforms, 
PPARγ1 and PPARγ2 (Zhu et al. 1995). Both isoforms are 
expressed most abundantly in adipocytes, and PPARγ2 is 
almost entirely adipocyte specific, while the expression of 
each isoform is driven by a specific promoter that confers 
a distinct tissue-specific expression and regulation. Though 
the relative roles of PPARγ1 and PPARγ2 in adipogenesis 
remain undetermined (Virtue et al. 2018), studies performed 
in Pparg deletion mouse embryonic fibroblasts (MEFs) dem-
onstrate that ectopic PPARγ1 is capable of inducing adi-
pogenesis as PPARγ2 (Mueller et al. 2002). Furthermore, 
adipose-selective knockout of Pparg2 in mice gives rise 
to insulin-insensitive animals with reduced fat accumula-
tion; however, such mice still contain substantial amounts 

Fig. 1  Functional white 
adipose tissue is critical for 
metabolic homeostasis
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of adipose tissues, suggesting that PPARγ1 can compensate 
for many of the adipogenic functions of PPARγ2. Consist-
ent with murine studies, humans with rare loss-of-function 
mutations in PPARγ have lipodystrophy and severe insulin 
resistance (Jeninga et al. 2009). Members of the synthetic 
thiazolidinedione class of drugs (TZDs) are potent PPARγ 
ligands that stimulate adipogenesis in vitro and in vivo (Saraf 
et al. 2012). Although TZDs are generally considered safe, 
some controversial reports of cardiac side effects and exces-
sive weight gain associated with these drugs have limited the 
enthusiasm for their clinical application as pro-adipogenic 
compounds. A series of events including the expression of 
nuclear retinoic acid X receptor alpha (RXRα), dimeriza-
tion with PPARγ, then combination with the direct repeat 1 
(DR1) site and transactivation of adipocyte-specific genes 
are key events in adipogenesis, and endogenous PPARγ and 
RXRα bind to the same repertoire of binding sites in 3T3-L1 
cells during early differentiation (Zhang et al. 2018).

The C/EBPs, including C/EBPα, C/EBPβ, and C/EBPδ, 
belong to the bZIP transcription factor group and are 
expressed early in adipogenesis (Rosen and MacDougald 
2006). C/EBPα and PPARγ form an early positive loop by 
regulating mutual expression, and then play subsequent roles 
in a later stage by inducing and maintaining expression of 
adipocyte-specific genes (Wu et al. 1999). Although forced 
expression of C/EBPα in fibroblasts can trigger adipogenic 
differentiation, C/EBPα expression alone is incapable of 
inducing adipogenesis in the absence of PPARγ (Freytag 
et al. 1994). In contrast, PPARγ can induce adipogenic 
differentiation in C/EBPα-null cells, which indicates that 
PPARγ is sufficient to stimulate adipogenesis (Rosen et al. 
2002). C/EBPβ and C/EBPδ are transiently expressed and 
function at the early stages of differentiation while sensing 
adipogenic stimuli and initiate the expression of PPARγ and 
C/EBPα (Yeh et al. 1995). C/EBPβ is thought to trigger the 
mitotic clonal expansion of preadipocytes and later coordi-
nate the transcription network by turning on C/EBPα and 
PPARγ (Sikder et al. 2018). The induction of C/EBPβ occurs 
rapidly upon stimulation of differentiation. Apart from 
cAMP response element-binding protein (CREB) (Zhang 
et al. 2004) and Kruppel-like factor 4 (KLF4) (Birsoy et al. 
2008), a few transcription factors have been described that 
bind to the C/EBPβ promoter and positively regulate its 
transcription during adipogenesis. There are some negative 
regulators of PPARγ expression, including C/EBP homolo-
gous protein (CHOP) and C/EBPγ (Darlington et al. 1998; 
Pi et al. 2010).

Several additional transcription factors are potential com-
ponents of the complex network of factors responsible for 
inducing adipogenic gene expression, such as the helix-loop-
helix (HLH) transcription factor sterol regulatory element-
binding protein 1c (SREBP1c). Sterol regulatory element-
binding proteins (SREBPs) including SREBP-1a, SREBP-1c 

and SREBP-2 are key transcription factors that regulate fatty 
acid and cholesterol synthesis (Bertolio et al. 2019). In cul-
ture, SREBP1c has been shown to promote adipogenesis 
by providing lipid ligands that mediate PPARγ activation. 
Additionally, ectopic expression of a dominant-negative 
SREBP1c was shown to inhibit preadipocyte differentia-
tion, while overexpression of this HLH protein markedly 
enhances the adipogenic activity of PPARγ. The forkhead 
box protein O1 (FOXO1) is a transcription factor that plays 
an important role in regulation of adipogenesis (Nakae et al. 
2003). FOXO1 represses the transcription of the gene encod-
ing PPARγ and is regulated by insulin via Akt-dependent 
phosphorylation and nuclear exclusion (Nakae et al. 2003).

A considerable number of molecules and pathways iden-
tified in murine cell models of adipogenesis have yet been 
validated in vivo or in human cells. Understanding the intri-
cacies of adipogenesis has clear relevance to human dis-
ease, as adipocyte dysfunction is the main risk factor for 
metabolic disease in obesity. The ability of adipose tissue to 
influence whole-body metabolism also makes cells within 
this tissue attractive as pharmacological targets.

Regulation of Nrf2 in adipogenesis

Identifying specific transcription factors that define the 
preadipocyte population and/or regulate terminal adipo-
genic differentiation helps providing insights into the sig-
nals required to drive multipotent MSCs into adipocytes. 
Recent studies provided that Nrf2 is an important player in 
PDGFRα signaling that mediates expression of PDGF-A and 
adipogenesis (Haider and Larose 2020). Oxidative stress can 
promote Nrf2 recruitment to the SREBP1 promoter, induc-
ing target gene transcription and subsequent lipogenesis 
(Sun et al. 2020). As illustrated in Fig. 2, our previous study 
showed that Nrf2 expression markedly impacts adipogen-
esis as adipocyte differentiation is inhibited in Nrf2-knock-
out (KO) mice with concurrent downregulation of PPARγ 
and C/EBPα expression induced by 12-week high-fat diet 
(HFD) treatment (Pi et al. 2010). Suppression of Nrf2 activ-
ity, genetically or chemically, leads to impaired adipogen-
esis in 3T3-L1 preadipocytes, primary mouse embryonic 
fibroblasts and/or human subcutaneous preadipocytes (Pi 
et al. 2010; Chen et al. 2013). Conversely, adipogenic dif-
ferentiation of 3T3-L1 preadipocytes is enhanced by acti-
vation of Nrf2 through knockdown of its negative regula-
tor Kelch-like ECH-associated protein 1 (Keap1) (Pi et al. 
2010). Subsequent study showed that C/EBPβ, a critical 
early regulator for adipogenesis, is regulated by Nrf2 during 
adipocytes differentiation (Hou et al. 2012). Another study 
identified binding sites for Nrf2 in the promoter regions of 
RXRα, which binds to PPARγ to drive the process of adi-
pogenesis (Chorley et al. 2012). Similarly, suppression of 
Nrf2 attenuates adipogenesis through reducing PPARγ in 
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3T3-L1 cells (Kim et al. 2018). Likewise, after treatment 
with sulforaphane (SFN), there was a marked increase in 
RXRα target gene expression. Knockdown of Nrf2 results in 
a delayed expression of RXRα, which, in turn, also results in 
inhibition of adipogenesis (Shin et al. 2007). In addition, the 
regulatory roles of Nrf2 in PPARγ expression was further 
strengthened in non-preadipocyte cell models (Zhan et al. 
2012; Li et al. 2020), highlighting that Nrf2 is crucial in 
other cell differentiation and function via a direct regulation 
on PPARγ expression.

While extensive studies demonstrated that Nrf2 may func-
tion as a positive regulator in adipogenesis, conflicting results 
also showed that loss of Nrf2 associates with increased dif-
ferentiation capacity of preadipocytes. Two studies found that 
Nrf2 inhibits adipogenesis by activating the aromatic receptor 
(AHR) pathway, which is associated with the impaired dif-
ferentiation from 3T3-L1 preadipocytes and MEFs to mature 
adipocytes (Shimba et al. 2001; Shin et al. 2007). In addition, 
activation of Nrf2 via Keap1 silencing or chemical activators 
(SFN or butein) inhibited adipogenesis and reduced expression 
of differentiation and maturation-related genes such as PPARγ, 
C/EBPα and fatty acid-binding protein 4 (FABP4), prevent-
ing lipid accumulation (Xu et al. 2012; Yang et al. 2017). The 
inhibitory effects caused by Nrf2 activation is less pronounced 
when treatment occurs 3 days after initiation of differentiation, 
suggesting these inhibitory effects produced by Nrf2 are linked 
to the early stages of adipogenesis. In another study, Nrf2 was 
shown to have no effect on adipocyte differentiation and func-
tion. These authors assessed the mRNA levels of C/ebpα and 
Fabp4 in WAT of Nrf2-KO mice and wild type mice fed with 
control or HFD for 13 weeks. There was no difference in the 
expression of these specific adipogenic markers in WAT (Shin 

et al. 2009), indicating that Nrf2 may involve in the adipogen-
esis in a time-dependent manner.

Adipocyte differentiation and function can also be 
affected by cellular redox status, which may be influenced 
by Nrf2. Recent work demonstrated that adipose tissue mass 
decreased in insulin resistant NAD(P)H: quinone oxidore-
ductase 1 (NQO1) knockout (Nqo1-KO) mice, revealing a 
crucial role of NQO1 in adipocyte differentiation and func-
tion (Gaikwad et al. 2001). In addition, mice lacking glu-
tamate-cysteine ligase, modifier subunit (Gclm) also had a 
lower body weight and less WAT mass when fed with HFD 
(Kendig et al. 2011).

The current experimental conclusions do not tend to 
be unified and the basis for these discrepant results is not 
known. However, it has been suggested that discrepancies 
could be due, in part, to the different cell and animal models 
used in the studies, with major dissimilarities arising when 
comparing primary cells with immortalized cell lines. In 
addition, the confounding effects on cell viability and gen-
eral cytotoxicity cannot be fully excluded from those find-
ings derived from chemical activators and inhibitors. Taken 
together, Nrf2 clearly exhibits profound effects on adipo-
genesis through both direct and indirect ways and serves as 
a very promising target for understanding the mechanisms 
of adipogenesis and oxidative stress response in adipose 
tissues.

Nrf2 and adipocyte function

As the main responsive organ of insulin signaling and an 
important energy storage and transfer tissue, WAT is critical 

Fig. 2  Regulatory role of Nrf2 
in adipogenesis. A series of 
events including the expression 
of nuclear RXRα, dimerization 
with PPARγ, then transactiva-
tion of adipocyte-specific genes, 
are key steps in adipogenesis. 
C/EBPs are expressed early in 
adipocytes and play important 
roles in adipogenesis. Nrf2 has 
been reported to have a regula-
tory function in these key stages
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in maintaining the homeostasis of glucose and lipid metabo-
lism (Kim et al. 2012; Zhu et al. 2019). When adipocyte 
function is compromised, the free fat acids (FFAs) in the 
blood cannot be stored safely, which in turn affects on the 
function of liver and skeletal muscle, aggravating insulin 
resistance and T2DM (Klöting and Blüher 2014). It has 
been well documented that enlarged WAT mass and adipo-
cyte size are linked to inadequate vascularization, hypoxia, 
fibrosis, macrophage infiltration with low-grade inflamma-
tion and reduced lipid storage ability and weaken insulin 
sensitivity (Camporez et al. 2017; Hou et al. 2018; Scherer 
2019). In contrast, diminished adipogenesis, such as in lipo-
dystrophy, may also affect WAT function and induce insulin 
resistance (Vatier et al. 2013; Bindlish et al. 2015). Thus, 
functional adipocytes in WAT are essential for the homeo-
static regulation of glucose and lipid metabolism, whereas 
Nrf2 has emerged as an important regulator in the complex 
process.

Nrf2 and insulin signaling

Insulin is an indispensable and vital hormone that coordi-
nates with other molecules to control the blood glucose lev-
els within physiological normal levels to maintain energy 
homeostasis (Saltiel 2016). As a secreted hormone, insu-
lin’s first outstanding feature is the swift response capabil-
ity based on the cascade phosphorylation signaling pathway 
rather than transcriptional regulation. To reduce the post-
prandial glucose level, the secreted insulin recognizes and 
binds to the insulin receptors (IR) embedded in phospho-
lipid bilayer of cell membranes (Vigneri et al. 2016). Insulin 
receptor substrate 1 (IRS1) is recruited and phosphorylated 
by the activated IR, simultaneously generating binding site 
for SRC-homology 2 (SH2) domains of the p85 regulatory 
subunit of phosphatidylinositol 3-kinase (PI3K). Then the 
p110 subunit of PI3K escapes from the inhibition of p85 
and launches the process of conversion, catalyzing the con-
version of cytoplasmic phosphatidylinositol (4,5)-bisphos-
phate (PIP2) into phosphatidylinositol (3,4,5)-trisphosphate 
(PIP3), which serves as a vital second messenger. PIP3 binds 
to pleckstrin homology (PH) domain of its target proteins, 
and activates many signaling pathways, including most nota-
bly protein kinase B (PKB/AKT) pathway. PIP3 can activate 
the AKT pathway by recruiting the kinases phosphoinositide 
dependent kinase-1/2 (PDK1/2), which add phosphatidic 
acid group to AKT at Thr308 and Ser473, respectively 
(Rodriguez-Escudero et al. 2005). IRS1-PI3K-AKT signal-
ing pathway plays critical roles in apoptosis, autophagy, cell 
proliferation and metabolism, including glycogen synthesis, 
gluconeogenesis, lipolysis, fatty acid and cholesterol synthe-
sis (Liu et al. 2015; Chen et al. 2018). Insulin regulates glu-
cose and lipid metabolism mainly in liver, skeletal muscle 
and WAT (Samuel and Shulman 2016). In WAT, lipolysis 

process is suppressed by phosphorylated IRS1 (Samuel and 
Shulman 2016). In contrast, the IRS1-PI3K-AKT signaling 
pathway facilitates the translocation of glucose transporter 
type 4 (GLUT4) to the cell membrane to improve glucose 
uptake (Chen et al. 2018). In the liver, IRS1-PI3K-AKT 
signaling pathway phosphorylates FOXO1 and then causes 
its ubiquitination and degradation via proteasome (Matsu-
zaki et al. 2003). Similar to WAT, insulin increases GLUT2 
levels and helps hepatocytes take up more glucose to form 
glycogen and TGs via a series of transcriptional factors and 
enzymes, such as SREBP1 and carbohydrate-responsive 
element-binding protein (ChREBP). A parallel cascade is 
observed in skeletal muscle, insulin suppresses lipolysis 
and increases GLUT4 and GLUT1 translocation, thereby 
promoting glucose uptake and energy storage (Kubota et al. 
2017).

Abnormal insulin signaling pathways in adipocytes are 
often associated with T2DM (Kang et al. 2016). Obesity as 
a secondary complication is also inevitably involved in the 
complex metabolic syndrome cycle. Nrf2 is famous for its 
capability to maintain redox homeostasis and participate in 
the concurrent insulin resistance and obesity (Fu et al. 2017). 
The Nrf2 agonist perfluorooctane sulfonate  (C8HF17O3S, 
PFOS), a chemical widely used in industrial and consumer 
applications, can enhance insulin-stimulated glucose uptake 
and increase the expression of Glut4 and Irs1 along with the 
activation of Nrf2 and its downstream antioxidative genes 
in 3T3-L1 preadipocytes (Xu et al. 2016). Glucoraphanin, a 
food-sourced Nrf2 inducer, enhances insulin-stimulated Akt 
phosphorylation on Ser473 in the liver, muscle and WAT of 
mice under HFD, which coincides with the results of amelio-
rative glucose tolerance and insulin sensibility (Nagata et al. 
2017). In contrast, global Nrf2-KO mice showed glucose 
intolerance and insulin resistance with reduced Akt phos-
phorylation in skeletal muscle and WAT after insulin treat-
ment (Xu et al. 2015). Expression of Glut4, Irs1 and insulin 
receptor also displayed a slight decrease in ob/ob-Nrf2-KO 
(Xu et al. 2015) and HFD-fed Nrf2-KO mice (Nagata et al. 
2017). However, the role of Nrf2 in insulin signal regula-
tion is still controversial. Nrf2-KO mice has been shown to 
exhibit a better glucose utilization, insulin selectivity and 
increased p-Akt (Ser473) level in liver and skeletal mus-
cle tissues following HFD exposure (Meakin et al. 2014). 
In hepatocytes, Nrf2 deficiency resulted in oxidative stress 
and compromised IGF-IR/IR-PI3K-Akt signal transduction, 
showing a reduced association of IRS-1 with p85α subu-
nit of PI3K upon insulin administration (Beyer et al. 2008). 
These results are in line with the finding that Nrf2 mediates 
hepatitis B virus-induced expression of insulin receptor in 
hepatocytes (Barthel et al. 2016).

Obese-induced insulin resistance may be partially 
attributed to impaired adipocyte function and associated 
inflammation. Both TNF-α and FFAs can activate c-Jun 
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amino-terminal kinases (JNKs), and inhibit IRS1 phos-
phorylation at Ser307 and Tyr608 which leads to insulin 
resistance (Hirosumi et al. 2002; Beyer et al. 2008). In 
addition, macrophage polarization may affect insulin sign-
aling (Olefsky and Glass 2010). It has been revealed that 
NRF2-HO-1 can attenuate HFD-induced insulin resistance 
in mice via effecting anti-oxidation and anti-inflammation 
(Wang et al. 2017). Several Nrf2 agonists, including res-
veratrol, glycyrrhizin and omega-3 polyunsaturated fatty 
acid, reverse exogenous compounds-induced disturbance 
of glucose homeostasis in WAT via NQO1 in a concen-
tration-dependent way (Baker et al. 2013; Kusunoki et al. 
2013; Abo El-Magd et al. 2018). All of these data support 
a conclusion that exogenous Nrf2 activators may improve 
the glucose homeostasis and insulin resistance by acting as 
an anti-inflammatory agent, which reduces pro-inflamma-
tory cytokines that suppress the normal phosphorylation 
of IRS1-initiated insulin signaling. Another model stud-
ied this possibility by using an environmental oxidative 
stressor, namely low-level inorganic arsenic (iAs) expo-
sure which causes oxidative stress and inflammation. Low-
level  iAs3+ inhibited the insulin-mediated phosphorylation 
of AKT at the site of Ser473, glucose uptake and GLUT4 
activation in differentiated 3T3-L1 adipocytes along with 
an increase in expression of multiple Nrf2 target genes 
(Xue et al. 2011), suggesting that a prolonged low-level 
 iAs3+ exposure activates the cellular adaptive oxidative 
stress response involving Nrf2 activation, which impairs 
insulin-stimulated reactive oxygen species (ROS) signal-
ing, and thus causes insulin resistance in adipocytes.

It has been well documented that mitochondria-derived 
ROS, such as hydrogen peroxide  (H2O2), may function as 
critical messenger molecules to mediate many important 
physiological responses (Rhee 2006). Previous studies, 
including our own, indicated that ROS are involved in the 
regulation of insulin release in β-cells and insulin action 
in adipocytes and skeletal muscle (Pi et al. 2007; Zhang 
et al. 2017; Quan et al. 2020). Nevertheless, overwhelming 
levels of ROS, causing oxidative stress, will lead to β-cell 
dysfunction/death, chronic inflammation and insulin resist-
ance which induces various signaling pathways including 
FoxO, mitogen-activated protein kinase (MAPK), JAK/
STAT, p53, phospholipase C, PI3K and JNK (Houstis 
et al. 2006; Zhang et al. 2017). Nrf2 controls a strong 
mitigating response system to scavenge ROS and protect 
cells against oxidative damage. To sum up, Nrf2-mediated 
antioxidant response, on one hand, protects various types 
of cells from oxidative damage; On the other hand, Nrf2 
negatively regulates the levels of intracellular ROS that 
play an important role in cell signal transduction, insu-
lin signaling in particular. Nevertheless, the interaction 
between Nrf2 cascade and insulin signaling in adipocytes 
still needs further investigation.

Nrf2 and lipid metabolism in adipocytes

The TGs in adipocytes may be hydrolyzed into glycerol and 
FFAs by lipolytic enzymes and released into the blood. FFAs 
are important secretory products of adipocytes (Wang et al. 
2018). Lipolysis is exceptionally sensitive to the action of 
insulin (Jensen and Nielsen 2007), which constitutes the 
major antilipolytic pathway in adipocytes. Lipolysis is the 
sequential hydrolysis of one TG molecule into three FFAs 
and one glycerol by a class of hydrolytic enzymes commonly 
known as lipases. Three lipases act in sequence with the 
concomitant release of one FFA in each step. Adipose TG 
lipase (ATGL) converts TG to DG and is the rate-limiting 
enzyme in the lipolytic pathway (Zimmermann et al. 2004). 
DG is hydrolyzed to MG by hormone-sensitive lipase (HSL) 
(Haemmerle et al. 2002), and monoglyceride lipase (MGL) 
cleaves MG into glycerol and FFAs (Heine et al. 2018). In 
the process, phosphorylation of HSL at Ser563, Ser659 and 
Ser 660 by protein kinase A (PKA) or via ERK pathway 
occurs, which leads to HSL translocation to the surface of 
lipid droplets to activate lipolysis. Lipid droplets in adipose 
tissue are covered by perilipin-1 (PLIN1), one of the mem-
bers of the perilipin family. It has been shown that ATGL 
activity needs to be stimulated by CGI-58 that binds to intra-
cellular lipid droplets through interaction with PLIN1 (Lass 
et al. 2006). With the increasing number of newly identified 
enzymes and regulatory proteins, the remarkable complexity 
of the hormonal and intracellular signaling network regulat-
ing the lipolytic pathway has also become clear. It is evident 
that the balance between lipid mobilization, utilization, and 
storage is crucial in most tissues.

Activation of Nrf2 can be enhanced by treatment with 
SFN (Kubo et al. 2017). In vitro data showed that protein 
expression of both the Plin1 and Hsl genes in adipocytes are 
significantly reduced after treatment with SFN compared 
with untreated cells. However, SFN increased phosphoryla-
tion of HSL at Ser563 and Ser660 and reduced phospho-
rylation at Ser565. These findings suggest that SFN-induced 
adipocyte lipolysis may mediate PLIN1 and HSL expres-
sion by stimulating Nrf2 activation (Zhang et al. 2016). 
Activation of cAMP-PKA-CREB pathway by curcumin, 
another Nrf2 activator, also plays an important role in lipid 
homeostasis by increasing lipolysis (Zingg et al. 2017). The 
Hedansanqi Tiaozhi Tang extract treatment enhanced antiox-
idant activities and promoted lipolysis in 3T3-L1 adipocytes 
by activating the Nrf2-HO-1 antioxidant pathway (Qiu et al. 
2020). Hyperhomocysteinemia (HHcy) is related to inhibi-
tion of adipocyte lipolysis (Li et al. 2018). This research 
showed that homocysteine (Hcy) exposure is associated with 
Nrf2 activation, and that deficiency of Nrf2 ameliorated 
Hcy-induced glycerol release in adipocytes. Conversely, 
treatment with either epigallocatechin gallate (EGCG) or 
tert-butylhydroquinone (t-BHQ), two well-known Nrf2 
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activators, increased intracellular TG mass and reduced 
glycerol release in adipocytes (Li et al. 2018). Nrf2 expres-
sion and activity can further promote lipid accumulation in 
adipocytes and exacerbate the development of obesity. In 
contrast, Nrf2 ablation alleviates oxidative stress-induced 
lipid accumulation (Sun et al. 2020). Taken together, Nrf2 
agonists have shown inconsistent effects on lipolysis. On 
one hand, Nrf2 can maintain the shape of lipid droplets, 
increase the storage of TGs and reduce the release of FFAs; 
on the other hand, Nrf2 can enhance the phosphorylation of 
lipolytic enzymes (Fig. 3).

Lipogenesis is as significant as lipolysis in adipocyte lipid 
metabolism. PPARγ acts as a key regulator of adipogenesis 

to prevent lipotoxicity by not only regulating the develop-
ment of preadipocytes but also enhancing the lipid storage 
capacity of mature adipocytes (Medina-Gomez et al. 2007). 
Previous study showed that FFA re-esterification is medi-
ated by diacylglycerol acyl transferase (DGAT-1), which 
is an important enzyme participating in the final step of 
TG synthesis (Chitraju et al. 2017). Interestingly, this re-
esterification cycle functions to protect the ER from lipo-
toxic stress (Chitraju et al. 2017). Others have also found 
that SFN affects the esterification of FFA. In one particular 
study, DGAT-1 protein level was significantly reduced in 
SFN‐treated cells compared with control cells (Zhang et al. 
2016). Furthermore, there is evidence that enhanced Nrf2 

Fig. 3  Paradoxical roles of 
Nrf2 in lipolysis in adipocytes. 
Agonists of Nrf2 have shown 
inconsistent effects on lipolysis. 
Nrf2 can enhance the lipolysis 
process by inducing the phos-
phorylation of lipolytic enzyme. 
On the other hand, Nrf2 can 
maintain the shape of lipid 
droplets, increase the storage 
of triglycerides and reduce the 
release of FFAs, suggesting the 
inhibition of lipolysis process. 
AC adenylyl cyclase, β1/2-ARs 
β-adrenoceptors, DG diglyc-
eride, IR insulin resistance, 
IRS1/2 insulin receptor substrate 
1 and 2, Gs Gs protein, MG 
monoglyceride, TG triglyceride
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activity resulting from knockdown of Keap1 decreases FFA 
transport and results in increased FFA content in WAT (Xu 
et al. 2013).

Future perspectives

Understanding the regulatory mechanisms of adipogen-
esis and adipocyte function can greatly aid in defining the 
molecular pathology of metabolic diseases and the appro-
priate pharmaceutical intervention. Given the complexity 
of regulation of adipogenesis and adipocyte functions, an 
integrated approach is required to investigate the roles of 
Nrf2 in differentiation and insulin sensitivity in adipose tis-
sues. Understanding how Nrf2 functions in adipocytes is 
important to comprehending various disease processes, such 
as diabetes, obesity and related clinical disorders, and could 
orient pharmacologic interventions aiming at Nrf2 or related 
systems for prevention and treatment of these common and 
debilitating human maladies.
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