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Introduction

There has been a recent advancement in the development 
of nanomedicines for cancer therapy (Choi and Han 2018; 
Hong and Choi 2018; Hwang et al. 2018; Le et al. 2018; 
Dadfar et al. 2019; Dhandapani et al. 2019; Fu et al. 2019; 
Gu et al. 2019; Jeon and Ko 2019; Lee 2019; Piao et al. 
2019; Qian et al. 2019; Sang et al. 2019; Xiang and Chen 
2019; Yoon et al. 2019; Zhang et al. 2019). Owing to the 
undesirable toxicity of anticancer agents to the healthy 
organs and tissues, the precise delivery of anticancer drugs 
to the tumor is an essential requirement. Tumors generally 
have leaky vasculatures and impaired lymphatic systems. 
Therefore, macromolecules or particles with higher molecu-
lar weights or having a particle diameter higher than the 
desired cut-off values can evade renal clearance and may be 
transported to the interstitial space of the tumor. The accu-
mulation of such particles or macromolecules in the tumor is 
known as the “enhanced permeability and retention (EPR)” 
effect (Maeda et al. 2000; Fang et al. 2011). The EPR effect 
has been widely used as a passive tumor targeting strategy 
for drug delivery (Maeda 2010; Bae and Park 2011). How-
ever, since the EPR effect has intrinsic limitations including 
insufficient targeting efficiency, active tumor targeting strate-
gies, primarily based on ligand–receptor interactions, have 
been adopted for improving the targeting efficiency (Danhier 
et al. 2010; Lammers et al. 2012).

Abstract Nanoparticles (NPs) have distinct pharma-
cokinetic (PK) properties and can potentially improve 
the absorption, distribution, metabolism, and elimination 
(ADME) of small-molecule drugs loaded therein. Owing 
to the unwanted toxicities of anticancer agents in healthy 
organs and tissues, their precise delivery to the tumor is an 
essential requirement. There have been numerous advance-
ments in the development of nanomedicines for cancer 
therapy. Physiologically based PK (PBPK) models serve 
as excellent tools for describing and predicting the ADME 
properties and the efficacy and toxicity of drugs, in combina-
tion with pharmacodynamic (PD) models. The recent pre-
liminary application of these modeling approaches to NPs 
demonstrated their potential benefits in research and devel-
opment processes relevant to the ADME and pharmacody-
namics of NPs and nanomedicines. Here, we comprehen-
sively review the pharmacokinetics of NPs, the developed 
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Numerous types of nanomedicines, including nano-sized 
particles and macromolecule–drug conjugates, have been 
developed for cancer therapy (Lee and Cho 2018, 2019; Lee 
et al. 2018; Chen et al. 2019; Kim et al. 2019). Liposomes 
(e.g.,  Myocet®,  Daunoxome®, and  Doxil®), polymers (e.g., 
 Oncaspar®), polymeric micelles (e.g., Genexol-PM®), pro-
tein-based nanoparticles (NPs; e.g.,  Abraxane®), and engi-
neered protein (e.g.,  Ontak®) have been clinically approved, 
while several other diverse candidates are currently in the 
clinical phase (Lammers et al. 2012). In fact, numerous 
diverse organic and inorganic material-based nanocarriers 
have been designed for the delivery of small chemicals, pep-
tides, proteins, and nucleic acids to the tumor (Petros and 
DeSimone 2010; Pereira et al. 2017; He et al. 2019; Kim 
et al. 2019; Lee et al. 2019). However, only a few of these are 
in the clinical phase or are clinically approved. The safety 
and efficacy of the developed nanomedicines should be suf-
ficiently guaranteed prior to its introduction to the clinical 
phase or clinical application.

Compared to intact free drugs, nanomedicines can exhibit 
new efficacy and toxicity issues, because the pharmacoki-
netic (PK) properties of active pharmaceutical ingredient 
(API) can be altered upon loading in NP formulations (Yuan 
et al. 2019). For instance, pegylated liposomal doxorubicin 
(DOX,  Doxil®) reduces the clearance mediated by reticu-
loendothelial system (RES), resulting in a marked increase 
in the exposure of the plasma and skin to DOX, compared 
to the exposure observed after the administration of free 
DOX (Gabizon et al. 2003). Owing to its cutaneous toxic-
ity, the maximal tolerated dose of  Doxil® (50 mg/m2 every 
4 weeks) is lower than that of free DOX (60 mg/m2 every 
3 weeks) (Vail et al. 1998). Furthermore, the accumula-
tion and toxicity of the NPs themselves and their excipients 
need to be determined. It is crucial to describe and predict 
the altered PKs, exposure–efficacy relationships, and unin-
tended toxicities during the development and clinical use of 
nanomedicines.

Physiologically based PK (PBPK) models are mathemati-
cal and mechanistic models that are built on the basis of 
the anatomical and physiological features of the human 
body and the physicochemical properties of the drugs dur-
ing the complicated processes of absorption, distribution, 
metabolism, and excretion (ADME; Nestorov 2003). A 
PBPK model separates the entire body into individual organ 
compartments (as building blocks) which are connected to 
each other by the circulatory system including the blood 
and lymph (Jones and Rowland-Yeo 2013). PBPK models 
can predict the mass-time profiles of drugs in individual 
organs, incorporate the different factors responsible for PK 
variability, and allow interspecies extrapolation (Nestorov 
2007). This model has been accepted by several regula-
tory agencies, including US Food and Drug Administra-
tion (FDA) and European Medicines Agency (EMA), for 

various drugs (Sager et al. 2015; Yoshida et al. 2017), and 
has also been attracting attention as a promising quantita-
tive tool for the assessment and regulation of nano-hazards 
(Seaton et al. 2010). Furthermore, PBPK models can be used 
to predict drug efficacy and toxicity when combined with 
pharmacodynamic (PD) models that relate drug exposure at 
the site of action to its pharmacological effects (Jones and 
Rowland-Yeo 2013). This article comprehensively reviews 
the pharmacokinetics of NPs, the developed PBPK models 
for anticancer drug-loaded NPs, and the PD models for anti-
cancer agents (Table 1).

Pharmacokinetics of NPs

When administered via extravascular routes, NPs can 
encounter presystemic clearance mechanisms including 
chemical/enzymatic degradation and direct removal via 
excreta such as the feces in oral dosing. The degradation of 
NPs at the dosing site can result in the release of the loaded 
APIs, and the APIs released go through their own disposi-
tion pathways (Yuan et al. 2019). The NPs that escape the 
presystemic clearance mechanisms may enter the systemic 
circulation after crossing various biological absorption bar-
riers, including the unstirred water layer and the gastrointes-
tinal epithelium in case of oral dosing (Lai et al. 2009). To 
date, however, most NPs have been investigated and devel-
oped for intravenous usage, and thus, this review focuses on 
the behavior of NPs following absorption. After entering 
the systemic circulation, the NPs are simultaneously dis-
tributed to and eliminated by certain organs and tissues. The 
processes of distribution and elimination of NPs are shown 
in Fig. 1.

The roles of organs in the distribution and elimination 
of NPs

Intravenously administered NPs are first delivered to the 
lungs by the venous blood flow, and subsequently to the 
other organs by the arterial blood flow. During this pro-
cess, each of the organs interacts with the NPs in their own 
characteristic manner; the NPs can be released, stored, 
metabolized, and excreted by organs. There are two major 
routes for the elimination of NPs in the body, the first is the 
RES, and the second route comprises hepatic metabolism 
and renal excretion (Wei et al. 2018). The RES, also known 
as the mononuclear phagocyte system (MPS), mediates 
phagocytosis and digestion of NPs, followed by excretion 
of the digested products, which causes a significant loss 
of the administered dose (von Roemeling et al. 2017). The 
other elimination route is mediated by the liver and kidney, 
which function as the major organs for the elimination of 
NPs. When NPs enter the blood stream, plasma proteins, 
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Table 1  PD models applied for anticancer agents

General form Exact model Drug/target cells References

dT

dt
= F(T) − G(E, T) (2) F(T) = kin

(

1 −
T

TC50+T

)

T,

G(E, T) = kinF ⋅ E ⋅ T + koutT or
G(E, T) = E ⋅ T + koutT (8–10)

• PF06463922 and PF06471402/
H3122 (non-small cell lung cancer) 
cells expressing EML4-ALK

• PF02341066/GTL16 (gastric carci-
noma) and U87MG (glioblastoma) 
cells

Yamazaki et al. 
(2015, 2008)

F(T) = kngT, G(E, T) = E ⋅ T (11) • GDC-0941/MCF7.1 (breast cancer) 
cells

Salphati et al. 
(2010)

F(T) = kin

(

1 −
T

EC50+T

)

T,

G(E, T) = kinF ⋅
ImaxC

IC50+C
T (12)

• TAK-441/PAN-04 (human pancre-
atic tumor) cells

Kogame et al. 
(2013)

F(T) =
kngT

[

1+
(

λ0

λ1
T
)Φ

]
1
Φ

,

G(T) = F ⋅ E ⋅ T (13)

• LY2157299/Calu6 (non-small 
cell lung cancer) and MX1 (breast 
cancer) cells

Bueno et al. (2008)

dTs

dt
= F

(

Ts

)

− ksrTs + krsTr − G
(

E, Ts

)

,
dTr

dt
= ksrTs − krsTr − kdegTr (14)

F
(

Ts

)

= kngTs , 

G
(

E, Ts

)

= kC ⋅ Ts,
EmaxC

n

ECn
50
+Cn Ts

 

(16)

• Vincristine, vinblastine, arabinosyl-
cytosine, and cyclophosphamide/
lymphoma and hematopoietic cells

• Uracil, Tegafur, and 5-fluorouracil/
Colon cancer

• Trastuzumab DM1 and brentuxi-
mab vedotin/–

• Paclitaxel/breast and ovarian cancer

Jusko (1973)
Sung et al. (2009)
Vaslaou et al. 

(2015)
Panetta (1997)

F
(

Ts

)

= kTs

(

1−Ts

Tm

)

,
 (16)

G
(

E, Ts

)

= kC ⋅ Ts or
EmaxC

n

ECn
50
+Cn Ts

F
(

Ts

)

= kngTs
 , (16)

G
(

E, Ts

)

= kC ⋅ Ts or
EmaxC

n

ECn
50
+Cn Ts

F
(

Ts

)

= kngTs , G periodic function
dT1

dt
= F

(

T1, T
)

− G
(

E, T1

)

, T1(0) = T(0),
dT2

dt
= G

(

E, T1

)

−
T2

τ
, T2(0)= 0,

dT3

dt
=

1

τ

(

T2 − T3

)

, T3(0)= 0,

⋮
dTn

dt
=

1

τ

(

Tn − 1 − Tn

)

, Tn(0)= 0,

T =
∑n

k = 1
Tk (15)

F
(

T1, T
)

=
λ0T1

[

1+
(

λ0

λ1
T
)Φ

]
1
Φ

,

,
G
(

E, T1

)

= kC ⋅ T1 or
EmaxC

n

ECn
50

+ Cn T1

(16–17)

• Paclitaxel and 5-fluorouracil/A2780 
(ovarian carcinoma) and HCT116 
(colon carcinoma) cells

• Brentuximab vedotin/L540cy 
(CD30+ Hodgkin’s lymphoma) 
and Karpas 299 (CD30+ anaplastic 
large cell lymphoma) cells

• Novel anticancer candidate/A2780 
(ovarian carcinoma) cells

• 5-Fluorouracil, cisplatin, doc-
etaxel, doxorubicin, etoposide, 
gemcitabine, irinotecan, paclitaxel, 
vinblastine, and vincristine/A2780 
(ovarian carcinoma) cells

• Aflibercept and DOX/HL-60 (acute 
myeloid leukemia) and HEL (acute 
myeloid leukemia)-luciferase cells

Simeoni et al. 
(2004)

Shah et al. (2012)
Magni et al. (2006)
Rocchetti et al. 

(2007)
Fetterly et al. (2013)

F
(

T1, T
)

= kngT
2

3

1 , 
G
(

E, T1

)

=
1

τ
ET

2

3

1

(16), (18)

• Trastuzumab DM1/MMTV-HER2 
Fo5 (HER2+ breast cancer) and 
BT474 EEI (HER2+ breast cancer) 
cells

Jumbe et al. (2010)

F
(

T1, T
)

=
0.693

DTtumor T1

G(E, T1) =
EmaxOcc

n
tub

ECn
50

+ Occn
tub

T1 (19–20)

• Trastuzumab–valine–citrulline–
monomethyl auristatin E/N87 
(high-HER2) and GFP-MCF7 (low-
HER2) tumor

Singh et al. (2019)
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Table 1  (continued)

General form Exact model Drug/target cells References

dT

dt
= F(T) − Mn ⋅ G(T), T(0) = T0,

dM1

dt
=

1

τ

(

E − M1

)

,

dM2

dt
=

1

τ

(

M1 − M2

)

,

⋮

dMn

dt
=

1

τ

(

Mn − 1 − Mn

)

 (21)

F(T) = kngT

G(T) = T (11)
• Methotrexate/Ehrlich ascites and 

sarcoma 180 cells
• RG7388/SJSA, RKO, HCT116, 

H460, A375, SK-MEL-5, SW480, 
MDA435, and HeLa cells

• Doxorubicin and porphyrin-phos-
pholipid (included in liposome)/
pancreatic adenocarcinoma

Lobo and Balthasar 
(2002)

Higgins et al. 
(2014)

Luo et al. (2019)

F(T): exponential, logistic, expo-
nential–linear, G(T) = T

• Paclitaxel/Colon-26 tumor Yang et al. (2010)

F(T) = kngT
(

circ0

circ

)γ

 (22)
G(E, T) = kngT ⋅ E

(

circ0

circ

)γ

+
1

τ
T

• Docetaxel, paclitaxel, etoposide, 
2′-deoxy-2′-methylidenecytidine, 
irinotecan, and vinflunine/leukocyte 
and neutrophil

• Nanoparticle albumin-bound-pacli-
taxel/neutropenia

Friberg et al. (2002)
Chen et al. (2014)

F(T) = 0, G(E, T) = M2T (23) • Free and liposomal doxorubicin/
BT4C (rat glioma) and Caki-2 
(renal clear cell carcinoma) cells

Soininen et al. 
(2016)

Model switched by time greater 
than 24 h

• Paclitaxel with everolimus and 
dasatinib/JIMT-1 (HER2+ breast 
cancer) cells

Ande et al. (2018)

d

dt
(n(a, t)) =

�n

�t
+

�n

�a

= −μ(a, C, T)n , 24
n(0, t) = ∫ ∞

0
λ(a, c, T)n(a, t)da 25

The model can be reduced by 
phase nonspecific model, indirect 
response models, SDM, CDM, 
and FDM

Byun and Jung 
(2019)

Belair (1995)
Ahmed et al. (2012)
Angstmann et al. 

(2013, 2017)

Fig. 1  Graphical representation 
of the ADME of intravenously 
administered NPs
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called “opsonins”, and macrophages bind to the surfaces of 
the NPs, affecting their cellular uptake and clearance (Mir-
shafiee et al. 2016). The binding of opsonins to NPs results 
in the formation of dynamic protein coronas, which is called 
as “opsonization” (Gustafson et al. 2015). The physicochem-
ical characteristics of NPs are therefore altered upon their 
entry into the systemic circulation (Mahmoudi et al. 2016). 
The spleen is a part of the MPS, and being structurally sim-
ilar to a large lymph node, its primary function includes 
filtering blood (Mebius and Kraal 2005). The nonspecific 
binding and uptake of NPs can occur in the spleen, primar-
ily in the dense capillary beds and phagocytic regions that 
are highly abundant in macrophages (Hoshyar et al. 2016). 
A few studies have reported that nondeformable polymer-
decorated NPs of sizes greater than 150 nm are highly likely 
to get filtered by the spleen (Moghimi et al. 2001, 2005). 
The major function of the liver involves the metabolism 
(biotransformation) of xenobiotic substances. The hepatic 
venous sinus cortex is highly abundant in Kupffer cells that 
are specialized macrophages with potent phagocytic activ-
ity (Helmy et al. 2006), and represents the largest RES in 
the body. The discontinuous endothelium of sinusoids in 
the liver allows the transport of NPs from the sinusoids to 
the hepatocytes, thus enhancing the hepatic distribution and 
subsequent metabolism of NPs (Wisse et al. 2008; Poisson 
et al. 2017). Apart from the aforementioned elimination 
routes, xenobiotic particles can be retained or eliminated 
by other organs as well. For instance, the boundaries of the 
pulmonary capillary vessel boundaries can retain xenobiotic 
particles of sizes greater than 1000 nm during the first pass 
in the lung following intravenous administration (Moghimi 
et al. 2012).

Distribution

Following their entry into the systemic circulation, NPs 
are distributed into various organs and tissues depending 
on their sizes and interactions with the different compo-
nents of the body (Sonavane et al. 2008). A previous study 
suggested that micro-sized metal particles exhibit a longer 
residence time of approximately two weeks in the spleen 
compared to that of NPs constituted of the same metal 
which completely disappeared from the body in the same 
period (Faraji and Wipf 2009). Generally, gold NPs of 
larger sizes tend to accumulate in the liver and spleen, 
while those of smaller sizes tend to accumulate in the kid-
ney (Ravindran et al. 2018). The accumulation of NPs in 
the tissues also depends on the blood supply to the tissues 
and the permeability through the vascular endothelium 
and tissue cells (Li et al. 2010). The effect of the blood 
supply on the tissue distribution of NPs is determined by 
comparing the rate of perfused blood flow and the rate of 
NPs’ transport from the blood into the tissues. When the 

blood flow rate is limited, or when the permeation rate 
into the tissue is rapid, the blood supply can be the rate 
determining step of NPs’ distribution process (Li et al. 
2010). Since the effective pore size in normal endothelium 
is approximately 5 nm (Choi et al. 2007), NPs of diameter 
greater than 5 nm barely penetrate the relatively tight vas-
cular endothelium present in organs such as the brain and 
muscles. NPs of diameter less than 60 nm are more readily 
distributed into tissues with fenestrated vascular endothe-
lium (existing in gland, kidney, and digestive mucosa with 
fenestrae of about 60 nm) and into tissues with discontinu-
ous vascular endothelium (existing in spleen, liver, and 
bone marrow with pores of 50–100 nm) (Yuan et al. 2019). 
Following their entry into the tissues, NPs may reside in 
the extracellular matrix, remain attached to the surface of 
tissue cell, can be transported into the intracellular space, 
or drained into the lymph nodes (often by transportation 
mediated by the tissue-resident macrophages) (Longmire 
et al. 2008; Li et al. 2010).

Numerous NPs have been designed in the past decade for 
tumor-targeted delivery of small-molecular anticancer and 
diagnostic agents. NPs can be passively tumor-targeted by 
the EPR effect, which is closely associated with the abnor-
mal physiological characteristics of tumors, including a 
limited lymphatic drainage and wide intercellular gaps of 
100 to 4700 nm in the vascular endothelium (Greish 2012; 
Wilhelm et al. 2016). In order to enhance tumor targeting 
efficiency through the EPR effect, NPs are designed to reside 
for a prolonged period in blood circulation by avoiding the 
RES (Li et al. 2010). However, there is no consensus on 
the optimal size of NPs for ensuring the EPR effect, and it 
is currently known that the EPR effect is dependent on the 
stage, type, and size of the tumor (Prabhakar et al. 2013; 
Perry et al. 2017). Additionally, several factors, including 
local inflammation, interstitial fibrosis, vessel leakiness, and 
contraction of the interstitial space, can cause an increase 
in the interstitial fluid pressure in the tumor, which can be 
10- to 40-folds higher than that of normal tissues (Heldin 
et al. 2004; Yuan et al. 2019). This creates a pressure gradi-
ent against the convective transport of NPs from the blood 
into the tumor, which hinders the EPR effect from working 
efficiently for NPs (Nichols and Bae 2014). Moreover, NPs 
can be trapped by the tortuous semisolid extracellular matrix 
following the extravasation of blood vessels (Taurin et al. 
2012; Wilhelm et al. 2016). The NPs in the blood circula-
tion can also be retained and eliminated by other organs of 
the RES, which generally exhibit a higher uptake capac-
ity than the tumors (Yuan et al. 2019). It is therefore not 
surprising that the targeting efficiency of NPs, that is the 
portion of the dose reaching the tumor, reported by previous 
studies between 2006 and 2016 was estimated to be only 
0.7% (median) (Wilhelm et al. 2016). In order to enhance 
tumor cell uptake, NPs can be actively targeted to the tumor 
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by decorating them with targeting ligands (i.e., antibody, 
peptide, or small molecules) which are able to recognize 
and interact with the cell surface receptors in the tumor 
(Brannon-Peppas and Blanchette 2004).

Metabolism

The metabolism of NPs is broadly defined as any process 
that alters the original compositions and/or physicochemi-
cal properties of NPs (Li et al. 2010). According to this 
definition, the decomposition, aggregation, opsonization, 
and release of the loaded drug fall under NPs’ metabolism 
(Yuan et al. 2019). This review aims to focus on the deg-
radation of NP composites. Depending on their composi-
tion, NPs can be uptaken and degraded in the lysosomes 
of macrophages of RES (Zhang et al. 2016). NPs can also 
undergo hydrolysis in the aqueous environment of bio-
logical systems. Numerous NPs have been prepared with 
natural polymers (e.g., chitosan and hyaluronic acid), syn-
thetic polymers (e.g., poly(lactic-co-glycolic acid) and 
poloxamer), and proteins (e.g., albumin). Generally, the 
degradation rate of natural polymers in biological systems 
can be faster than that of synthetic polymers (Li et al. 
2010). Therefore, the metabolism rate of polymeric NPs 
can be controlled by the molecular weight and composi-
tion of the polymers used (Shive and Anderson 1997). 
However, various inorganic NPs, prepared with gold, 
iron oxide, quantum dots, silica, and silver, are known 
to be very stable and hardly undergo metabolism in the 
body. Thus, these NPs can persist in the body for a long 
period of time, potentially leading to their unintended 
accumulation, which results in NP-associated toxici-
ties (Yang et al. 2007). A previous study reported that 
polymer-coated quantum dots can remain accumulated in 
mice over a duration of 2 years (Ballou et al. 2007). The 
prolonged residence of NPs in macrophages can result 
in the fusion of macrophages to form dense fibrous cap-
sules (Taurin et al. 2012). A previous study reported the 
development of sarcoma in rats due to phagocytosis and 
inflammation associated with cobalt NPs (Hansen et al. 
2006). Additionally, the NPs themselves can modulate 
the functions of the cytochrome P450 (CYP) enzymes 
that play a major role in the metabolism of most drugs. 
For instance, a previous study investigating the effect of 
porous silicon NPs on the activity of four CYP isoforms 
(CYP1A2/2A6/2D6/3A4) in human liver microsomes 
reported that the enzymatic activity of CYP2D6 was the 
most vulnerable to inhibition by the porous silicon NPs, 
while aminopropylsilane-modified silicon NPs inhibited 
the activity of CYP2D6 by 80%, which was independent 
of the NP concentration (Ollikainen et al. 2017). These 
results can be attributed to the typical enzyme inhibi-
tion mechanisms, that is, the competitive, uncompetitive, 

and noncompetitive modes of inhibition, the electrostatic 
interactions of NPs with salts, and/or the nonspecific 
adsorption of lipids onto the NP surface (Ollikainen et al. 
2017).

Excretion

The excretion of NPs refers to the transfer of intact NPs out 
of the body, which depends on their physicochemical proper-
ties (Longmire et al. 2008). It is well known that the kidneys 
and liver play major roles in the excretion of NPs (Yuan et al. 
2019). The renal excretion of NPs are dependent on their 
size, shape, and surface charge. The kidney glomeruli have 
three layers, i.e. an endothelium with fenestrae (70–90 nm), 
glomerular basement membrane (with 2–8 nm pores), and 
epithelium with filtration slits (4–11 nm). Thus, NPs with 
a hydrodynamic diameter less than 6 nm can pass through 
glomerular capillary wall in theory (Liu et al. 2013). Choi 
et al. reported that > 50% of injected quantum dots with sizes 
below 5.5 nm can be cleared into the urine 4 h post injection, 
while quantum dots with the size of 8.65 nm mainly accu-
mulated in the liver (Choi et al. 2007). As the capillary wall 
of the glomeruli is negatively charged, positively charged 
NPs with a hydrodynamic diameter of 6–8 nm can pass the 
kidney filtration barrier, whereas the filtration is difficult 
for the negatively charged or neutral NPs with the same size 
(Ohlson et al. 2001; Liu et al. 2013). Additionally, the size 
is also an important factor for kidney filtration owing to the 
rectangular shape of the glomerular basement membrane 
pores. Single walled large linear carbon nanotubes with a rod 
length of 100–1000 nm and diameter of 0.8–1.2 nm can pass 
through the kidney with a high efficiency of 65% injected 
dose excreted in 20 min post injection (Ruggiero et al. 2010). 
The liver can function as a major organ for the excretion 
of some NPs. A previous study demonstrated that silica 
NPs of sizes 50, 100, and 200 nm were excreted in both the 
urine and bile (Cho et al. 2009). Furumoto and coworkers 
also reported that polystyrene NPs can be uptaken into both 
hepatocytes and Kupffer cells, and that approximately 4% 
of the intravenous dose of NP administered in the study was 
excreted in the bile in the intact form within 24 h (Furumoto 
et al. 2001).

PBPK models for anticancer nanomedicines: 
principles and applications

PBPK models of NPs

Currently, a PBPK model is recognized as a powerful tool 
for describing and predicting PK properties of chemicals 
and biologics in pharmaceutical research and development 
(Zhao et al. 2012; Li et al. 2017). However, the application 
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of PBPK models to NPs is complicate and challenging 
owing to several complex factors, including opsonization, 
EPR effects, RES-mediated clearance, API release kinetics, 
and changes in the physicochemical properties of NPs, all 
of which need to be taken into account during modeling (Li 
et al. 2010). The application of PBPK modeling for study-
ing the ADME of NPs has gained increasing attention in the 
recent decade. Therefore, studies on the PBPK models are 
limited in literature; however, some reports provide pertinent 
aspects for the PBPK models of NPs loaded with anticancer 
agents. Some examples of the application of PBPK models 
for the research and development of anticancer nanomedi-
cines are discussed hereafter.

Application to anticancer nanomedicines

The free drug is released from the nanostructures following 
the administration of nanomedicines. Thus, PBPK modeling 
for NPs should simultaneously describe the disposition of 
both the encapsulated drug in NPs and the free (released) 
drug, together with the in vivo drug release kinetics. Dong 
and coworkers developed a PBPK model for nanocrystals 
(< 210 nm) loaded with the anticancer agent SNX-2112 fol-
lowing intravenous administration in rats (Dong et al. 2015). 
Nanocrystals, also can be regarded as nanosuspensions, are 
colloidal systems comprising nano-sized pure drug parti-
cles dispersed in water, which can be further stabilized by 
polymers or surfactants (Rabinow 2004; Sudhakar et al. 
2014). In the first stage, a whole body PBPK model consist-
ing of liver (li), spleen (sp), intestine (in), lung (lu), kid-
ney (kd), heart (ht), and remainder (rm) (representing all 
other tissues) was constructed for the nonparticulate drug 
dissolved in 45% propylene glycol. SNX-2112 was primar-
ily eliminated by the liver (the apparent hepatic clearance, 
 CLh), and the tissue/plasma concentration ratios  (Kpti) of 
SNX-2112, plasma flow  (Qti) in the heart, intestine, kidney, 
and spleen were experimentally determined. In the second 
stage, the PBPK model thus developed for nonparticulate 
drug was used to construct a PBPK model that additionally 
incorporated parameters for the nanoparticulate drug in the 
liver, spleen, and plasma compartment, for distinguishing 
the nonparticulate (D) from the nanoparticulate (N) drug. 
The parameters describing the uptake of the nanoparticulate 
drug into the liver  (Upli) and spleen  (Upsp) were included 
in the model for describing the significantly higher uptake 
of the nanoparticulate drug than the cosolvent formulation. 
The first-order drug release process was also included in the 
plasma, liver, and spleen compartment. The model param-
eters specific for the nanoparticulate drug, including  Upsp, 
 Upli, and  Krel were estimated by simultaneous fitting to the 
experimental data. “C” and “V” denote the concentrations 
of the nonparticulate SNX-2112 and the volume in each 

compartment, respectively. “CNano” denotes the concentra-
tions of particulate SNX-2112 in each compartment. The 
schematic diagram of the PBPK model for the nanoparticu-
late drug is shown in Fig. 2, and its mass balance equations 
are provided as below.

Gilkey and coworkers reported the application of the 
PBPK models for interpreting the biodistribution of fluo-
rescence dye-labeled NPs as a surrogate for dexametha-
sone-loaded polymeric NPs (< 110 nm) in leukemia ther-
apy (Gilkey et al. 2015). The simulated NP concentration 
profiles in the spleen, kidney, and liver exhibited initial 
spikes, whereas those in the plasma declined rapidly, and 
were consistent with in  vivo data previously reported 
by the group. Notably, the simulation data revealed that 
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approximately 50% of the injected dose of NPs could be 
accumulated in the tissues, justifying the inclusion of an 
additional compartment in the PBPK model. However, 
the additional compartment that was simultaneously con-
nected to the spleen, kidney, and liver was not physiologi-
cally relevant (Li et al. 2017).

Opitz and coworkers developed a PBPK model for 
describing the biodistribution and elimination of molecular 
imaging NPs comprising contrast agents and insulin-like 
growth factor 1 (IGF-1) analogs that were complementary to 
cancer genes in tumor-bearing mice (Opitz et al. 2010). The 
NPs exhibited a higher uptake into the tumors than into the 
surrounding normal tissues. For PBPK modeling, the blood 
compartment was split into venous and arterial blood com-
partments, and permeation-limited tissue compartments for 
the intestine, liver, spleen, lung, heart, kidney, muscle, and 
tumor were incorporated. The other tissues, including the 
skin, adipose, brain, and bone, were lumped into one resid-
ual compartment. The fitting of the experimentally obtained 
tissue distribution data to the PBPK model reached conver-
gence only when the dose of NPs bound to the circulating 
IGF-binding proteins was set to 10–20% of the administered 
dose. This suggested that the previously reported imaging 
trials in mice used higher doses of NPs than necessary.

Mager and coworkers reported the application of PBPK 
modeling for characterizing the biodistribution and elimina-
tion of gold/dendrimer composite nanodevices (5 nm and 
bearing positive/neutral/negative charges, 11 nm and bearing 
negative charge, and 22 nm and bearing positive charge) in 
mice with melanoma (Mager et al. 2012). It was assumed 
that the NPs were exclusively eliminated by biliary and renal 
excretion in the PBPK model. Furthermore, the permeation-
limited tissue compartments were incorporated, similar to 
the study by Opitz and coworkers. The results of the study 
demonstrated that the neutral and negatively charged NPs 
had similar distribution profiles. The PBPK model could 
also explain the mechanisms of NP elimination by the kid-
ney and RES (especially in the liver and spleen), which var-
ied according to surface charge and particle size. However, 
no quantitative correlation was found between the charge/
size and model parameters.

In addition to the whole-body PBPK models described 
above, more simplified (hybrid or minimal) PBPK mod-
els have also been used, especially for the PK/PD models 
of anticancer drug-loaded liposomes. The minimal PBPK 
model is an intermediate concept between the whole-body 
PBPK and conventional mammillary compartmental mod-
els, in which major physiological properties derived from 
the whole-body PBPK models are lumped (Cao and Jusko 

Fig. 2  The whole-body PBPK model for SNX-2112 nanocrystals. Schematic diagram was cited from the literature with slight modification 
(Dong et al. 2015) and its reuse was approved by the publisher. ht heart, li liver, sp spleen, lu lung, kd kidney, in intestine, rm remaining tissues, 
Krel the first-order rate constant for the release of nonparticulate drug from the nanoparticulate form, Upli, Upsp apparent clearance for NP uptake 
into the liver and spleen, Qha the blood flow of the hepatic artery, CLh hepatic clearance, Q plasma flow, Kp,ti tissue/plasma partition coefficient, 
Qti plasma flow, Vti organ volume, Qco plasma cardiac output, C concentration of SNX-2112 in each compartment, V volume of each compart-
ment, C, CNano concentrations of nonparticulate and particulate SNX-2112, respectively, in each compartment



88 J. H. Byun et al.

1 3

2012). In the PK/PD model proposed by Harashima et al. 
(1999a, b), the blood compartment was employed as a con-
ventional compartment model for describing the systemic 
PK properties of liposomal DOX and free DOX. The tumor 
compartment was divided into capillary, interstitial, and 
tumor cell sub-compartments, and linked to the blood com-
partment by tumor blood flow. Drug release, tissue distribu-
tion, and intra-tumor disposition were described by the first 
order rate constants.

Pharmacodynamic models for anticancer agents: 
theories and applications

Pharmacodynamics is defined as “what the drug does to 
the body”, and describes the time course of the effects of 
the drug associated with exposure to response (Lees et al. 
2004). Levy and coworkers described pharmacodynamics 
as the study of the correlation between the effects and drug 
concentration (Levy 1964). Simulations of PD models can 
provide information about the optimal dose regimen and 
various efficacy and safety metrics across all phases. Popu-
lation pharmacodynamics assesses the profile of the effects 
of a drug at different concentrations at the population level. 
These evaluations are performed using the (non-linear) 
mixed-effect model (Mould and Upton 2013).

Numerous clinical trials have limited sampling due to eth-
ical issues, costs, and reproducibility. Particularly, design-
ing the first-in-human study for anticancer drugs is often 
more serious than that of other drugs, and should be properly 
controlled while suppressing the side effects arising from 
the toxicity of anticancer drugs. Besides, since the thera-
peutic index of anticancer drugs is narrow, many preclini-
cal studies need to be performed prior to their application 
in humans. In this regard, a PK/PD model is an efficient 
and robust support throughout all the phases. According to 
the guidelines of the FDA for anticancer drugs, the goal of 
selecting the starting dose is to identify a reasonably safe 
dose that is expected to have pharmacological effects. PD 
modeling can also be represented by a well-controlled clini-
cal study that provides substantial evidences regarding the 
effects of a drug, and which is used to investigate the clini-
cal endpoints and accepted surrogates, or add weight to the 
evidences supporting the efficacy of the mechanism of action 
of the drug. PK/PD modeling helps to plan pharmacological 
response relationships and can explain the differences in the 
effects of a drug in different nonclinical species (Macheras 
and Iliadis 2006).

PD models and population PD models have been reviewed 
in the following sections. It is important to note that tumor size 
is frequently used as a representative biomarker (Gibbs 2010). 
We have focused on those models that use continuous PD 
data, which are derived using PK models from a continuous 

drug concentration over time. In this review, the PD models 
are divided into six categories. The first category comprises 
the untreated (tumor) growth model, which is developed for 
systems that are not treated with the drug. The phase non-
specific models represent the second category of models. In 
these models, the effect function for the drug concentration 
is treated as an independent variable and the drug effect is 
treated as a dependent variable. In particular, the relationship 
between the drug concentration and the delay in the effect of 
the drug is reviewed in greater detail. The third category of 
models includes the phase-specific models. In these models, 
the tumor cells are categorized into two types, which are sensi-
tive or resistant to drugs. The cell distribution models (CDMs) 
represent the fourth category of models, which describe the 
inhibition of proliferated tumor cells by drugs. The signal dis-
tribution models (SDMs) constitute the fifth category of mod-
els, which describe the delay in tumor inhibition owing to sig-
nal transduction processes. Finally, an age-structured model, 
which considers the continuous age when drug molecules 
enter and leave the tumor compartment, is discussed herein.

Fig. 3  a Phase nonspecific model: growth of tumor cells in the 
absence of drugs. b Inhibition of tumor cells by drug effect function. 
c Drug binds the receptor (R) by mass action law, resulting in the for-
mation of the DR complex. The effect of the drug depends on DR. 
d The response by the transit compartment with a delay in the mean 
retention time (1/τ) following drug administration. e Phase-specific 
model: tumor cells are categorized as drug-sensitive and drug-resist-
ant. f CDM: the total tumor of the tumor cells is expressed as the sum 
of the number of tumor cells in all the compartments, taking into 
account that only a fraction of the tumor cells is inhibited by the drug. 
g SDM: the reduction in the number of tumor cells may be delayed by 
the signal transduction process triggered by the drug
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Untreated tumor cell growth models

A tumor cell growth model for systems that are not treated 
with the drug (Fig. 3a) is represented by

where F represents a family of continuously differentiable 
functions and is called net growth. As discussed hereafter, 
the determination of F without linear growth (kT) depends 
on how rapidly the tumor reaches carrying capacity  Tm.

Several models have been constructed by different 
authors for describing the proliferation of tumor cells. In 
the most basic model, the tumor cells are considered to 
grow exponentially. In other words, the rate of change in 
the number of tumor cells (or sizes) is proportional to the 
population, and is represented by the following equation:

where k represents the first order growth constant. Bissery 
and coworkers used the exponential model for evaluating 
growing tumor cells (Bissery et  al. 1996). The authors 
observed that intravenous CPT-11 is highly active against 
pancreatic ductal adenocarcinoma and was more potent than 
the other drugs studied therein. Harashima and coworkers 
developed a physiological model for free DOX and liposo-
mal DOX for clarifying their antitumor efficacy in tumor 
tissues (Harashima et al. 1999a). They assumed that tumor 
cells grow exponentially unless the DOX is encapsulated in 
liposomes. Luo and coworkers described a semi-mechanistic 
PK–PD model for exploring the antitumor effects of DOX 
(Luo et al. 2019). The study assumed that pancreatic adeno-
carcinoma grows exponentially without DOX treatment. 
Kogame and coworkers used the model for xenograft mice 
with human pancreatic tumors in the absence of TAK-441 
administration (Kogame et al. 2013).

The logistic model assumes that tumor cells grow expo-
nentially; however, tumor growth is limited by the carry-
ing capacity, that is the maximum number of tumor cells 
owing to the competition for nutrients due to an increased 
population. The model is represented by the equation:

where  Tm represents the carrying capacity. The mathemati-
cal interpretation of the model is that the rate of change of 
lnT  is proportional to the linear function 1 − T/Tm . Ribba 
and coworkers have formulated a model for analyzing tumor 
progression in xenograft nude mice with colorectal adeno-
carcinoma cells while Spratt and coworkers employed the 
exponential and the generalized logistic models for fitting 
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= F(T), T(0) = T0,
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= kT

(
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T
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,

data using least-squares for breast cancer, of which the lat-
ter model appeared to be most suitable for fitting the data 
(Spratt et al. 1993; Ribba et al. 2011). The generalized logis-
tic model is represented by

The Gompertz model is represented by a sigmoidal 
curve that fits growth data similar to the logistic model, 
but is different from the logistic function, in that the two 
asymptotes are symmetrically approached by the curve. It 
was originally designed for human mortality but is also 
applied to the growth of cancer cells. The model is repre-
sented by the equation:

The first comparison between the model for proliferative 
tumor cells and the exponential model was provided by 
Laird (1964). Norton and coworkers used the model to char-
acterize patterns of deviation from normal growth, which 
appears in response to treatment (Norton and Simon 1977). 
Barbolosi and coworkers used the model for optimal dos-
ing computations and Tjørve and coworkers first proposed 
reviewing the existing reparameterizations and models, for 
discussing their usefulness, and presented a modified form 
of the Gompertz model (Barbolosi and Iliadis 2001; Tjorve 
and Tjorve 2017).

The von Bertalanffy model is a generalization of the 
above equations that can be derived by a suitable assump-
tion (by adjusting a, b, and γ), and is represented by

where γ determines the cellular proliferation. This model 
assumes that growth is proportional to the surface area, 
but also considers the decrease in tumor sizes due to cell 
death (Herman et al. 2011). The value of γ is usually set to 
2/3. Guiot and coworkers explored the growth extension of 
solid tumor cells, and Herman and coworkers constructed 
a quantitative and predictive framework for understanding 
the characteristics of tumor growth and vascularization, 
which can be viewed as the application of allometric theory 
to tumor growth modeling (Guiot et al. 2003; Herman et al. 
2011). Murphy and coworkers presented the results of vari-
ous growth models for highlighting the prediction of tumor 
growth in the presence and absence of chemotherapy (Mur-
phy et al. 2016). When b = 0, the model is called power-
law, which demonstrates that tissue proliferation tissue is 
proportional to  Tγ. In particular, 0 < γ < 1 can be interpreted 
by fractions of the proliferative tissue. The strategy for 
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analyzing the tumor growth curve is discussed in detail by 
Dethlefsen et al. (1968).

The exponential–linear growth model is a combination 
of the exponential and linear functions and is represented as

where  Tth represents the threshold tumor size at which 
growth switching occurs. If λ0Tth = λ1, then for a sufficiently 
large Ф, the system can be simplified as

Simeoni and coworkers used this model instead of the 
Gompertz model for focusing on the exponential and linear 
stages for determining untreated tumor growth in animals 
(Simeoni et al. 2004). The untreated tumor growth model 
is also discussed in the study by Benzekry and coworkers 
(Benzekry et al. 2014).

Drug effect function E(C)

The changes in the profiles of tumor size over time 
can be expressed by tumor growth and inhibition with 
tumor–drug interactions (Fig. 3b), represented by the fol-
lowing equation:

where F has been described in Eq. (1) and G represents the 
drug-induced shrinkage. We also assume that G is a fam-
ily of continuously differentiable functions. Here, E = E(C) 
is an effect function which is represented by ratio of the 
drug effect to the drug concentration C. The concentra-
tion–effect relationship for the drug is based on receptor 
theory (Kenakin 2004), where the drug (C) binds to the 
receptor (R) resulting in a drug–receptor complex (CR), as 
shown in Fig. 3c. Here,  kon and  koff represent the associa-
tion and dissociation constants, respectively. Additionally, 
the dissociation rate constant  kD is defined as  kD = koff/kon. 
It therefore follows that dCR/dt = konC ⋅ R − koffCR. The 
theory of chemical equilibrium states that the ratio of R to 
CR is a function of C and  kD. We can therefore say that R/
CR = kD/C which results in dCR/dt = 0. If we define the total 
receptor by  Rtot = CR + R and  Rtot is supposed to constant, 
then
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(2)
dT

dt
= F(T) − G(E, T),

It is therefore possible to state that

If E is propositional to the CR complex, then

where  Emax represents the maximum concentration, and 
 EC50 represents the concentration at which E is 50% of  Emax. 
The equation can be revised and generalized:

where n represents the number of drug molecules that bind 
to each receptor. In application, n is mainly used to improve 
the fit of the data and it is called a sigmoid constant (Upton 
and Mould 2014). If C is much smaller than  EC50, then 
E = EmaxC/EC50 = slope·C, which leads to a linear concen-
tration effect. If there is a baseline  (E0) in the drug effect, 
then E = E0 ± Edrug or E = E0(1 ± Edrug), where

Drug concentration can be also measured at the site of action 
(within tumor cells) and not in the plasma. In this case, there 
is the temporal difference between the blood and the site of 
action (Sheiner et al. 1979), and the concentration of the 
drug at the target site depends on the PK profile of the drug. 
Numerous studies have discussed the additive, synergistic, 
and antagonistic effects of two or more drugs used in com-
bination (Nieuwenhuijs et al. 2003; Bouillon et al. 2004; 
Friberg et al. 2009; Chang et al. 2011).

Indirect (or turnover) response models are suitable if 
the delay between drug administration and effect is pro-
longed (Nagashima et al. 1969; Dayneka et al. 1993; Felm-
lee et al. 2012). The rate of change in the effect function 
depends on the rate of synthesis  (kin) and the rate of deg-
radation  (kout) and is represented as:

If both  kin and  kout are independent of E, Eq. (6) is called 
a basic response model. There are four types of models 
describing the stimulated and inhibited rates of synthesis, and 
the stimulated and inhibited rates of degradation. Therefore, 
the rates of synthesis and degradation can be represented 
by  kin(E) = kin,0(1 ± Edrug) and  kout(E) = kout,0(1 ± Edrug), 
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respectively, where  Edrug is derived from Eq. (5) and  kin,0 and 
 kout,0 are the rate constants. Minami and coworkers used the 
model for fitting data pertaining to leukopenia treated with 
paclitaxel (PAC; Minami et al. 1998). Yamazaki and cow-
orkers investigated the inhibition of anaplastic lymphoma 
kinase (ALK) phosphorylation in tumor cells by fitting 
the plasma concentrations of ALK inhibitors to the model, 
along with a hypothetical modulator for accounting for the 
rebounds observed in ALK (Yamazaki et al. 2015).

The indirect response models can be extended by incor-
porating additional compartments with the mean retention 
time (1/τ), as shown in Fig. 3d and are represented as:

The model is advantageous when the delay between drug 
infusion and observable effect is long. Patient leukocyte 
and neutrophil data obtained after the injection of doc-
etaxel, PAC, and etoposide are used in this model, and the 
model could fairly described myelosuppression in a previ-
ous study (Friberg et al. 2002). Zamboni and coworkers 
also compared the PD model of other drugs with immediate 
effects (Zamboni et al. 2001). When modeling the myelosup-
pressive effects of anticancer agents, parameters describing 
the production and destruction of the target cells should be 
incorporated. PD measurements of chemotherapy-induced 
neutropenia during the entire treatment cycle can provide 
important information. In a previous study, a PD model 
was developed for comparing the temporal course of the 
neutrophil survival fraction in children to that of nonhuman 
primates as a potential preclinical model of neutropenia, fol-
lowing the daily administration of topotecan for 5 days at 
21 day intervals. The profile of drug response at different 
concentrations is further discussed somewhere (Mould and 
Upton 2013).

Phase‑specific and nonspecific tumor growth models

Tumor growth inhibition models (TGM) describing tumor 
inhibition by drugs can be classified as phase-nonspecific 
or phase-specific models. These models are subdivided 
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on the basis of the presence or absence of any delay in 
tumor size inhibition. The phase-specific models, as shown 
in Fig. 3e, assume that cancer cells are only sensitive to 
antitumor agents at a certain stage of the cell cycle. These 
models may include transit compartments to account for 
the delay between drug administration and tumor inhibi-
tion. In contrast, phase-nonspecific models do not gener-
ally incorporate transit compartments. Phase-nonspecific 
models are represented as:

where F(T) may be an exponential, logistic, Gompertz, von 
Bertalanffy, power law, or exponential–linear model, as pre-
viously discussed. G(E, T) is commonly represented as:

Yamazaki and coworkers used the model for studying the 
relationship between c-Met phosphorylation and antitumor 
efficacy of an anticancer agent (Yamazaki et al. 2008). The 
TGM of the control group was represented in the study by 
the following equation:

and the response of the tumor size to the anticancer agent 
(PF02341066) followed this equation:

 In addition, the inhibitor model for ALK was represented 
(Yamazaki et al. 2015) by:

where F(T) is used to model logistic or exponential growth. 
Salphati and coworkers characterized the relationships 
between the plasma concentration of the anticancer agent 
GDC-0941 and the reduction in tumor size in a MCF7.1 
breast cancer xenograft mouse model (Salphati et al. 2010). 
The model is represented by the equation:

where E = E(C) has been described in Eq. (5). Wong and 
coworkers used the same model for describing the efficacy 
of the anticancer agent erlotinib in breast cancer cells in 
xenograft mice (Wong et al. 2012). Kogame and coworkers 
explored the possibility of establishing the relationships of 
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the PK of the anticancer agent TAK-441 with the responses 
of Gli1 mRNA in tumor-associated stromal or skin cells 
and with the antitumor effect upon hedgehog inhibition 
(Kogame et al. 2013). The model is represented by the fol-
lowing equation:

 The  IC50 of a drug represents the concentration at which 
50% of the maximum inhibition  (Imax) is achieved. Bueno 
and coworkers studied the plasma levels of galunisertib, the 
percentage of pSmad in tumor cells, and the tumor size, for 
establishing a PD model represented by the equation (Bueno 
et al. 2008):

where E represents the indirect response. A two-compart-
ment model was used to account for the signal transduction 
of pSmad that provides the signal for inhibitory growth.

In the phase-specific model, as shown in Fig. 3e,  Ts and 
 Tr represent the drug-sensitive and drug-resistant tumor 
cells, respectively. If  kdeg represents the rate of cell death 
and  ksr and  krs indicate rates of cell cycling between popu-
lations, then the model is represented as:

Jusko described the use of this model for analyz-
ing dose–time–cell-survival curves reported by authors 
studying the effects of vincristine, vinblastine, arabino-
sylcytosine, and cyclophosphamide on lymphoma and 
hematopoietic cells in murine femur (Jusko 1973). Sung 
and coworkers used three PD models, including a phase-
specific model for studying the effects of 5-fluorouracil 
(5-FU) and growth factor F by assuming a logistic growth 
curve (Sung et al. 2009). Vasalou and coworkers applied 
a TGM following tumor inhibition by antibody–drug con-
jugates (ADCs) with the slightly revised model  (kdeg = 0), 
described by Panetta (Panetta 1997; Vasalou et al. 2015).

CDMs and SDMs

Two models, the CDM, and the SDM, have been developed 
for describing the delay in tumor shrinkage following drug 
administration. SDM is also known as the transit compart-
ment model. As shown in Fig. 3f, CDMs, assume that tumor 
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cells are initially in the proliferative stage, but drug treatment 
inhibits the proliferation of some tumor cells (Simeoni et al. 
2004; Magni et al. 2006). The models identify these inhib-
ited cells by modeling the process of signal transduction. In 
contrast, SDMs assume that the drug targets the receptor that 
initiates an effector signal which is transformed through a 
cascade of transit compartments, as shown in Fig. 3g (Lobo 
and Balthasar 2002; Yang et al. 2010).

The differential equations of CDM are represented as 
follows:

where the tumor size (T) is the sum of all the compartments, 
such that T =

∑n

k = 1
Tk. Here, τ represents the mean reten-

tion time that is used to describe the transit kinetics. G(E, 
 T1) is mainly presented by the following equation:

Simeoni and coworkers used this model for modeling 
the effect of anticancer agents on tumor growth, which was 
represented as:

Shah and coworkers proposed the same growth model for 
fitting and analyzing data obtained after the administration 
of brentuximab–vedotine ADC (Simeoni et al. 2004; Shah 
et al. 2012). Jumbe and coworkers captured the characteris-
tics of tumor growth and the activity of trastuzumab-DM1 
ADC (Jumbe et al. 2010), and the resulting model was rep-
resented by the following equation:

Equation  (18) is used for the treatment of spherical 
tumors, and three compartments are used for measuring the 
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total tumor size. Magni and coworkers presented a math-
ematical analysis of the model and suggested an effective 
strategy for designing in vivo experiments in animals, which 
could save both time and resources (Magni et al. 2006). Roc-
chetti and coworkers described a method based on a PK/
PD model of tumor growth inhibition in xenograft mice, 
which predicts the parameters for describing the efficacy 
of the tested compounds (Rocchetti et al. 2007). Fetterly 
and coworkers discussed the effects of sequential treatment 
with the potent vascular endothelial growth factor (VEGF) 
inhibitor (aflibercept; VEGF Trap) and DOX in preclinical 
acute myeloid leukemia (AML) (Fetterly et al. 2013). PD 
modeling demonstrated that the observed delay in growth 
was mainly due to the combination of DOX and VEGF 
Trap. Singh and coworkers developed an integrated PK/PD 
model for studying the effect of trastuzumab–valine–cit-
rulline–monomethyl auristatin E (T–vc–MMAE) on cells 
expressing HER2 (Singh et al. 2019). The percent of tubulin 
occupied by MMAE molecules in the cell is applied to G(E, 
 T1) instead of MMAE concentration (C). The model is rep-
resented by the following equations:

and

where  Occtub and  DTtumor represent the percentage of occu-
pancy and tumor doubling time, respectively.

The differential equations of SDM are represented as:

where E(C) has been previously described in Eq. (5). Lobo 
and coworker investigated the relationship between metho-
trexate (MTX) exposure and the effects of MTX on tumor 
cell growth in culture over time, and compared the results 
with those of a phase-specific model, a nonspecific model, 
and SDM (Lobo and Balthasar 2002). Yang and coworkers 
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assessed the usefulness and potential compatibility of CDMs 
and SDMs (Yang et al. 2010). The results demonstrated that 
analysis of the simulated tumor response data is more flexi-
ble for SDMs on account of the delayed drug effects in tumor 
volume progression. Higgins and coworkers determined 
alternative dosing schedules for optimal RG7388-induced 
antitumor activity based on preclinical data (Higgins et al. 
2014). Luo and coworkers used this model for describing the 
drug-induced tumor shrinkage in laser-treated and non-laser 
treated groups using long-circulating, sterically stabilized 
liposomes loaded with DOX in a xenograft mouse model of 
pancreatic cancer (Luo et al. 2019).

Friberg and coworkers described chemotherapy-induced 
myelosuppression via drug-specific parameters and system-
related parameters (Friberg et al. 2002). A model was devel-
oped using patient leukocyte and neutrophil data following 
the administration of docetaxel, PAC, and etoposide. A feed-
back mechanism from the circulating cells, expressed as the 
ratio of baseline concentration of blood cells to the observed 
concentration of blood cells [represented by  (circ0/circ)γ], 
was used in this model. The feedback loop was essential for 
accounting for cellular rebound. The model was represented 
as:

and

where circ = M4, and  M4 has been previously described in 
Eq. (21). Chen and coworkers characterized a population 
PK model and the relationship between drug exposure and 
neutropenia following the administration of NP albumin-
bound (nab)-PAC in patients with solid tumors (Chen et al. 
2014). Friberg and coworkers described five compartments 
for neutropenia. Soininen and coworkers discussed that the 
cellular and nuclear concentrations of DOX were quantifi-
able with LC/MS following exposure to free and liposomal 
DOX (pH-sensitive and pegylated liposomes) in rat gliomas 
and renal clear cell carcinomas (Soininen et al. 2016). A 
two transit compartment model was selected on the basis 
of the lowest Akaike information criterion and precision of 
the parameter estimates. The effect of DOX on cell viability 
was modeled as:
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where

Here  Cthr represents the threshold nuclear concentration. 
Threshold concentrations were necessary in the study since 
the low nuclear concentrations of the drug did not reduce 
cell viability. Ande and coworkers administered different 
anticancer agents, including PAC, a mitotic inhibitor com-
bined with everolimus (EVE), an mTOR inhibitor in combi-
nation with dasatinib (DAS), and an Src kinase inhibitor, as 
modalities for overcoming resistance in HER2+ breast can-
cer (Ande et al. 2018). They used a switch feedback model 
of the data in a static cell culture setup since all the three 
drugs appeared daily in the system at the same concentra-
tion level.

Age‑structured models

The aforementioned models, used discrete compartments 
for expressing the delay between drug exposure and tumor 
response, instead of using age as a continuous variable. 
The age-structured model considers the entry and removal 
of drug particles from the compartment. The study by 
M’Kendrick presents the applications of age-structured 
models for explaining cellular dynamics (M’Kendrick 
1925). Drug concentration is interpreted as an environmen-
tal factor that affects cell populations and mortality rates. 
Krzyzanski reviewed an extension of the existing PD mod-
els to age-structured models (Krzyzanski 2015). In order 
to understand the fundamental model, let us consider that 
n(a, t)Δa is the number of tumor cells between the ages of 
a and a + Δa at time t. Then, the total number of cells (T) 
is defined as ∫ ∞

0
n(a, t)da. The equation describing the rela-

tionship between the production of new cells of age 0 and 
the elimination of aged cells is represented by the equation:

where µ(a, C, T) represents the rate of cell degradation 
depending on the age, concentration of drug molecules, and 
the total number of tumor cells. If age a = 0, then n(0, t) can 
be represented by the production of new tumor cells at time 
t. Therefore,

(23)
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d
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= −μ(a, C, T)n,

(25)n(0, t) =

∞

∫
0

λ(a, C, T)n(a, t)da,

where λ(a, C, T) represents the rate of production of 
new tumor cells, depending on the age, concentration 
of drug molecules, and the total number of tumor cells. 
In application, λ is independent of age a, in which case, 
n(0, t) = �(C, T)T

def
F(C, T). Additionally, µ is independent 

of the population size and age, that is, µ = µ(C). Upon inte-
grating over age a in Eq. (24), the rate of change of T can 
be described as:

Other models such as CDMs (Krzyzanski 2015) and 
SDMs (Byun and Jung 2019) can be derived using the 
gamma distribution. Recently, a fractional-order differen-
tial model (FDM) which uses the Mittag–Leffler distribu-
tion has been introduced. This is different from the ordinary 
differential equations in terms of the nonlocal aspects of 
 dαT/dt, α > 0. The FDM has been discussed in some related 
studies (Belair et al. 1995; Ahmed et al. 2012; Angstmann 
et al. 2013, 2017).

Conclusion

Over the past decade, numerous studies have been con-
ducted for the application of nanotechnology for the diag-
nosis and treatment of cancer. Nanomedicines can offer 
several PK advantages over small- and macro-molecular 
drugs, including improved metabolic stability, enhanced 
distribution to target tissue, prolonged half-life, and 
improved bioavailability. Currently, PBPK models are 
regarded as powerful tools for capturing the complex 
interplays between drugs and biological systems, and are 
being increasingly used by regulatory agencies and the 
pharmaceutical industry. As discussed in this review, a few 
studies have successfully developed PBPK models that are 
able to differentiate the behavior of the free drug from the 
drug entrapped in NPs with incorporating the drug release 
kinetics. Furthermore, PBPK models for NPs can be cou-
pled with PD models for anticancer agents, which address 
the temporal profiles of the pharmacological effects of 
anticancer nanomedicines. However, the application of 
PBPK modeling to nanomedicines may be limited by the 
complexity of the disposition of NPs, which includes bio-
corona formation (opsonization), particle aggregation, 
interpatient variability in the bodily response to NPs, and 
NP heterogeneity. Despite these challenges, PBPK and PD 
modeling for anticancer nanomedicines remains an emerg-
ing field of research that is still in an infant stage. There-
fore, further collaborative and multidisciplinary studies 
are necessary for improving the predictability and validity 

dT

dt
= F(C, T) − μ(C)T = F(C, T) − G(C, T).
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of PBPK and PD models for the research and development 
of anticancer nanomedicines.
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