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Introduction

The increasing number of people with cancer, together with 
the millions of deaths it causes every year, renders it one 
of the most serious health problems and burdens in human 
society. For the purpose of addressing this issue, a huge 
number of efforts have been spent to the development and 
the clinical application of novel cancer therapies. However, 
limited success has been attained due to the poor target-
ing ability, systemic toxicity, and drug resistance of con-
ventional cancer therapies. Smart drug delivery strategies 
are essential in overcoming these challenges. An ideal drug 
delivery system (DDS) should release the active pharma-
ceutical ingredients with precise dosing and spatiotemporal 
control. Therefore, stimuli-responsive DDSs have attracted 
a great deal of attention (Mura et al. 2013). Compared to 
internal stimuli-responsive strategies, the external ones, 
comprising temperature, magnetic field, electrical field, 
light, and ultrasound responsive DDSs, have the advantages 
of reducing inter-patient variability and provide a feasible 
approach to precise drug delivery. Of these external stimuli, 
near-infrared (NIR) light is emerging as a salient trigger for 
biomedical applications because it rarely impairs the physi-
ological function of normal cells (Guo and You 2017). How-
ever, numerous conventional photosensitizers (PSs), such as 
organic dyes, semiconductor nanomaterials or metal com-
plexes, still have several limitations depriving them of being 
approved for clinical use. For example, quantum dots and 
fullerenes exhibit high toxicity (Tsoi et al. 2013; Youn et al. 
2017); semiconductor crystals such as TiO2 require excita-
tion by UV/VIS light with poor tissue penetration proper-
ties (Wang et al. 2018a); organic dyes are challenged by 
the requirements of high energy and the high intensity of 
excitation sources and by the photobleaching phenomenon 
(Zheng et al. 2012).
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Upconversion (UC) emission is a nonlinear optical pro-
cess in which the subsequent absorption of no less than two 
photons resulting in the emission at a shorter wavelength 
than the excitation wavelength (Auzel 2004). The concept 
was first introduced in the year 1959 by Nicolaas Bloem-
bergen (Bloembergen 1959). Despite considerable poten-
tial, the application of UC focused on crystalline materi-
als or bulk glass for the next few decades (Pacheco and De 
Araujo 1988; Tanabe et al. 1992) without any significant 
influence in the field of biomedicine. It was not until the 
1990s, together with the rapid development of nanoscience 
and luminescence mechanisms, that the design, synthesis, 
and bio-application of upconversion nanoparticles (UCNPs) 
was well established. UCNPs have considerable advantages, 
such as resistance to photobleaching, low toxicity, and deep 
tissue penetration, which can deal with the limitations of the 
aforementioned photosensitizers. Since the structure design 
and nanochemistry of UCNPs are well studied, they can be 
further engineered for specific bio-applications, not only as 
probes for diagnostics but also in therapeutic applications. 
In fact, thanks to the unique properties of UCNPs, they have 
emerged as one of the most promising materials for versatile 
nanocarriers in drug delivery.

This review presents a comprehensive account of the 
recent progress in lanthanide (Ln)-doped UCNPs. At first, 
an overview of the UC mechanisms and nanochemistry of 
Ln-doped UCNPs are described. Then, we demonstrate the 

designs and bio-applications of these novel nanoplatforms in 
both bioimaging and cancer therapy, implying their extraor-
dinary versatility and great potential. Finally, the outlook of 
the future development of UCNPs is discussed.

Overview of Ln‑doped UCNPs

Upconversion processes can simply be divided into four 
mechanisms, these include excited-state absorption (ESA), 
energy transfer UC (ETU), photon avalanche (PA), and 
energy-migration-mediated upconversion (EMU) (Auzel 
2004), as shown in Fig. 1. Different from the two-photon 
emission phenomenon, which involves the simultaneous 
absorption of two photons (Drobizhev et  al. 2011; Lin 
and Vučković 2010; Rumi and Perry 2010), UC emission 
requires metastable energy levels to act as the platforms for 
consecutively absorbed photons.

Rare-earth elements often exist in the most stable state as 
trivalent ions (Cheisson and Schelter 2019), with partially 
filled 4f orbitals shielded by completely filled 5s2 and 5p6 
that exhibit numerous electronic energy states ranging from 
IR to UV. This makes lanthanide ions an ideal host lattice 
for UCNPs. Each Ln-doped UCNP has an exclusive energy 
transfer process involving the combination of two or more 
mechanisms described above.

Fig. 1   Primary upconver-
sion mechanism of Ln-doped 
UCNPs (E1, E2: excited states; 
GS: ground state). Reorganized 
from Duan et al. (2018)
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Ln-doped UCNPs consist of two main components: 
dopants and a suitable host matrix to embed the dopants. 
Dopants usually act as the luminescence center and can be 
categorized into sensitizers and activators. Under appropri-
ate excitation, sensitizers obtain higher energetic states fol-
lowed by the non-radiative transfer of energy to other nearby 
dopant ions. After a complicated energy transfer or single 
excitation process, the activators gradually accumulate 
enough energy for the anti-Stoke type emission.

Regularly, Yb3+ is chosen as the sensitizer owing to its 
single energy transition between the ground state and 2F5/2 
excited state with the absorption band in the NIR spectrum 
(980 nm). In addition, the 2F7/2 → 2F5/2 transition matches 
well with several f-f transitions of typical activators such as 
Tm3+, Er3+, and Ho3+. The sensitizer content has a remark-
able influence on the optical properties of UCNPs. It should 
be high enough to allow the energy transfer between sensi-
tizers and activators, but not so high that it leads to detri-
mental cross relaxation, which causes UC quenching. The 
doping ratio of the sensitizer is often kept at 20 to 40 mol%. 
In addition, Nd3+ can also be co-doped with Yb3+ as a 
sensitizer to achieve an absorption peak at about 800 nm 
(Fig. 2) (Shen et al. 2013). This benefits the bio-application 
of Ln-doped UCNPs because water strongly absorbs the NIR 
980 nm light, generates heat, and hinders the effect of the 
laser source in deep tissues. The use of 800 nm sensitized 
UCNPs is a good approach to overcome these limitations.

For an activator candidate, a long lifespan of metastable 
excited states is necessary. The longer time that an elec-
tron stays at a specific intermediate energy level, the higher 
chance that it can be excited again by the non-radiative 
emission from another dopant. On the other hand, activa-
tors should also have ladder-like energy levels with simi-
lar energy gaps. Tm3+, Er3+, and Ho3+ ions with suitable 
energy levels are now becoming the most common choices 
for activators. To prevent the concentration of fluorescent 

quenching, a low doping concentration of activators, 
0.5–3 mol%, is required.

The host matrices have a decisive impact on the upcon-
version luminescence (UCL) efficiency of UCNP by control-
ling spatial distance and energy transfer efficiency between 
dopants. There are a few considerations for the selection of 
a crystal matrix. The first is size similarity between matrix 
cations and dopant ions. In general, all tripositive rare-earth 
ions have similar ionic sizes and chemical properties, mak-
ing them ideal host matrix cations. Another high demand for 
host materials is a low lattice phonon energy to minimize 
non-radiative interactions and strengthen radiative emis-
sions. In comparison to oxides and heavy halides, fluorides 
have the advantage of exhibiting low phonon energies and 
high chemical stability. Hence, NaYF4 is widely used as 
a host material for Ln-doped nanocrystals. UCNPs with a 
NaYF4 host matrix can exist as either α-phase or β-phase, in 
which β-phase UCNPs have a much higher UCL efficiency.

The primary purpose in the preparation of UC nanocrys-
tals is to successfully control UCL, nanoparticle size, and 
colloidal stability. Nowadays, the synthesis of UC nanocrys-
tals has been meticulously studied in various synthetic 
methods such as thermal decomposition (Boyer et al. 2006; 
Mai et al. 2006, 2007; Li and Zhang 2008), solvothermal 
(Wang et al. 2005b, 2009; Wang and Li 2007; Cao et al. 
2011), coprecipitation (Yi et al. 2004), ionothermal (Liu 
et al. 2009), and sol–gel (Patra et al. 2003). Of these, ther-
mal decomposition is the most popular way to synthesize 
UC nanocrystals and produces good quality UCNPs. How-
ever, the difficulty in attaining reproducible synthesis, toxic 
byproducts, costly materials, as well as restricted reaction 
conditions, impede the use of thermal decomposition in 
commercial systems. Compared to thermal decomposition, 
the co-precipitation method does not require extremely high 
reaction temperature and generates lower toxic by-products. 
However, these benefits are outweighed by the relatively 

Fig. 2   UC processes Yb/Tm/
Nd- and Yb/Er/Nd- doped 
nanocrystals under 800 nm 
laser irradiation. (Reprinted 
with permission from (Shen 
et al. 2013). Copyright © 2013 
WILEY‐VCH Verlag GmbH & 
Co. KGaA, Weinheim)
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low quality of prepared UCNPs, which requires an anneal-
ing process to obtain UCNPs with desired optical proper-
ties. More recently, a solvothermal method is emerging as 
a promising approach to transcend any conventional tech-
niques. Solvothermal is considered as a friendly synthetic 
method with lower reaction temperature and lower toxic by-
products. Furthermore, by using this method, the size and 
shape of UCNPs can be practically controlled, and thus it 
produces good UCNPs with low cost. All of the aforemen-
tioned techniques have been well described by researchers 
around the world and reviewed in the literature (Li and Lin 
2010; Gai et al. 2013; Johnson and van Veggel 2013; Chen 
et al. 2014a; Li et al. 2015; Lingeshwar Reddy et al. 2018).

Due to the focus of this review, details about UC 
nanocrystal synthesis are not covered. Instead, we will dis-
cuss the fabrication of Ln-doped nanocrystal-based compos-
ite for application in the field of biomedicine. In fact, most 
UCNPs are endowed with a hydrophobic capping ligand at 
the outermost side acting as a stabilizer during UCNP syn-
thesis. To be suitable for use in biological systems, several 
surface modifications and the integration of functional moie-
ties are needed to obtain hydrophilic UCNPs that can be well 
dispersed in physiological conditions and further engineered 
to conjugate biomolecules. Briefly, there are six strategies 
for preparing hydrophilic UCNPs via surface modification, 
namely ligand exchange, ligand removal, ligand oxidation, 
ligand interaction, layer-by-layer deposition, and silica coat-
ing (Table 1). In the ligand exchange method, hydropho-
bic caps are replaced by more hydrophilic agents to form 
UCNPs that is well dispersed in aqueous solvents. Despite 
the simple operation, this process often requires a large 
excess amount of the hydrophilic ligands, high tempera-
tures and long reaction time to prevent the incomplete ligand 
exchange, which results in non-well-defined surface chemis-
try. Ligand-free UCNPs can be obtained after treating oleic 
acid (OA) caps with strong acids or NOBF4. This method 
provides UCNPs with long-term stability in hydrophilic sol-
vents, for example, acetonitrile and dimethylformamide, as 
well as makes the way for a subsequent ligand exchange step 
either with hydrophobic or hydrophilic ligands. On the other 
hand, by using Lemieux-von Rudloff reagent, the doubled 
bond at the C9 position of OA can be oxidized and expose 
carboxylic acid residue to the surface without any signifi-
cant effect on size or morphology of UCNPs. However, the 
yielded water-dispersible UCNPs perform a decrease in the 
UCL intensity due to the precipitation of MnO2 after a long 
reaction time (Naccache et al. 2009). The ligand interaction 
approach involves the hydrophobic-hydrophobic interac-
tion between the fatty acid chain on the surface of UCNPs 
and the hydrophobic alkyl chain of amphiphilic reagents 
or hydrophobic pocket of the host molecule. Compared to 
OA-capped UCNPs in cyclohexane, the second layer con-
taining PAA, poloxamers, SDS, or CTAB show a decrease 

by 60–80% in the UCL intensity in water (Yi and Chow 
2007; Liang et al. 2012; Wu et al. 2012). The layer-by-layer 
deposition method uses electrostatic interaction between 
positively charged and negatively charged polymer to con-
trol the charge and the thickness of the coating layer, which 
can be easily tuned by changing the number and the order 
of deposited polymers. It should be noted that the intensity 
of UCL decreases with the increase of the number of layers 
(Huang et al. 2015). Besides, a sharp fluctuation of pH value 
can impair the integrity of the polyelectrolyte layer, leading 
to the aggregation of hydrophilic UCNPs obtained from the 
layer-by-layer deposition process. Silica coating is a popu-
lar technique for surface modification of various materials, 
including UCNPs, by using typical methods for the syn-
thesis of silica nanoparticles. The inert silica shell endows 
UCNPs@SiO2 with good stability over a broad range of pH 
as well as avoid the release of metal ion from UCNPs. The 
thickness of silica coating layer can be practically controlled 
by controlling the concentration of silica precursors, and this 
shell displays the minimal influence of the UCL (Yi et al. 
2004; Li et al. 2008).

Upconversion nanoplatforms in bioimaging

Bioimaging science has recently received great attention 
in the biomedical field owing to its impressive ability to 
visualize biological systems in real-time. With the aim of 
improving the quality of imaging data, plentiful luminescent 
materials, such as organic dyes, metal complexes, quantum 
dots, semiconductor nanomaterials, and fluorescent proteins, 
have been developed as biosensors or fluorescent probes. 
However, these single-photon excitation-based materials 
have several limitations. For example, the use of organic 
dyes is challenged by the photobleaching phenomenon, a 
very short emission life (less than 100 ns) and autofluores-
cence noise signals from biological tissue.

As a promising alternative, Ln-doped UCNPs display a 
large anti-Stokes shift with sharp multiline emissions, rang-
ing from IR to UV. By precisely controlling dopants such as 
different combinations of dopant ions, doping concentration, 
and core–shell structure during UCNP synthesis, the emis-
sion peaks and relative intensities can be feasibly controlled, 
enabling multicolor UCL even under only one laser source. 
UC emission results from the electronic transition between 
nearby metal ions, hence UCNPs display excellent photo-
stability (i.e., no photobleaching). Ln-doped UCNPs have 
maximum absorption wavelength in the NIR range, which 
is well-matched with the optical window for in vivo imag-
ing (Fig. 3) (Shen et al. 2013). As a result, the excitation 
light can possess deep penetration, lower phototoxicity, and 
reduce undesired autofluorescence from biological tissues in 
comparison to UV or VIS irradiation. These benefits pave 



138	 X. T. Le, Y. S. Youn 

1 3

Ta
bl

e 
1  

C
om

m
on

 su
rfa

ce
 m

ed
ic

at
io

n 
m

et
ho

ds
 fo

r p
ro

du
ci

ng
 h

yd
ro

ph
ili

c 
U

C
N

Ps

Pr
in

ci
pl

es
Sc

he
m

at
ic

 o
f m

et
ho

d
Re

pr
es

en
ta

tiv
e 

su
rfa

ce
 tr

ea
tin

g 
m

at
er

ia
ls

Re
fe

re
nc

es

Li
ga

nd
 e

xc
ha

ng
e

H
yd

ro
ph

ob
ic

 c
ap

s a
re

 re
pl

ac
ed

 b
y 

m
or

e 
hy

dr
op

hi
lic

 a
ge

nt
s t

o 
fo

rm
 U

C
N

Ps
 th

at
 

w
el

l d
is

pe
rs

ed
 in

 a
qu

eo
us

 so
lv

en
ts

C
itr

ic
 a

ci
d,

 h
ex

ad
ie

no
ic

 a
ci

d,
 3

-m
er

-
ca

pt
op

ro
pi

on
ic

 a
ci

d,
 P

A
A

, P
V

P,
 T

hi
ol

 
PE

G
 a

m
in

e,
 P

A
M

A
M

, c
uc

ur
bi

t[7
]u

ril

B
og

da
n 

et
 a

l. 
(2

01
0)

, L
iu

 e
t a

l. 
(2

01
3,

 
20

18
), 

X
ia

o 
et

 a
l. 

(2
01

4)
, L

i e
t a

l. 
(2

01
8)

, S
un

 e
t a

l. 
(2

01
8)

, Z
ha

ng
 e

t a
l. 

(2
01

8)
Li

ga
nd

 re
m

ov
al

Li
ga

nd
-f

re
e 

U
C

N
Ps

 c
an

 b
e 

ob
ta

in
ed

 a
fte

r 
tre

at
in

g 
O

A
 c

ap
s w

ith
 st

ro
ng

 a
ci

ds
 o

r 
N

O
B

F 4

H
C

l (
pH

 4
), 

N
O

B
F 4

Pe
ng

 e
t a

l. 
(2

01
3)

, C
en

 e
t a

l. 
(2

01
5)

, 
Zh

on
g 

et
 a

l. 
(2

01
5)

, S
hi

 e
t a

l. 
(2

01
6)

, 
Fu

 e
t a

l. 
(2

01
7)

, L
ia

ng
 e

t a
l. 

(2
01

7)
, X

u 
et

 a
l. 

(2
01

7a
, b

)
Li

ga
nd

 o
xi

da
tio

n
Th

e 
do

ub
le

d 
bo

nd
 a

t t
he

 C
9 

po
si

tio
n 

of
 

O
A

 c
an

 b
e 

ox
id

iz
ed

 a
nd

 e
xp

os
e 

ca
rb

ox
-

yl
ic

 a
ci

d 
re

si
du

e 
to

 th
e 

su
rfa

ce

Le
m

ie
ux

–v
on

 R
ud

lo
ff 

re
ag

en
t 

M
n
O

− 4
∕
IO

− 4

C
he

n 
et

 a
l. 

(2
00

8)
, C

en
 e

t a
l. 

(2
01

5)
, W

u 
et

 a
l. 

(2
01

8)

Li
ga

nd
 in

te
ra

ct
io

n
H

yd
ro

ph
op

hi
c-

hy
dr

op
ho

bi
c 

in
te

ra
ct

io
n 

be
tw

ee
n 

th
e 

fa
tty

 a
ci

d 
ch

ai
n 

on
 th

e 
su

rfa
ce

 o
f U

C
N

Ps
 a

nd
 th

e 
hy

dr
op

ho
bi

c 
al

ky
l c

ha
in

 o
f a

m
ph

ip
hi

lic
 re

ag
en

ts
 

or
 th

e 
hy

dr
op

ho
bi

c 
po

ck
et

 o
f t

he
 h

os
t 

m
ol

ec
ul

e

C
TA

B
, S

D
S,

 tr
ito

nX
-1

00
, p

ol
ys

or
ba

te
, 

tra
ns

fe
rr

in
, α

-c
yc

lo
de

xt
rin

Li
u 

et
 a

l. 
(2

01
1a

), 
Li

an
g 

et
 a

l. 
(2

01
2)

, S
eo

 
et

 a
l. 

(2
01

5)
, W

an
g 

et
 a

l. 
(2

01
7)

La
ye

r-b
y-

la
ye

r d
ep

os
iti

on
El

ec
tro

st
at

ic
 in

te
ra

ct
io

n 
be

tw
ee

n 
po

si
-

tiv
el

y 
ch

ar
ge

d 
an

d 
ne

ga
tiv

el
y 

ch
ar

ge
d 

po
ly

m
er

PA
H

/P
SS

/P
A

H
, P

EI
/D

SS
, P

A
A

/P
EI

W
an

g 
et

 a
l. 

(2
00

5a
), 

G
ul

le
r e

t a
l. 

(2
01

5)
, 

X
ia

ng
 e

t a
l. 

(2
01

6)
, L

in
 e

t a
l. 

(2
01

7)

Si
lic

a 
co

at
in

g
Si

lic
a 

sh
el

l c
an

 b
e 

de
po

si
te

d 
on

 th
e 

su
r-

fa
ce

 o
f U

C
N

Ps
 u

si
ng

 ty
pi

ca
l m

et
ho

ds
 

fo
r t

he
 sy

nt
he

si
s o

f s
ili

ca
 n

an
op

ar
tic

le
s

Si
lic

a
La

i e
t a

l. 
(2

01
5)

, L
u 

et
 a

l. 
(2

01
5)

, L
iu

 
et

 a
l. 

(2
01

7)
, L

v 
et

 a
l. 

(2
01

7)
, K

an
g 

et
 a

l. 
(2

01
8)



139Emerging NIR light‑responsive delivery systems based on lanthanide‑doped upconverting…

1 3

the way for the use of Ln-doped UCNPs in a huge number 
of bio-applications such as diagnosis, biosensing, in vivo 
imaging, and phototherapy.

In 2011, Liu et  al. successfully prepared sub-10  nm 
NaLuF4-based UCNPs by the thermal decomposition 
method. The β-NaLuF4:Gd/Yb/Tm (24/20/1) nanocrystals 
possessed bright UCL under a continuous excitation at 
980 nm and achieved high-contrast UCL in vivo imaging 
with a penetration depth up to 2 cm (Liu et al. 2011b). In the 
following year, Wang et al. used UCNPs as probes for stem 
cell labeling (Wang et al. 2012). Thanks to the positive sur-
face charge, the oligo-arginine-conjugated UCNPs could be 
taken up more efficiently by mesenchymal stem cells com-
pared to unconjugated UCNPs. Little nanoparticles leakage 
from labeled mesenchymal stem cells was observed, imply-
ing the potential for long-term cell tracking. Interestingly, 
ultra-high sensitivity with as few as 10 cells was reported 
using UCNP-embedded stem cells, whereas thousands of 
cells are required for quantum dots or magnetic resonance 
probes for in vivo imaging (Fig. 4).

In addition to luminescent imaging, magnetic resonance 
imaging (MRI) is also a common technique in bioimaging 
science. Trivalent Gd ions at the ground state have seven 
unpaired electrons, making it possible to use as a T1 MRI 
contrast agent. Gd3+ can exist as host matrix cations, dopants 
or just be incorporated into the shell layer of UCNPs. Xing 
and co-workers developed ultrasmall NaGdF4 nanodots for 
application in MRI. The NaGdF4 nanocrystals were synthe-
sized using a pyrolysis method, which produced 2.4 times 
more efficient MR contrasts than that of clinical Magnevit 
(Xing et al. 2014). Because of their ultrasmall size, ~ 2 nm, 
these nanoparticles could be filtered from the human body 
through urine within a short time. The chelating molecule, 
diethylenetriaminepentaacetic acid (DTPA), on the surface, 
allowed released Gd3+ ions to be captured to prevent sys-
temic toxicity in vivo. Similarly, in 2015, Du et al. improved 
MRI sensitivity by the simultaneous incorporation of Gd3+ 

as an internal doping ion and the external BSA·DTPAGd cap-
ping of UCNPs (Du et al. 2016).

The decrease of UC efficiency by solvent relaxation in an 
aqueous solution is an obstacle to the application of UCNPs 
in biological systems for luminescence imaging. Maji and 
co-workers found that a UCNP/α-cyclodextrin (UCNP/
α-CD) inclusion complex, which showed good dispersibil-
ity in water, could serve as a photo-acoustic imaging (PAI) 
probe. In comparison with OA-capped UCNPs, UCNP/α-CD 
under 980-nm irradiation showed UCL quenching result-
ing from non-radiative relaxation in aqueous solvent while 
the subsequent PA signal and thermal conductivity were 
enhanced (Maji et al. 2014). UCNP/α-CD was non-cyto-
toxic, blowing its chance to be utilized in PAI in vivo.

X-ray computed tomography (CT) is also a common 
technique in diagnostics because of its deep penetra-
tion, high resolution, and cost effectiveness. Compared 
to other well-established inorganic-based nanomaterials, 
Ln-doped UCNPs has some distinct attributes that may 
allow it to become an exceptional CT contrast agent. The 
K-edge energy of Yb is located at a higher-energy range 
of the X-ray spectrum that is applied recently in clinical 
use. As a result, patients can be exposed to a lower level of 
radiation, thanks to the higher intrinsic contrast. In 2012, 
the application of Ln-doped UCNPs in the CT technique 
was demonstrated by Liu and co-workers. The surface of 

Fig. 3   Extinction coefficient of hemoglobin and water in the range 
from VIS to NIR light illustrating optical window for bioimaging. 
(Reprinted with permission from (Shen et  al. 2013). Copyright © 
2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Fig. 4   Sensitivity of UCNPs probes applying in labeling mMSCs. a 
An UCL image exhibited the signals from UCNP-PEG-Arg at differ-
ent numbers of mMSCs (10–104 cells). b Quantification of UCL sig-
nals. (Reprinted with permission from (Wang et al. 2012). Copyright 
© 2012 Elsevier)
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as-synthesized NaYF4:Er UC nanocrystals was modified by 
DSPE-PEG2000 to yield hydrophilic UCNP-PEG for further 
use in vivo. It was revealed that at the equivalent concentra-
tion, the X-ray absorption of UCNP-PEG was much higher 
than that of iobitridol, a well-known CT contrast agent in 
clinical practice. In contrast to iobitridol, the long circulation 
time of UCNP-PEG allows it to migrate to the lymph nodes 
to visualize cancer metastasis by lymph node mapping. 
Furthermore, UCNP-PEG displayed higher CT contrast 
efficiency compared to Au, Bi, Pt, Ta-based nanomaterials 
(Liu et al. 2012b). Their study on BaYbF5@SiO2@PEG also 
agreed with the results described above (Liu et al. 2012c).

In the process of optimizing diagnosis accuracy, mul-
timodal has attracted great attention. In 2011, Zhang fab-
ricated UCNPs@SiO2-I/PEG nanoprobes with promising 
in vivo dual-modal imaging. It possessed remarkable UCL 
properties together with enhanced CT contrast, which was 
attributed to the presence of rare-earth elements besides 
iodine (Zhang et  al. 2011). Tian et  al. (2015) reported 
another concept of the UNCP-based nanoplatform, which 
applied TPGS-UCNP-doxorubicin in dual-modal fluores-
cent/CT imaging. D-α-tocopheryl polyethylene glycol 1000 
succinate (TPGS) with an amphiphilic structure acts as a sta-
bilizer for hydrophilic UCNPs. More importantly, co-admin-
istration with TPGS endowed this UCNP with the ability to 
inhibit P-gp mediated multi-drug resistance (MDR). After 
loading doxorubicin (DOX), TPGS-UCNP-DOX could 
effectively treat MCF-7 tumors (Tian et al. 2015), thereby 
becoming a notable strategy for theranostics. A nanobio-
sensor for cancer diagnostics involving the switching of 
UCL-MR signals was developed by Lv et al. (2018). In this 
nanostructure, the UCL of NaYF4:Yb,Er@NaYF4:Yb,Nd 
was quenched by an outer coating of MnO2 nanosheets. The 
tumor microenvironment with the enrichment of glutathione 
(GSH)/H2O2 could eliminate the MnO2 layer by transferring 
it to paramagnetic Mn2+ ions. Hence, the UCL signal was 
restored and the MRI signal was generated simultaneously 
(Fig. 5) (Lv et al. 2018). This study proposed a potential 
optical probe discriminating between tumor cells and nor-
mal cells via a GSH/H2O2-responsive mechanism. Rieffel 
and co-workers introduced an epitope to achieve spatial 
and temporary sensitivity. They prepared UCNPs coated 

porphyrin-phospholipid (PoP) for hexamodal imaging. The 
PoP coating relates to conventional fluorescence (FL) while 
UCNPs can be applied to UC luminescence, PAI, and CT. 
Moreover, PoP or other tetrapyrrole particles can form a 
stable chelate with 64Cu, broadening the application of PoP-
UCNPs in Cerenkov luminescence (CL) and positron emis-
sion tomography (PET) (Rieffel et al. 2015). While FL and 
PA describe the self-assembly status of particles, CL and UC 
are effectively visualized at an intermediate depth, PET and 
CT achieve the deepest penetration (Fig. 6).

Photodynamic therapy using upconversion 
nanoparticles

Photodynamic therapy (PDT) is a non-invasive approach of 
treating cancer. It involves the administration of a photo-
sensitizer (PS) followed by the irradiation of a laser source, 
which matches the excitation wavelength of the PS, at the 
tumor sites. After being activated, the PS transfers its energy 
to O2 molecules and produces reactive oxygen species (ROS) 
leading to irreversible damage to tumor cells (Hwang et al. 
2018; Jeon and Ko 2019; Le et al. 2018; Lucky et al. 2015). 
Nevertheless, not all of the PSs have an excitation wave-
length in harmony with the optical window in biological tis-
sues, weakening its efficacy in deeply localized tumor areas. 
As mentioned previously, UCNPs endowed with deep pen-
etration and the ability to convert NIR light to multiline from 
IR to UV is a good solution to deal with the above problem.

Organic PS molecules are usually hydrophobic and can 
be loaded onto nanoparticles through physical adsorption 
(Fig. 7). The surface modification of OA-capped UCNP 
with zwitterionic lipids form a lipid hydrocarbon layer, 
which acts as a good carrier for PSs. For example, Tha-
nasekaran reported a lipid-wrapped UC nanocomplex for 
NIR-mediated PDT. In this research, UCNPs were stabilized 
by phospholipid, EggPC and then the PSs were encapsu-
lated through a hydrophobic interaction with the hydrocar-
bon fatty region (Thanasekaran et al. 2018). In 2014, Wang 
and co-workers developed a concept using UCNPs for the 
combination of PDT and gene therapy, in which chlorine-e6 
(Ce6) was also loaded onto UCNPs by immersing itself into 

Fig. 5   Schematic illustration 
showing mechanism of UCNPs-
based GSH/H2O2-repsonsive 
probe. (Reprinted with permis-
sion from (Lv et al. 2018). 
Copyright © 2018 American 
Chemical Society)
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the hydrophobic oleic layer beneath the PEI/PEG coating 
(Wang et al. 2014). As nanoparticles are suitable for target 
delivery of not only drugs but also immune-regulating mol-
ecules to tumor-draining lymph nodes (Park et al. 2017), in 
2019 the same delivery strategy was applied to an antigen-
capturing nanoplatform used for phototherapy and immune 
therapy. In this study, rose bengal (RB) was loaded into a 

self-assembled lipid layer containing indocyanine green 
(ICG), DSPE-PEG-mal, and fatty acid chain on the surface 
of UCNPs via a hydrophobic interaction (Wang et al. 2019). 
Under 805-nm laser irradiation, UCNP/ICG/RB-mal exhib-
ited efficient combination of PDT and photothermal therapy 
(PTT), which were attributed to RB and ICG, respectively, 
and killed cancer cells. Furthermore, tumor-derived protein 

Fig. 6   Porphyrin-phospholipid 
(PoP)-coated UCNP for hex-
amodal imaging. a PoP-UCNP 
structure. b In vivo lymphatic 
imaging by using PoP-UCNPs 
as a versatile probe in mice. 
(Reprinted with permission 
from (Rieffel et al. 2015).Copy-
right © 2015 WILEY‐VCH 
Verlag GmbH & Co. KGaA, 
Weinheim)
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antigens could be captured by the maleimide residue and 
retained in situ, enhancing the antigen uptake of antigen-
presenting cells and encouraging a tumor-specific immune 
response. The obtained results confirmed that this concept 
could serve as a potential DDS for photo-immunotherapy. 
Not only lipids or polymers but also proteins, such as bovine 
serum albumin (BSA), can accommodate hydrophobic PSs. 
Chen and co-workers (2014) reported a protein-modified 
UCNP for synergistic use with PDT and PTT. BSA cova-
lently bound to the hydrophilic PAA on the surface of 
UCNPs to form an amide bond in the assistant of 1-ethyl-
3-(3-dimethylaminopropyl)carbodimide (EDC). RB and 
IR825 was encapsulated into this nanoparticle without any 
other coupling agent, indicating that RB and IR825 simply 
bind to the UCNP@BSA via a hydrophobic/hydrophobic 
interaction (Chen et al. 2014b). In addition, a combination 
of two or more PSs whose excitation peaks match the UCL 
spectra of UCNPs at different ranges has been considered as 
a strategy to improve PDT efficacy. In 2012, Idris designed 
mesoporous silica-coated NaYF4:Yb,Er UCNPs as a trans-
porter for two PSs: 650 nm-excited ZnPc and 540-nm-sensi-
tized MC 540. An in vitro cytotoxicity assay indicated lower 
cell viability induced by the co-loaded PSs than any single 
PS sample (Idris et al. 2012).

However, the physical adsorption strategy has some dis-
advantages. Generally, hydrophobic interaction is a weak 
force, implying the instability and undesired leakage of 
encapsulated PSs. In 2012, Liu et al. presented a covalently 
assembled nanoplatform for imaging and PDT. The authors 

prepared hydrophilic UCNPs by the ligand exchange method 
using 2-aminoethyl dihydrogen phosphate (AEP) to take the 
place of oleylamine ligands and amino groups were exposed 
to the outermost layer. The carboxylic group of RB can then 
react with the primary amino functional group on the sur-
face of UCNPs through EDC crosslinking. Moreover, folic 
acid (FA) was conjugated on the surface of this UCNP via 
bifunctional NH2-PEG-COOH using a similar strategy to 
obtain a higher targeting efficacy in tumors. In comparison 
to most earlier studies using much higher power intensity, 
the covalently bonded UCNPs@PS performed a notably 
higher efficacy in killing cancer cells (Liu et al. 2012a). In 
2015, Ai et al. also reported a UCNP-based nanoplatform 
using the same encapsulation tactic with a slight modifica-
tion (Fig. 8). Nd3+ was added to the core UCNPs as a sen-
sitizer, endowing the obtained UCNPs with an excitation 
wavelength at 808 nm instead of the conventional 980 nm 
laser source. Hence, PDT could be achieved at the center 
of large tumors and lead to better anticancer efficacy. The 
in vitro experiments showed that when KB cells were treated 
with FA-PEG-Ce6-UCNPs, only 43.2% remained alive after 
2 min under 808-nm irradiation. This number continuously 
decreased to 8.3% and 1.6% when the duration of treatment 
increased to 5 min and 10 min, respectively (Ai et al. 2015).

Along with organic PSs, inorganic PSs have also been 
developed in recent years. Unfortunately, semiconduc-
tor-based material such as TiO2 and ZnO are excited 
by UV light, which is strongly absorbed by normal tis-
sues and induces phototoxicity, limiting the application 

Fig. 7   Schematic of different strategies to embed PSs onto UCNPs via physical adsorption. a PSs was loaded into lipid layer between OA caps 
of UCNPs and alkyl chain of phospholipid. (Reprinted with permission from (Thanasekaran et al. 2018). Copyright © 2018 American Chemi-
cal Society). b PSs was encapsulated into the hydrophobic layer between UCNPs surface and amphiphilic polymer. (Reproduced from (Wang 
et al. 2014) with permission from The Royal Society of Chemistry). c PSs was absorbed through interaction with hydrophobic pocket of BSA. 
(Reprinted with permission from (Chen et al. 2014b). Copyright © 2014 Elsevier)
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of these PSs in phototherapy. The anti-Stock shift phe-
nomena of UCNPs affords a great opportunity to bring 
these UV-sensitized PSs into PDT. In 2012, Hou synthe-
sized NaYF4:Yb3+,Tm3+@NaGdF4:Yb3+ UCNPs with 
the UCL that well-matched the excitation wavelength of 
TiO2 shells. The UCNP@TiO2 nanoparticles taken up by 
MCF-7 cancer cells generated ROS upon NIR excitation 
and then induced cancer cell apoptosis (Hou et al. 2015). 
More recently, Zhou developed a versatile nanoplatform 
TiO2:Yb,Ho,F-β-CD@DTX/HA. In this concept, Yb, Ho, 
and F were directly doped into TiO2 nanoparticles, which 
not only enhanced the PDT efficacy of TiO2 under NIR 
irradiation but also overcame the poor energy transfer effi-
ciency of the conventional UCNP@TiO2 core/shell struc-
ture. Moreover, the synergistic effect of chemotherapy 
(DTX) and PDT (TiO2) remarkably inhibited the prolif-
eration of the MCF-7 cancer cell line as well as effectively 
ablated tumors at 10 days (Zhou et al. 2017).

Despite the rapid development, PDT has struggled 
with the resistance caused by the hypoxic tumor micro-
environment, especially when it comes to solid tumors. 
Tumor hypoxia can take place due to either the existence 
of hypoxic tumor cells or the depletion of an oxygen supply 
that arises during PDT (Lucky et al. 2015). In 2018, Yao 
and co-workers introduced mesoporous cerium oxide hol-
low biophotocatalysts to overcome hypoxia-induced PDT 

Fig. 8   Schematic illustration showing preparation of FA-PEG-Ce6-UCNPs for simultaneous PDT and bioimaging (Ai et al. 2015)

Fig. 9   Schematic illustration of the combination between chemo-
therapy and PDT of Ce-UCNPs overcoming hypoxia. (Reprinted with 
permission from (Yao et al. 2018). Copyright © 2018 WILEY‐VCH 
Verlag GmbH & Co. KGaA, Weinheim)
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resistance (Fig. 9). At first, virus-like silica nanoparticles 
were synthesized, followed by coating the surface of the as-
synthesized nanoparticles with a Yb3+, Tm3+, and cerium 
hydroxide shell via a precipitation process. Mesoporous 
nanostructures were obtained after calcination and silica 
etching steps. In a weak acidic environment, cerium oxide 
can act as a catalyst for the decomposition of endogenous 
H2O2 in tumor cells and afford O2 to enhance PDT efficacy. 
Furthermore, upon 980-nm NIR irradiation, Ce-UCNP emit-
ted UV radiation to cerium oxide. Then, the photoreaction 
triggered the generation of ROS inducing the apoptosis of 
cancer cells (Yao et al. 2018).

Therapeutic applications of UCNPs 
with anticancer agents

Chemotherapy refers to the use of chemical compounds to 
efficiently kill cancer cells. After being internalized, these 
drugs can cause the abnormal function of cells, induce apop-
tosis, and damage DNA, resulting in the inhibition of pro-
liferation and cell death. To date, chemotherapy has played 

a very important clinical role in cancer treatment, but there 
have been some drawbacks that make a complete response 
a tough challenge. For decades, a number of attempts have 
been made to improve chemotherapy efficacy, achieve tar-
get delivery, avoid adverse drug effects, minimize systemic 
toxicity, and overcome chemoresistance. Thanks to unique 
optical properties and various surface modification strate-
gies, UCNP-based nanoplatforms have been considered as 
potential DDSs for chemotherapy.

NIR‑triggered drug release

In 2015, Dcona and Matthew reported a system in which 
DOX was directly attached to the surface of UCNPs through 
a photocleavable linkage. First, they prepared LiYF4:Tm3+/
Yb3+-UCNPs, which had two strong emission bands at 
353 nm and 368 nm under 980-nm irradiation. A photoc-
aged DOX-dicarboxylate ligand, including nitroveratryl and 
glutamate residues, was synthesized. While bis-carboxylate 
formed a stable coordinative complex with trivalent Ln 
ions on the surface of UCNPs, nitroveratryl residues could 
be excited by the UV emission from UCNPs to cleave the 

Fig. 10   Scheme for the NIR-trigger drug release. a Controlled release of DOX through photolabile linkers. (Reproduced from (Michael Dcona 
and Matthew 2015) with permission from The Royal Society of Chemistry). b Controlled release of DOX form drug reservoir through nano-
valves. (Reprinted with permission from and (Han et al. 2018). Copyright © 2018 American Chemical Society)
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pre-existing covalent bond with DOX and release free drug 
(Fig. 10a) (Michael Dcona and Matthew 2015).

Wang et  al. suggested another NIR-triggered drug 
release strategy. Instead of covalent conjugate, DOX was 
loaded into the inner cavities of UCNP@PMAA yolk-shell 
structured nanocapsules. Herein, poly(methacrylic acid) 
(PMAA) shell, a shrinkable material, was cross-linked by 
bis(mathacryloylamino)azobenzene (BMAAB). UV/VIS 
emission from the core UCNPs upon NIR excitation can 
isomerize BMAAB, resulting in the tuning of the perme-
ability via switching the status of the PMAA shell between 
shrinkage and swelling. Moreover, the low pH environment, 
pH 4.5, accelerated the release of DOX from the UCNP@
PMAA yolk-shell nanostructures while almost no free DOX 
was observed after 8 h at pH 7 under visible light treatment 
(Wang et al. 2018b).

Mesoporous silica coating, which has been widely applied 
in UCNP-based drug delivery, not only endows UCNPs with 
improved dispersibility and stability in aqueous solution 
but also creates a sufficient cavity for drug loading. NIR-
triggered drug release can be accomplished by controlling 
the tunnel-like pores of the mesoporous coating. He and co-
workers (2015) produced mesoporous silica-coated UCNPs, 
which encapsulated DOX and grafted blue-light-cleavable 
ruthenium complexes as valves to control drug release. 
The NaYF4:TmYb@NaYF4 UCNPs could convert 974 nm 
excitation to 470 nm light that induced a cleavage reac-
tion of complex Ru[(2,2′-bipyridine)2(trimethylphosphine)
((3-aminopropyl) triethoxysilane)] and made the way for 
drug release. After 5 h irradiation (974 nm, 0.35 W/cm2), 
42% DOX was released while the absorption spectroscopy 
showed 59% Ru complex was cleaved from UCNP@mSiO2 
(He et al. 2015). Independently, in 2018, Han and co-workers 
used β-cyclodextrin (β-CD) as the gatekeeper to cap 2-diazo-
1,2-naphthoquinones via hydrophobic interaction. Once 
exposed to UV light illumination from NaYF4:TmYb@
NaYF4 UCNPs, hydrophobic diazo-1,2-naphthoquinones 
was transformed into hydrophilic 3-indenecarboxylic acid. 
As a result, β-CD was dissociated from the surface of 
UCNPs@mSiO2 because of the repulsion between hydro-
phobic cavities and hydrophilic guest, followed by the 
release of DOX from the unblocked pores (Fig. 10B) (Han 
et al. 2018). The same strategy was also reported by Zhang, 
who used 4-(2-carboxy-ethylsulfanylmethyl)-3-nitro-benzoic 
acid as the UV cleavable nanovalves to control the drug 
release of their formulation. To enhance the tumor cellular 
uptake, transferrin (Tf) was conjugated onto the silica sur-
face of UCNP@mSiO2 (Zhang et al. 2016).

In research published by Hu in 2017, 4-arm-PEG-NH2 
was cross-linked by using an azo-containing linker to form 
a hydrogel, which underwent thermal degradation at tem-
peratures above 44 °C and photolysis upon 365-nm UV light. 
By embedding NaYF4:Yb,Tm UCNPs into the mentioned 

structure, the release of the DOX from the hydrogel could 
be triggered under 808-nm illumination (Hu et al. 2017).

NIR‑triggered targeting delivery

Active targeting to deliver and accumulate drug at the tumor 
site with high concentration for achieving efficient thera-
pies and avoiding systemic toxicity is a promising strategy 
for prospective DDSs. However, certain limitations need to 
be overcome, for example the heterogeneity in the expres-
sion of specific receptors among diverse cancer cells or 
even between tumor cells and normal cells. Chien (2013) 
demonstrated a NIR light photocontrolled targeting nano-
structure to resolve this problem (Fig. 11). Upon the irradia-
tion of 980 nm by a diode laser, the 360-nm photon emitted 
from NaYF4:Yb,Tm UCNPs activated the photocleavage 
reaction. Then, FA was revealed after dissociating from the 
photolabile protecting group, 2-nitrobenzylamine, express-
ing targeting activity. For the chemotherapeutic effect, DOX 
was conjugated to the surface of UCNP@SiO2 through an 
enzyme cleavable disulfide bond, leading to the photo- and 
enzyme-responsive efficient targeting of UCNP@SiO2 nano-
platforms. As shown by the results of in vitro experiments, 
the cellular uptakes of UCNPs were illustrated through 
the concentration of [Y3+] inside HeLa cells at 40 °C for 
20 min incubation. These numbers were 5 ppm, 17 ppm, 
and 20 ppm for caged folate-UCNPs (without irradiation), 
caged folate-UCNPs (irradiation 1 min), and folate UCNPs, 
respectively (Chien et al. 2013).

Activation of prodrug by NIR

To date, cisplatin is one of the most popular drugs to treat 
different types of cancer. In spite of this, there are several 
drawbacks, for example severe neurotoxicity, kidney tox-
icity, and drug resistance that have imposed high require-
ments on developing safer and more efficient cisplatin 
delivery systems. Dai and co-workers (2013) successfully 
fabricated a UCNP-based multifunctional nanoplatform for 
bioimaging and NIR-activated cisplatin (IV) prodrug deliv-
ery (Fig. 12). The core–shell structure NaYF4:Yb3+/Tm3+@
NaGdF4:Yb3+ was used to transfer NIR excitation light 
into 365-nm irradiation, activating the platinum(IV) prod-
rug, trans,trans,trans-[Pt(N3)2(NH3)(py)(O2CCH2CH-
2COOH)2] attached on the surface of UCNPs to kill HeLa 
cancer cells. By using UCNPs, this formulation could 
achieve higher tissue penetration as well as reduce photo-
toxicity compared to phototherapy that directly used UV as 
the excitation source. In addition, UC luminescence, MRI, 
and CT owing to the presence of UCNP are a promising 
DDS for theranostics (Dai et al. 2013). Another study pub-
lished in 2015 was in agreement with the use of UCNPs 
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Fig. 11   Illustration of NIR-triggered targeting delivery of UCNPs@SiO2. (Reprinted with permission from (Chien et al. 2013). Copyright © 
2013 American Chemical Society)

Fig. 12   Schematic illustration of the combination UCL/MR/CT tri-modality imaging and photo-activation process of UCNP-DPP-PEG nano-
particles. (Reprinted with permission from (Dai et al. 2013). Copyright © 2013 American Chemical Society)
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to trigger the activation of Pt (IV) prodrug, cis,cis,trans-
[Pt(NH3)2(Cl)2(O2CCH2CH2CO2H)2], which was decorated 
on the surface of UCNPs through PEGylated phospholipid 
DSPE-PEG(2000)-NH2 linkers (Ruggiero et al. 2015).

Imaging‑guided drug release

Because of the fluorescence resonance energy transfer 
phenomenon (FRET), the green emission of UCNPs co-
encapsulated with DOX tends to be hindered. Therefore, 
the release of DOX from UCNP-nanostructures leads to the 
decline of the red/green emission intensity ratio, this implies 
a new way to spatially and temporally detect the content of 
released DOX (Fig. 13) (Hu et al. 2018; Xu et al. 2017c).

In addition, the gatekeepers, β-CD, of the aforemen-
tioned UCNPs@mSiO2 platform can conjugate to dyes, 
such as FITC and act as a release indicator. Before drug 
release, VIS emission from UCNPs was obstructed 
because of the luminescence resonance energy trans-
fer phenomenon (LRET) while the detachment of 
β-cyclodextrin-FITC caps from the surface of UCNPs@
mSiO2 recover the UCL. Liu and co-workers also con-
firmed the application of LRET to quantitatively monitor 
the release of drug from pyrenemethyl ester-based nano-
valves UCNP@mSiO2 (Liu et al. 2019).

Combination of chemotherapy and phototherapy

Current studies have shown that the combination of 
chemotherapy and phototherapy can improve antitumor 
efficiency and overcome chemoresistance, which deprives 
patients of effective cancer treatment. In PDT and chemo-
therapy synergy, ROS from PDT can suppress the activity 
of the efflux translocator to render tumors affected by 
the chemotherapeutic effect while chemotherapy make 
tumors more sensitive to PDT (Khdair et al. 2009, 2010; 
Spring et al. 2015; Mao et al. 2018). A representative plat-
form, TiO2:Yb,Ho,F-β-CD@DTX/HA, for this strategy 

was well-described above (Zhou et al. 2017). In addit-
tion, PSs that can generate heat upon NIR irradiation have 
been embedded into UNCPs nanostructures to achieve 
PTT. In combination with chemotherapy, hyperthermia 
can enhance drug delivery into tumor sites as well as 
induce thermoablation at elevated temperature (Kim and 
Lee 2017; Lee et al. 2019; Phung et al. 2019). For this 
purpose, nanocomposite UCNPs@Au-DOXs have been 
developed (Fig. 14). In this procedure, gold nanocrystal, 
a well-known photothermal agent, was directly grown on 
the surface of UCNPs. Subsequently, DOX is conjugated 
to UCNP@Au through PEG linkers. As expected, a sig-
nificant decline in cell viability was observed with the 
HeLa cells treated by the combination of PTT and chemo-
therapy (Wei et al. 2017).

Conclusion and perspectives

In this review, we have depicted the development in the sur-
face modification, design, and bio-application of UCNPs in 
the last decade. Various strategies using Ln-doped UCNPs 
in both diagnostics and therapeutic therapy have been 
described in detail. The review has shown that NIR-sensitive 
UCNP-based nanostructures could achieve excellent spati-
otemporal controlled drug release, overcome the limitations 
of conventional light-responsive DDSs, and act as versatile 
nanocarriers that have the potential of further development. 
Nonetheless, there are still some challenges that need to be 
addressed before the translation of UCNPs from academic 
research to clinical application. First of all, the very low UC 
efficiency requires a high intensity laser source, which can 
damage normal cells. The core–shell structures have been 
developed to solve this problem but inevitably increases the 
size of the UCNPs: the bigger size, the higher the UC effi-
ciency. This leads to another problem because the nanoparti-
cles need to be small in size to accumulate in targeted tumors 
efficiently and to be delivered into the nucleus of cells. In 
fact, the successful preparation of sub-10 nm UCNPs with 
high quantum yield has not been achieved. Therefore, the 

Fig. 13   Schematic illustration 
showing the relation between 
R/G ratio and the amount of 
DOX release from the biodeg-
radation silica shell. (Reprinted 
with permission from (Xu et al. 
2017c). Copyright © 2017 
American Chemical Society)
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development of new host matrices, new structure designs, 
or new synthesis methods to yield UCNPs with high UC 
efficiency is always in high demand. Secondly, the surface 
modification process also affects the UC efficiency via the 
surface quenching phenomenon resulting from the interac-
tion between the coating molecule and rare-earth ion on the 
surface of UC nanocrystals. In addition, the functional moi-
eties attached on the surface of UCNPs play a significant 
role in the target delivery and circulating time of UCNPs in 
the human body. New surface modification strategies should 
be studied to maintain UC efficiency in the physiological 
environment as well as improve the pharmacokinetic prop-
erties of UCNP-based nanoplatforms. Thirdly, to the best 
of our knowledge, although most in vitro and in vivo toxic-
ity experiments have shown that no adverse effects were 
observed in normal tissues and organs, the long-term toxic-
ity of UCNPs has not been evaluated. In conclusion, this 
promising field is rapidly developing and there are a number 
of opportunities for innovatory studies.
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