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Abstract Mitochondrial dysfunction caused by oxidative

stress appears at early stages of aging and age-related

diseases. Plasma membrane redox enzymes act in a com-

pensatory manner to decrease oxidative stress and supply

reductive capacity to ensure cell survival. Plasma mem-

brane redox enzymes transfer electrons from NAD(P)H to

oxidized ubiquinone and a-tocopherol, resulting in inhibi-

tion of further oxidative damage. Plasma membrane redox

enzymes and their partners are affected by aging, leading to

progression of neurodegenerative disease pathogenesis.

Up-regulating plasma membrane redox enzymes via calo-

rie restriction and phytochemicals make cells more resis-

tant to oxidative damage under stress conditions by

maintaining redox homeostasis and improving mitochon-

drial function. Investigation into plasma membrane redox

enzymes can provide mechanistic details underlying the

relationships between plasma membrane redox enzymes

and mitochondrial complexes and provide a good thera-

peutic target for prevention and delay of neurodegenerative

disorders.
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Introduction

Neurodegenerative disorders such as Alzheimer’s disease

(AD) and Parkinson’s disease (PD) are considered age-

related diseases since their incidence is correlated with age.

During the aging process, cellular and physiological

functions in neurons are inevitably attenuated (Miller and

Shukitt-Hale 2012; Fernandez del Rio et al. 2016). Dete-

rioration is represented by imbalanced redox homeostasis,

impaired energy metabolism, and apoptotic cell death

(Braidy et al. 2008; Johannesson et al. 2012; Anandhan

et al. 2017). In fact, aging is a stochastic, complex,

unavoidable, and irreversible degenerative process (Hay-

flick 2000). Aging can be explained by several, closely

connected theories, including the genetic theory (Le Bourg

2014; Wang et al. 2014), the telomere shortening theory

(Tumpel and Rudolph 2012; Zhu et al. 2018), the free

radical theory (Liochev 2013; Barja 2014; Koltover 2017),

and the mitochondrial dysfunction theory (Kong et al.

2014; Faitg et al. 2017; Grimm and Eckert 2017).

Plasma membrane redox enzymes and their
partners

Plasma membrane redox enzymes are NADH-dependent

enzymes located on the inner surface of the plasma mem-

brane and require an intracellular electron donor

(NAD(P)H) and antioxidant molecules (coenzyme Q

(CoQ) and a-tocopherol) for electron transport (Hyun et al.

2006a) (Fig. 1). NAD(P)H is a universal electron donor in

the cytosol and is produced by glycolysis and in the

mitochondria by the citric acid cycle. CoQ is found in

micro-organelles including the plasma membrane and

mitochondria and is present in three different forms:
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oxidized CoQ, a semi-quinone radical (CoQ�-), and

reduced CoQ. The reduced form of CoQ (ubiquinol) can

scavenge superoxide (O2
�-) or lipid radicals alone or in

association with a-tocopherol, leading to inhibition of lipid

peroxidation propagation and formation of CoQ�- (Crane

2001; Turunen et al. 2004). The semi-quinone radical is

converted to ubiquinol by plasma membrane redox

enzymes.

Plasma membrane redox enzymes are essentially

NADH-dependent enzymes and include cytochrome b5

reductase (b5R) (Marques-da-Silva et al. 2010; Samhan-

Arias et al. 2018), NADH-quinone oxidoreductase 1

(NQO1) (Chan et al. 2002; Gray et al. 2011; Ross and

Siegel 2017), NADH-ferricyanide reductase (Baker et al.

2004), and NADH-CoQ reductase (Germinario et al. 2000).

b5R (EC 1.6.5.5, also called ascorbate free radical reduc-

tase) is a 32-kDa FAD-containing monomeric enzyme and

is involved in the transfer of one electron from NADH to

CoQ in the plasma membrane, forming CoQ�- (Matsuda

et al. 2000; Bewley et al. 2001). NQO1 (EC 1.6.99.2, also

known as DT-diaphorase) is a 33-kDa homodimeric

enzyme with a non-covalently bound FAD (Pey et al. 2016;

Ross and Siegel 2017; Chhetri et al. 2018). NQO1 is an

important enzyme in the plasma membrane because it does

not produce free radicals during electron transport, uses

both NADH and NADPH as electron donors, and is

induced by oxidative stress. NQO1 is responsible for the

transfer of two electrons, resulting in no semi-quinone

radicals (Gong et al. 2008; Jaber and Polster 2015). NQO1

is induced through the NF-E2-related factor 2 (Nrf2)-

Keap1 pathway (Gan et al. 2013) (Fig. 2). Under normal

conditions, Nrf2 is bound to Keap1 and then degraded by

the proteasome. However, oxidative stress breaks disulfide

bonds in the Nrf2–Keap1 complex, leading to dissociation

of Nrf2 (Jaiswal 2000; Nioi and Hayes 2004). Free Nrf2 is

translocated into the nucleus and bound to c-Jun. The Nrf2-

c-Jun complex can attach to antioxidant response elements

and induce detoxifying enzymes, which include NQO1.

Plasma membrane redox enzymes and their
functions

The plasma membrane is a very important micro-organelle

since it acts as a front line for regulating cellular physiol-

ogy, such as hormonal and neuronal signaling. It also plays

a key role in protection against external oxidative insults

(del Castillo-Olivares et al. 2000; Ly and Lawen 2003;

Reddy et al. 2017).

Electrons taken from intracellular NAD(P)H by the

plasma membrane redox enzymes are transferred to CoQ,

leading to neutralization of extracellular oxidative mole-

cules such as ascorbate free radicals (del Castillo-Olivares

et al. 2000; Rodriguez-Aguilera et al. 2000; Ly and Lawen

2003; May et al. 2003; Crane et al. 2013; Ross and Siegel

2017) (Fig. 2). CoQ is a crucial electron shuttle in the

plasma membrane (Arroyo et al. 2000). The PM redox

enzymes protect the plasma membrane from lipid peroxi-

dation by maintaining levels of reduced forms of CoQ and

a-tocopherol (Crane et al. 2013; Ross and Siegel 2017).

Ubiquinol, a reduced form of CoQ, can protect the mito-

chondrial function of platelets stored for transfusion

((Merlo Pich et al. 2002), regulate ceramide signaling of

apoptotic cell death (Navas et al. 2002; Navas and Manuel

Villalba 2004), and enhance mitochondrial function, which

results in slowed senescence in senescence-accelerated

mice (Tian et al. 2014).

Fig. 1 Simplified diagram of PM redox enzymes and electron shuttles involved in electron transfer in the PM. b5R cytochrome b5 reductase,

CoQH2 reduced form of coenzyme Q, NQO1 NADH-quinone oxidoreductase
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Free radicals, oxidative damage,
and mitochondrial dysfunction

ATP is essential for cell survival. However, free radicals

(e.g. O2
�-) are generated primarily in the mitochondrial

when ATP is being produced by oxidative phosphorylation.

Free radicals leaked from the electron transport chain can

attack biomolecules, such as DNA, lipids, and proteins,

resulting in production of abnormal proteins and impair-

ment of many biochemical and physiological functions

(Ahsan 2013; Gebicki 2016; Valko et al. 2016). In partic-

ular, the mitochondria are more sensitive to oxidative stress

because mitochondrial DNA is less tightly packed, and

their DNA repair systems and levels of antioxidant

capacity are lower than those in the cytosol (Liu et al.

2009). Decreased glutathione peroxidase and lower level of

glutathione are identified in damaged mitochondria (Mon-

teiro et al. 2004; Dannenmann et al. 2015; Hardeland

2017).

In fact, altered mitochondrial function occurs at early

stages of neurodegenerative disease pathogenesis, as has

been shown through decreased antioxidant defense and

increased oxidative damage (Mawrin et al. 2004; Reddy

and Reddy 2011; Wen et al. 2011; Moran et al. 2012).

Accumulation of mutations in the mitochondrial DNA

(Maruszak et al. 2006; (Keogh and Chinnery 2015) can

alter mitochondrial complexes, resulting in reduced mito-

chondrial complex I activity in AD, PD, and amyotrophic

lateral sclerosis (ALS) (Ghiasi et al. 2012; Onyango et al.

2017), dysfunctional complex II and IV activity in ALS

(Menzies et al. 2002), and defective complex III activity in

aged hearts (Lesnefsky et al. 2001). Alterations in

Fig. 2 Neuroprotective mechanisms induced by PM redox enzymes. Electron flows are shown in red, and neuroprotective roles of CR and

phytochemicals are marked with orange arrows. ARE antioxidant response element, b5R cytochrome b5 reductase, CoQH2 reduced form of

coenzyme Q, CR calorie restriction, CREB cAMP response element, ETS electron transport system, FOXO3 Forkhead box family of transcription

factors, NQO1 NADH-quinone oxidoreductase, Nrf2 NF-E2-related factor 2, PKC protein kinase C
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mitochondrial activity can induce ATP depletion, secon-

darily affecting other biochemical processes.

Compensatory mechanisms in response
to mitochondrial dysfunction and oxidative
damage

Under energy shortage conditions like mitochondrial dys-

function or intense muscle activity, cells can produce more

ATP using alternative systems via lactate fermentation

coupled to stimulated glycolysis. Interestingly, cells can

survive without functional mitochondria when they are

cultured in the presence of pyruvate and uridine. Mito-

chondria-deficient cells, also called q0 cells, can survive

using enhanced glycolytic ATP production coupled to

electron transport in the plasma membrane (Piechota et al.

2006; Schubert et al. 2015). Lower production of reactive

oxygen species (ROS) and higher activity of the plasma

membrane redox enzymes are shown in q0 cells than in the

parental cells (Hyun et al. 2007).

Plasma membrane redox enzymes exist in all types of

eukaryotic cells (Villalba and Navas 2000; Crane et al.

2013). Plasma membrane redox enzyme activity is also

enhanced in human patients with diminished mitochondrial

function, which is a representative parameter in insulin-

dependent diabetes mellitus (Lenaz et al. 2002). Plasma

membrane redox enzymes can protect neuronal cells from

oxidative stress-induced apoptosis through maintenance of

redox homeostasis when supplemented with ubiquinol (a

reduced form of CoQ) in aged and AD brains (Rodriguez-

Aguilera et al. 2000; Villalba and Navas 2000). Plasma

membrane redox enzymes may be involved in extending

the life-span in yeast and mammals by elevating the

NAD?/NADH ratio and stimulating mammalian Sir2

(SIRT1) (Merker et al. 2002; Cohen et al. 2004).

Down-regulation of plasma membrane redox
enzymes and neurodegeneration

Alterations in plasma membrane redox enzyme activity and

other associated components have been identified in aged

tissues and neurodegenerative diseases. Levels of lipid

peroxidation and protein nitration are elevated in hepato-

cytes isolated from aged rats (Oberley et al. 2008; Grossini

et al. 2015). Plasma membrane fluidity in rats is related to a

decrease in the docosahexaenoic acid/arachidonic acid

ratio and changes in composition of other phospholipids

(Hashimoto et al. 2001; Moghadam et al. 2013). a-Toco-

pherol contents are reduced in lymphocytes from non-in-

sulin-dependent diabetes mellitus (NIDDM) patients,

suggesting that NIDDM progression could be linked to

altered electron transfer by plasma membrane redox

enzymes (Yanagawa et al. 2001).

These deteriorations are also reported in AD. NQO1

expression in the hippocampal neurons of 3 9 transgenic

mice harboring presenilin 1 (M146V), a precursor of

amyloid protein (Swe), and tau (P301L) transgenes, which

lead to amyloid b plaques and neurofibrillary tangles

(Oddo et al. 2003), is lower than in age-matched controls

(Torres-Lista et al. 2014). SantaCruz et al. had also

observed region-specific alterations in NQO1 activity and

expression (SantaCruz et al. 2004). In addition, a possible

link between NQO1 mutation and AD has been reported. A

missense mutation in codon 187 due to a C609T poly-

morphism in the NQO1 cDNA can reduce level of NQO1

activity in heterozygote populations (Ross et al. 2000;

Kiyohara et al. 2005; Kukongviriyapan 2012; Gong et al.

2013; Pey et al. 2016). Higher levels of the C/T and T/T

alleles have also been identified in AD patients (Ma et al.

2003), suggesting that low level of the C/C allele may be a

risk factor for AD (Bian et al. 2008).

Levels of other plasma membrane components, sphin-

gomyelin and cholesterol, are also altered in the aged and

in AD (Cutler et al. 2004). CoQ in the mitochondria from

different tissues are decreased by up to 50% in aged

patients and people with AD (Mariani et al. 1991; Ernster

and Dallner 1995). Total a-tocopherol level in serum is

significantly lower in AD patients than in age-matched

people (Bourdel-Marchasson et al. 2001; Polidori and

Mecocci 2002). Levels of oxidized forms of a-tocopherol

are increased in patients with AD and vascular dementia

(Tohgi et al. 1994). In addition, impaired plasma mem-

brane redox enzymes and decreased levels of CoQ and a-

tocopherol are found in the hippocampus and cortex of 3 9

transgenic mice (Hyun et al. 2010).

These studies have demonstrated that impairment of

lipids and electron shuttles in the plasma membrane can be

biomarkers of aging and neurodegenerative disorders and

suggest that their composition can be restored with acti-

vated plasma membrane redox enzymes.

Up-regulation of plasma membrane redox enzymes
and neuroprotection

The previously described findings suggest that the aging

process can be delayed if activity of the plasma membrane

redox enzymes is up-regulated. Up-regulated plasma

membrane redox enzymes can cause a higher NAD?/

NADH ratio (Merker et al. 2002), which is also induced by

calorie restriction (Cohen et al. 2004). In fact, calorie

restriction is known as the only reliable method for

extending life-span in mammalian models (Spindler 2001;

Heilbronn and Ravussin 2003; Guarente and Picard 2005).
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Calorie restriction is involved in mitochondrial biogenesis

and regulation of mitochondrial membrane fluidity (Lam-

bert et al. 2004; Lopez-Lluch et al. 2006). Calorie restric-

tion diminishes ROS production in the mitochondria by

decreasing free protons and increasing uncoupling protein

levels (Agarwal et al. 2005; Bevilacqua et al. 2005;

Hagopian et al. 2005). As a result, calorie restriction can

reduce oxidative damage and increase antioxidant capacity.

Components in the plasma membrane can also be up-

regulated by calorie restriction. Plasma membrane redox

enzyme activity was enhanced by calorie restriction,

whereas this activity significantly decreased in the livers

and brains from ad libitum-fed mice (De Cabo et al. 2004;

Hyun et al. 2006b). Plasma membrane lipids are protected

from lipid peroxidation by calorie restriction (Hyun et al.

2006b). Overexpressed NQO1 or b5R also made neuronal

cells more resistant to oxidative/nitrative stress, but cells

with down-regulated redox enzymes were more vulnerable

to insults (Hyun et al. 2012; Hyun and Lee 2015). These

findings suggest an important role of plasma membrane

redox enzymes in maintaining normal brain function.

Plasma membrane redox enzymes, improvement
of mitochondrial function, and neuroprotection

Mitochondrial dysfunction causes energy shortage, result-

ing in alterations in biochemical cascades. As stated earlier,

energy shortage problems can be solved, in part, by

enhanced glycolysis linked to fermentation and by acti-

vated plasma membrane redox enzymes (for example, in q0

cells). The possibility of improving mitochondrial function

by overexpressing NQO1 or b5R has been reported.

Transfected NQO1 or b5R can induce enhanced mito-

chondrial complex activity with lower ROS production and

higher ATP generation, possibly due to more efficient

electron transport in mitochondrial complexes (Hyun et al.

2012; Hyun and Lee 2015). Improved mitochondrial

function, decreased oxidative damage, and modest life-

span extension were also found in transgenic mice over-

expressing b5R (Martin-Montalvo et al. 2016). These mice

showed reduced levels of liver cancer following treatment

with diethylnitrosamine and lower levels of inflammatory

parameters.

Similar effects can be induced in cells cultured in the

presence of sulforaphane and curcumin, which break

disulfide bonds between Nrf2–Keap1, and result in

expression of several detoxifying enzymes, including

NQO1 and heme oxygenase 1 (HO-1) (Turpaev 2013),

Table 1 Phytochemicals

involved in neuroprotection
Phytochemical Target pathway Inducible protein References

Sulforaphane Nrf2-ARE NQO1 Kraft et al. (2004)

Curcumin Nrf2-ARE NQO1 Balogun et al. (2003)

Allicin Mitochondria UCP Oi et al. 1999)

Ion channel TRP Macpherson et al. 2005)

Nrf2-ARE NQO1 Chen et al. (2004)

Panaxydol Nrf2-ARE NQO1 Lee et al. (2009)

Panaxynol

Panaxytriol

Catechin PKC/Nrf2-ARE NQO1 Mandel et al. (2005)

Resveratrol SIRT1 NF-JB Araki et al. (2004)

FOXO3 GADD45 Kobayashi et al. 2005)

MAPK/CREB ERK/p38 Das et al. (2006)

Nrf2-ARE HO-1/GST Chen et al. (2005)

Hypericin Apoptosis Bcl-2 Vantieghem et al. (2002)

Capsaicin Ion channel TRP Macpherson et al. (2005)

Celastrol HSF1 Hsp70/Hsp90 Westerheide et al. (2004)

Uwhanchungshimwon Apoptosis Bcl2/Bcl-xL/BMP7 Song et al. (2001)

Ondamtanggagambang Nrf2-ARE HO-1 Kim et al. (2006)

ARE antioxidant response element, Bcl-2 B cell lymphoma 2, Bcl-Xl B-cell lymphoma-extra large, BMP7
bone morphogenetic protein 7, ERK extracellular-signal regulated kinase, CREB cAMP response element,

FOXO Forkhead box family of transcription factor 3, GADD45 growth arrest and DNA damage 45, GST
glutathione S-transferase, HO-1 heme oxygenase 1, HSF1 heat-shock factor 1, MAPK mitogen-activating

protein kinase, NF-KB nuclear factor kappa light chain enhancer of activated B cells, Nrf2 NF-E2-related

factor 2, PKC protein kinase C, UCP uncoupling protein
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(Fig. 2; Table 1). Sulforaphane is an isothiocyanate present

in broccoli sprouts and can activate Nrf2, which translo-

cates to the nucleus, binds to an antioxidant response ele-

ment (ARE), and induces detoxifying enzymes, for

instance NQO1 (Yanaka et al. 2005). Retina cells cultured

with sulforaphane are more resistant to UV-induced pho-

tooxidative damage (Gao and Talalay 2004; Tanito et al.

2005). Curcumin is a phenolic component enriched in curry

(Joe et al. 2004), and following dietary supplement con-

taining curcumin, transient ischemic damage was lower in

gerbils (Wang et al. 2005). Similarly, a transgenic AD

mouse model (APPSw Tg2576) fed curcumin showed

reduced amyloid b (Ab) level, lower oxidative damage,

and less inflammation due to protective mechanisms that

include HO-1 and p38 MAP kinase (Lim et al. 2001).

Moreover, organosulfur compounds found in garlic and

onions can protect neurons in several ways. Allium and

allicin enhance the level of an uncoupling protein (UCP),

leading to protection of hippocampal neurons from Ab and

tunicamycin (Oi et al. 1999). Allicin and other phyto-

chemicals can activate transient receptor potential ion

channels in the plasma membrane, resulting in attenuation

of stress (Macpherson et al. 2005). Organosulfur products

can also induce cellular stress responses through stimula-

tion of the Nrf2-ARE pathway (Chen et al. 2004).

Panaxydol, panaxynol, and panaxytriol, which are found in

lipid-soluble ginseng extracts, induce NQO1 expression

(Lee et al. 2009). Overexpressed NQO1 protected cells

from toxic components in lipid-soluble ginseng extracts

(Kim et al. 2016). Other neurohormetic phytochemicals

can also contribute to protection of cells against a variety

of toxic insults via activation of various cell survival

mechanisms (Table 1).

Conclusion

By supporting survival mechanisms through increased

NAD?/NADH ratios and decreased oxidative stress,

plasma membrane redox enzymes can protect neurons

during mitochondrial dysfunction due to aging or from a

neurodegenerative disorder. Down-regulated plasma

membrane redox enzymes are one cause of neurodegen-

erative disease, which up-regulated plasma membrane

redox enzymes can delay. Taken together, these findings

indicate that mitochondrial dysfunction should be an early

target for aging therapy and could be solved by enhancing

plasma membrane enzymes. In addition, plasma membrane

redox enzymes may play a central role in maintaining

redox homeostasis and energy metabolism through regu-

lation of the SIRT gene in the nucleus and mitochondrial

energetics (Fig. 2). Animals overexpressing plasma mem-

brane redox enzymes or phytochemicals that induce plasma

membrane redox enzymes may be good model systems for

investigating AD pathogenesis. PM redox enzymes may be

good therapeutic targets for delaying aging and neurode-

generative disease.
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