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Abstract Millions of people worldwide have diabetes,

which is diagnosed by fasting blood glucose levels

exceeding 126 mg/dL. Regardless of the type of diabetes,

prolonged hyperglycemia is damaging to several organs

including eyes, kidneys, nerve, and/or heart. The damages

are associated with a high risk of morbidity and mortality.

Diabetes has been implicated in ischemia in the

microvasculature of the target tissues, which occurs due to

the insufficient perfusion of tissues. The resulting occlusion

and pain affect the quality of life. Multiple therapeutic

approaches have been proposed for a long time to over-

come these vascular complications. Apart from systemi-

cally controlling high glucose levels, other therapeutic

strategies are not well understood. In this review, we

summarize the recent literature for biochemical/cellular

targets that are being utilized for the treatment of diabetic

microvascular diseases. These targets, which are closely

associated with mitochondrial dysfunction, include the

polyol and diacylglycerol-protein kinase C pathways,

oxidative stress, non-enzymatic glycation and the

formation of advanced glycation end products, and immune

dysregulation/inflammation.

Keywords Diabetes � Complication � Inflammation �
Protein kinase C � Oxidative stress � Advanced glycation

end products

Introduction

The pathophysiology of vascular complications due to

diabetes is mainly associated with hyperglycemia, dys-

lipidemia, epigenetic regulation, and genetics. These

complications can be divided into macrovascular compli-

cations, which include coronary artery disease and cere-

brovascular diseases, and microvascular complications.

The three classic microvascular complications include

retinopathy, nephropathy, and neuropathy, which are

affected by blood sugar levels (Paneni et al. 2013; Barrett

et al. 2017). Controlling blood glucose levels by specific

anti-hyperglycemic drugs including metformin, sulfony-

lureas, and dipeptidyl peptidase-4 (DPP-4) inhibitors might

prevent the onset and progression of diabetic microvascular

complications (Mannucci et al. 2013). Interestingly, Barrett

et al. (2017) emphasized that hyperglycemia is necessary,

but not sufficient, to trigger diabetic microvascular dis-

eases, and endogenous tissue damage in long-term diabetic

patients. Many reports have demonstrated that multiple

factors, such as cellular signaling, epigenetic regulation,

and environmental phenotypes result in complex abnor-

malities in human subjects, which are associated with

various diabetic microvascular complications.

Hyperglycemia is associated with the activation of

protein kinase C (PKC), a family of serine/threonine-re-

lated protein kinases, which in turn is mediated by the
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hyperglycemia-induced increase in the levels of calcium,

diacylglycerol (DAG), phosphatidylserine, hydrogen per-

oxide, and superoxide. This results in abnormal vasculature

characterized by endothelial dysfunction, smooth muscle

cell proliferation, vascular permeability, and angiogenesis

(Orr and Newton 1992; Koya and King 1998). In addition,

oxidative stress due to increased production of reactive

oxygen species (ROS), such as superoxide, in endothelial

cells has been significantly associated with the pathogen-

esis of vascular diseases in the diabetic state (Sasaki and

Inoguchi 2012). In the cardiovascular system, NADPH

oxidases (NOX) play an important role in the production of

superoxide in the vasculature (Lassegue et al. 2012).

Additionally, an overflow of electrons through the electron

transport complex of mitochondria is a major source of

ROS as it increases the proton gradient under hyper-

glycemic conditions (Starkov 2008). Advanced glycation

end products (AGEs) formed as a result of the non-enzy-

matic reaction between glucose and proteins or lipids play

an important role in pathogenesis of cardiovascular dis-

eases, diabetic retinopathy, nephropathy, and neuropathy,

along with the aging process (Goldin et al. 2006). Recep-

tors for AGE (RAGE) are expressed in a wide range of

cells including endothelial cells, smooth muscle cells,

pericytes, mesangial cells, podocytes, and neurons.

Increased ROS production in these cells activates nitric

oxide synthase (NOS) and the nuclear factor-kappa B (NF-

kB) signaling pathway (Fakhruddin et al. 2017). Recent

investigations have suggested that the metabolic effects of

current anti-hyperglycemic drugs are mediated by their

anti-inflammatory effects in type 2 diabetes, which in turn

are associated with mitochondrial dynamics (Pollack et al.

2016; Wang et al. 2017). Furthermore, immunological

polarization requires metabolic reprogramming that

includes enhanced glycolysis and repurposing of the

mitochondrial respiration chain, leading to insulin resis-

tance (Van den Bossche et al. 2016; Jung et al. 2018). In

this review, we revisit the immunological aspects of the

medications used for the treatment of diabetic vascular

complications (Fig. 1).

Diacylglycerol (DAG)-protein kinase C (PKC)
pathway

PKC comprises a family of serine/threonine kinases that

are activated in response to various signals. These include

increased concentrations of DAG or calcium ions (Ca2?).

The PKC family is further sub-divided into three struc-

turally and functionally distinct sub-families comprising

the conventional (classical) isoforms (PKCa, bI, bII, and c)
activated by DAG and Ca2?), novel isoforms (PKCd, e, g,
and h) activated by DAG, and atypical isoforms (PKCf and

k/i,) that do not require DAG or Ca2? for their activation

(Isakov 2018). The increase in the concentration of the

glycolytic intermediate, dihydroxyacetone-phosphate,

mediated by elevated glucose increases the concentration

of DAG, which leads to PKC activation in diabetic vascular

complications like retinopathy, nephropathy, and neu-

ropathy (Noh and King 2007). PKC activation increases the

production of the extracellular matrix, and expression of

transforming growth factor beta 1 (TGF-b1), which plays

an important role in the progression of renal insufficiency.

The therapeutic potential of several selective inhibitors of

the PKC isoforms has been evaluated in large-scale and

long-term clinical studies in diabetic patients to inhibit the

progression of diabetic microvascular complications in

different tissues.

Ruboxistaurin (LY333531) is an orally active PKC-b
inhibitor. It has been studied in several animal models and

human clinical trials for its ability to improve microvas-

cular complications associated with diabetes. Interestingly,

the combined analysis of data from two randomized,

double-blind, placebo-controlled phase 3 trials suggested

that ruboxistaurin at a dose of 32 mg/day can reduce the

relative risk of sustained moderate visual loss by 50% in

patients with diabetic macular edema (DME) (Sheetz et al.
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Fig. 1 Available therapeutic drugs for diabetic vascular complica-

tions. High glucose and lipid toxicity leads to PKC activation,

oxidative stress, AGEs, and chronic inflammation, which have been

established targets in type 1 and type 2 diabetes. AGEs Advanced

glycation products, BK 1R Bradkinin receptor 1, FFA Free fatty acids,

Nrf2 Nuclear factor (erythroid-derived 2) like 2, PKC Protein kinase

C, RAGE Receptor of AGEs, and RAS Renin-angiotensin-system
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2013; Bansal et al. 2013). Similarly, treatment with

ruboxistaurin at 32 mg/day was reported to decrease the

urinary albumin/creatinine ratio, while having no signifi-

cant effect on the estimated glomerular filtration rate

(eGFR) in patients with diabetic nephropathy, suggesting

that ruboxistaurin may have a potential therapeutic effect

against diabetic kidney disease (Tuttle et al. 2015). In

another study, ruboxistaurin (10 mg/kg, p.o for 6 weeks)

had a nephroprotective effect in rat models of diabetes

induced by streptozotocin (STZ) by reducing the expres-

sion of TGF-b1/smad/Grb-2-related adaptor protein path-

way, which is responsible for the progressive accumulation

of extracellular matrix components that result in kidney

fibrosis (Al-Onazi et al. 2016).

Enzastaurin (LY317615) is another PKC-b inhibitor that

is orally administered. It was originally used to treat cancer

by inhibiting the binding of ATP to PKC, resulting in the

subsequent activation of PKC-b. However, its therapeutic

potential could not be proven in clinical trials due to its

limited efficacy (Bourhill et al. 2017). A preclinical report

demonstrated that enzastaurin (25 mg/kg, p.o) reduced

oxidative stress by reducing the expression of p66shc, a

66 kDa proto-oncogene Src homologous-collagen homo-

logue, and NADPH oxidase in an STZ-induced early-dia-

betic nephropathy model (Cheng et al. 2018). Oral

administration of PKC412 (midostaurin), an inhibitor of

multiple PKC isoforms (a, b, and c) and vascular

endothelial growth factor (VEGF), at doses of 100 mg/day

and 150 mg/day for 3 months reduced macular edema in

diabetic subjects by significantly decreasing retinal thick-

ening compared to the placebo group, despite concerns

related to liver toxicity associated with its systemic

administration (Campochiaro and Group 2004). Therefore,

PKCb might be the main target for treating microvascular

diseases associated with diabetes. However, inhibiting

PKC-b alone is not sufficient to delay the progression of

diabetic complications.

Oxidative stress

Traditional inducers of diabetic complications described

above, which include activation of PKC, increased polyol

pathway or hexosamine activity, and increased AGE for-

mation, stem from the common pathway of increased

mitochondrial ROS production (Brownlee 2001; Giacco

and Brownlee 2010). Increased influx of glucose in cells as

a result of increased blood glucose levels leads to excess

production of pyruvate by glycolysis, and subsequently

produces reducing equivalents, such as NADH/FADH2

(Forbes et al. 2008). This, in turn, increases proton gradient

and membrane potential (DWm), triggering the reverse

flow of electrons to complex I of the electron transport

chain (Liu et al. 2002). These well-orchestrated signaling

cascades result in ROS production. Although somewhat

controversial, the majority of superoxide production within

mitochondria is thought to be driven by the action of

complex I and III (Raha and Robinson 2000). Moreover,

diabetes is features increased fatty acid oxidation, which is

another trigger for increased mitochondrial ROS produc-

tion (Schrauwen and Hesselink 2004). The applies to the

classical sites of diabetic complications, including retinal

endothelial cells, renal mesangial cells, neurons, and vas-

cular endothelial cells (Du et al. 2000, 2003; Kiritoshi et al.

2003; Sifuentes-Franco et al. 2017).

Among several sources of ROS production in the kid-

ney, nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase 4 (NOX4) is considered the main

enzyme that induces ROS formation in the diabetic milieu.

This leads to endothelial dysfunction, inflammation, and

apoptosis (Gorin and Wauquier 2015). Furthermore, de

novo synthesis of DAG under hyperglycemic conditions

activates PKC in the glomerulus. This creates a vicious

circle dubbed the PKC-ROS loop, which causes mesangial

expansion, thickening of the glomerular basement mem-

brane, and endothelial dysfunction (Mahmoodnia et al.

2017). Numerous efforts have been made to decrease ROS

production by the modulation of Nox4. Since AMP-acti-

vated protein kinase (AMPK) is a negative regulator of

Nox4, activation of AMPK by treatment with 5-aminoim-

idazole-4-carboxamide-1-riboside (AICAR) can inhibit

high glucose-induced expression of NOX4, and apoptosis

in podocytes (Eid et al. 2010). Additionally, several studies

have demonstrated that pharmacological inhibition of

either Nox4 by GKT137831 or podocyte-specific deletion

of NOX4 can be sufficient to prevent diabetic nephropathy

in mouse models (Jha et al. 2014, 2016).

SS301 is a mitochondrion-targeted antioxidant peptide

that was reported to protect mitochondria against ROS

production, prevent apoptosis of human proximal tubule

epithelial cells exposed to high glucose conditions, and

alleviate proteinuria, glomerular hypertrophy, and tubular

injury in db/db diabetic mice (Hou et al. 2018). Addition-

ally, a recent clinical trial demonstrated that tocotrienol-

rich vitamin E from palm oil (Tocovid), which has

antioxidant and anti-inflammatory properties, significantly

reduced the AGE metabolite, Ne-carboxymethyllysine, and

reduced serum creatinine levels in diabetic patients with or

without nephropathy (Tan et al. 2018). Baicalein is a fla-

vonoid that has strong free radical scavenging activity. It

also exhibited a nephroprotective effect against high fat

diet/STZ-induced type 2 diabetic Wistar rats (Ahad et al.

2014). Furthermore, since Angiotensin II (Ang II) increases

vasoconstriction of glomerular capillary followed by

intraglomerular pressure and also acts as a regulator of

Nox4, it is considered that the nephroprotective effect of
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chymase, which is mediated by inhibitor of angiotensin

receptor or aliskiren, a direct renin inhibitor, is partially

attributed to their antioxidant potential (Park et al. 2013;

Fakhruddin et al. 2017).

Additionally, either activation of nuclear factor-ery-

throid 2 (NF-E2) p45-related factor-2 (Nrf2) or inhibition

of Keap1, a negative regulator of Nrf2, is another possible

target to reduce oxidative stress-mediated diabetic com-

plications. Nrf2 translocates into nuclei and activates the

transcription of a series of antioxidant genes, such as heme

oxygenase-1, glutathione peroxidase-2, and NAD(P)H-

quinone oxidoreductase 1. A phase II clinical trial of bar-

doxolone methyl, a potent activator of Nrf2, demonstrated

improved renal function in type 2 diabetic patients with

chronic kidney disease (Pergola et al. 2011). Although a

phase III clinical trial of bardoxolone methyl was termi-

nated early due to a higher rate of cardiovascular events in

patients randomized to the bardoxolone methyl group

compared to the placebo group (de Zeeuw et al. 2013), a

recent post-hoc analysis reported that bardoxolone methyl

increased eGFR, thereby restoring kidney function in

patients with type 2 diabetes and stage 4 chronic kidney

disease (Chin et al. 2018).

In this context, numerous antioxidants have been used as

therapeutic agents to ameliorate diabetic retinopathy. Dia-

betic retinopathy has also been significantly associated

with the oxidation of fatty acids, resulting in the increased

production of ROS by the Nox system (Calderon et al.

2017). Pharmacological agents, such as alpha-lipoic acid,

astaxanthin, resveratrol, hesperetin, and telmisartan, have

shown promising effects against diabetic retinopathy by the

activation of antioxidant mechanisms, either in vitro or

in vivo (Soufi et al. 2012; Kumar et al. 2013; Nebbioso

et al. 2013; Ola et al. 2013; Wiley et al. 2014).

Advanced glycation end products (AGEs)

In general, AGEs are the final products derived from the

Maillard reaction, which is a non-enzymatic glycation

reaction between free amino groups and sugars or alde-

hydes, as a result of exposure to high glucose and glycemic

memory (Brahma et al. 2017). AGEs mediate their effect

by binding to RAGEs on different cell types, and are

associated with several microvascular and macrovascular

complications in diabetic patients (Goldin et al. 2006).

Long-lived structural proteins like collagen, and lens

crystalline, which are modified by sequential formation of

AGEs, have been characterized by the conversion of

reversible Schiff-base adducts to covalently bound

Amadori products. These rearrangements terminate in the

formation of irreversibly bound compounds, known as

AGEs, have been implicated in the formation of plaque,

basement membrane thickness, and reduced vascular

elasticity, which result in tissue dysfunction (Ulrich and

Cerami 2001). Furthermore, the interactions of AGEs with

RAGE directly activate multiple intracellular signaling

pathways, gene expression, and secretion of pro-inflam-

matory molecules accompanied by increased production of

free radicals that contributes to the development of

pathological complications associated with diabetes

(Meenatchi et al. 2017; Rhee and Kim 2018).

Pharmacological inhibitors of AGEs have been devel-

oped and assessed in a number of preclinical and clinical

studies. Pharmacological inhibitors, such as aminoguani-

dine, pyridoxamine, benfotiamine, angiotensin-converting

enzyme inhibitors, angiotensin receptor blocker (ARB),

thiazolidinediones, statins, and ALT-711 (alagebrium)

have been evaluated for their anti-glycating effects in

humans. Aminoguanidine, a well-known anti-glycating

agent, inhibits the formation of AGEs. Unfortunately,

aminoguanidine has adverse effects on diabetic patients,

which include myocardial infarction, congestive heart

failure, arterial fibrillation, anemia, and gastrointestinal

disturbance (Barrett et al. 2017). Additionally, in spite of

several clinical studies, the use of alagebrium (formerly

known as ALT-711) developed by Alteon, Inc. to break

AGE crosslinks as a treatment for diabetic vascular com-

plication remains questionable.

Pyridoxamine, a form of vitamin B6, prevents the

transformation of protein-Amadori intermediates to pro-

tein-AGEs by trapping carbonyl intermediates. A phase 3

clinical trial of pyridoxamine (NCT02156843) was com-

pleted in December 2017. Treatment with pyridoxamine

reduced serum creatinine levels in type 1 and type 2 dia-

betic patients with nephropathy. On the other hand, the

ARB candesartan was reported to suppress levels of

oxidative markers by inhibiting the production of AGEs

and RAGE expression, thereby improving the cardiovas-

cular system of type 2 diabetic patients with essential

hypertension (Ono et al. 2013). Although many clinical

trials have been conducted to show the importance of

AGEs in diabetic complications and the benefits of anti-

AGE treatment, no compound with anti-AGEs activity is

commercially available yet. Appropriate human data

analysis should be made available for compounds with

anti-AGEs activity, which include ALT-946, OPB-9195,

tenilsetam, and LR-90 (Nenna et al. 2015). There are the

multiple adverse biological mechanisms in diabetic con-

ditions leading to vascular complications including

retinopathy, neuropathy, and neuropathy (Fig. 2).
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Chronic low-grade inflammation

Chronic low-grade inflammation in multiple organs

increases the risk of developing obesity, diabetes, cardio-

vascular diseases, and cancer. This highlights the major

role of the immune system in the etiology of metabolic

disorders (Hotamisligil 2017). Recent reports suggested

that cellular metabolism is coordinated by the immune

system for numerous immune-metabolic diseases governed

by metabolic reprogramming (Mills et al. 2016). Recently,

anti-inflammatory drugs have been used for the treatment

of diabetes and associated vascular complications. For

example, empagliflozin, a sodium-glucose co-transporter 2

(SGLT2) inhibitor, reduced low-grade inflammation and

improved endothelial function in Zucker diabetic fatty rats

(Steven et al. 2017). Thus, the well-established anti-dia-

betic drugs, which can suppress high glucose levels by

suppressing the DAG-PKC signaling pathway and oxida-

tive stress, might also regulate the immunological

responses.

The kinin-kallikrein system is associated with inflam-

mation, vascular function, blood pressure regulation, and

nociceptive responses in addition to retinal thickening and

retinal vascular permeability, which are blocked by bra-

dykinin (BK) receptor antagonists (Kita et al. 2015). Kal-

likrein is a serine protease that regulates activation of

innate inflammation and intrinsic coagulation cascade,

resulting in the cleavage of factor XII and high-molecular-

weight kininogen XII to XIIa in an intrinsic coagulation

cascade. To minimize the inflammatory responses

Fig. 2 Schematic diagram of adverse mechanisms in development of diabetic vascular complications. Excess glucose simultaneously intensifies

the DAG-PKC pathway, increases ROS produced by either NOX2 or NOX4, and circulating AGEs levels, creating a vicious cycle. Various

clinical trials have clarified that a drug for one molecular target might not be sufficient to delay the progression of diabetic complications. AGEs

Advanced glycation products, DAG Diacylglycerol, GPCR G-coupled protein receptor, IR Insulin receptor, NOX NADPH oxidase, NOS nitric

oxide synthase, Nrf2 Nuclear factor (erythroid-derived 2) like 2, PI3K Phosphoinositide 3 kinase, PLC Phospholipase C, PKC Protein kinase C,

ROS Reactive oxygen species, and RAGE Receptor of AGEs. The clinical trials for diabetic vascular complications with the compounds are

marked with the asterisks
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mediated by increased activity of kallikrein, C1-inhibitor

(C1-INH) and 1-benzyl-1H-pyrazole-4-carboxylic acid

4-carbamimidoyl-benzylamide have been developed as a

neutralizing antibody against plasma kallikrein and a small

bio-molecule inhibitor, respectively (Clermont et al. 2011).

On the other hand, blockade of BK1R, either by selective

peptide antagonists, such as R-954 and FOV-2304, or a

non-peptide antagonist, such as LF22-0542, reduced the

expression of induced NOS and cyclooxygenase-2, which

are potential mediators of inflammation and which in turn

are associated with retinal vascular abnormalities (Barrett

et al. 2017).

Activation of PKC-b in diabetic atherosclerosis increa-

ses the secretion of IL-18 by macrophages while reducing

the expression of IL18-binding protein. These events result

in increased endothelial dysfunction, monocyte adhesion,

and accelerated atherosclerosis. This effect is reportedly

restored by the administration of the PKC inhibitor

ruboxistaurin (Durpes et al. 2015). Obesity induces a

phenotypic switch from M2 to M1 macrophages, leading to

an imbalance in the ratio of M1/M2, which in turn aggra-

vates inflammation of adipose tissues and induces insulin

resistance associated with pro-inflammatory cytokines

(Lumeng et al. 2007). Paradoxically, TGF-b triggers

fibrotic responses in the diabetic kidney, such as expansion

of mesangial matrix and the increased expressions of col-

lagen IV and fibronectin. Recent studies have reported that

TGF-b has a potent anti-inflammatory effect on immune

cells, thereby conferring a protective effect against diseases

with chronic inflammation, such as diabetes. Furthermore,

insulin activates endothelial NOS by increasing its phos-

phorylation status and expression of VEGF and heme

oxygenase-1 and suppressing the expression of vascular

cell adhesion molecule 1. All these insulin-induced events

are associated with anti-inflammatory and antioxidant

effects on the endothelial cells. Taken together, these

findings suggest that insulin resistance leads to inflamma-

tion and vice versa, which further leads to tissue

dysfunction.

Lipotoxicity and glucolipotoxicity resulting from

excessive accumulation of harmful lipid species and glu-

cose, respectively, at ectopic sites that include liver, mus-

cle, and heart causes meta-inflammation, which is mediated

by mitochondrial and endoplasmic reticulum (ER) stress,

which in turn results in the recruitment of immune cells

including macrophages (Ito et al. 2016; Ryan and O’neill

2017). This leads to the activation of the inflammasome

and recruitment of inflammatory macrophages, such as T

cells, and other immune effectors (Ertunc and Hotamisligil

2016). Recruitment of M1 macrophages, interferon-gamma

(IFN-c)-secreting Th1 cells, CD8? T cells, and B cells by

adipose tissues results in local inflammation, which further

promotes systemic inflammation, and results in obesity-

induced insulin resistance by impairing the action of

insulin (McLaughlin et al. 2017). Hypoxia inducing factor-

1-alpha-pyruvate dehydrogenase kinase 1—(PDK1)-medi-

ated glycolytic reprogramming leads to elevation in the

level of lactate and is an essential process for the activation

of macrophage migration. A stable isotope-assisted meta-

bolomics analysis revealed that citrate synthesized from

pyruvate is converted to itaconate, an antimicrobial

metabolite, and is utilized for lipogenesis, rather than

citrate oxidation, while increased glutamine uptake was

shown to replenish the tricarboxylic acid cycle in

lipopolysaccharide (LPS)-activated macrophages (Semba

et al. 2016). The increased rate of aerobic glycolysis in M1

macrophages in response to LPS treatment is primarily

mediated by expression of PDK1 (Tan et al. 2015). Simi-

larly, recent metabolomic and transcriptomic analyses have

suggested that T cell (CD8?) activation requires aerobic

glycolysis along with the attenuation of mitochondrial

respiration, suggesting that metabolic reprogramming by

the pyruvate dehydrogenase (PDH) complex (PDC) could

be a potential therapeutic target in immune cells, similar to

the Warburg effect (Peng et al. 2016; Phan et al. 2016).

Recently, we also demonstrated that mitochondrial

PDC, a central metabolic node that catalyzes the conver-

sion of pyruvate to acetyl-CoA at the expense of lactate

formation, is associated with metabolic disorders including

obesity and insulin resistance and is primarily regulated by

pyruvate dehydrogenase kinase (PDK) activity in several

tissues (Park et al. 2018). A significant decrease in PDC

activity in the peripheral blood mononuclear cells of

patients with sepsis suggested that dichloroacetate, a drug

that inhibits conversion of active PDH into inactive PDH,

can be used as a therapeutic drug for the treatment of sepsis

(Nuzzo et al. 2015). It has been reported that microph-

thalmia transcription factor mediated increase in the

activity of mitochondrial PDC in mast cells plays an

important role in evoking the allergic responses (Sharkia

et al. 2017). For a long time, it has been accepted that the

prolonged ER stress plays a primary role in the develop-

ment of many diseases including obesity and chronic

inflammatory diseases, which affects the synthesis and

folding of proteins, lipid trafficking, and metabolism via

Ca2? homeostasis, which in turn is regulated by intracel-

lular c-Jun N-terminal kinase/p38 mitogen-activated pro-

tein kinase (JNK/p38 MAPK) pathways (Hotamisligil and

Davis 2016).

Mitochondrial repurposing is required for metabolic

reprogramming. This repurposing is characterized by

increased aerobic glycolysis and decreased oxidative

phosphorylation for ATP production, which in turn are

associated with a shift in the balance in mitochondrial

dynamics between mitochondrial fission and fusion (Van

den Bossche et al. 2016; Buck et al. 2016). Furthermore,
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ER stress-mediated increase in the mitochondria-associated

ER membrane has been associated with the upregulation of

inflammatory genes and VEGF in vasculature, leading to

enhanced permeability of the outer mitochondrial mem-

brane (Thoudam et al. 2016). Several clinical studies are

currently assessing the effects of metformin in this context

and evaluating whether metformin mediates its effects via

modulation of the inflammatory state. A recent study

suggested that metformin can attenuate dynamin-related

protein (Drp1)-induced mitochondrial fragmentation dur-

ing the progression of diabetes-accelerated atherosclerosis

in an AMPK-dependent manner (Wang et al. 2017). We

demonstrated that induced ER stress by high glucose and/

or insulin resistance plays a primary role in mitochondrial

dynamics governed by Ca2? level consistent with the

increased ER-mitochondria contact sites (Fig. 3a). Like-

wise, repurposing mitochondria by fission generates ROS

rather than ATP compared to elongated mitochondria

(Fig. 3b)

According to preclinical studies that assessed the anti-

inflammatory effects of previously known anti-diabetic

drugs, the doses used for treatment were much higher than

those used in clinical practice (Pollack et al. 2016).

Therefore, we should keep in mind the doses, methods, and

duration of drug administration for determining the

appropriate clinical studies and should also consider the

appropriate end-points for patient criteria.

Clinical perspective of recently developed anti-
diabetic drugs concerning diabetic microvascular
complications

Beyond the glucose lowering effect, recently developed

anti-diabetic drugs have been highlighted for their effects

on microvascular complications. Dipeptidyl peptidase-4

(DPP4) inhibitors reduce blood glucose by potentiating the

actions of the incretin hormone glucagon-like peptide 1

(GLP-1), which can be degraded by DPP4. In experimental

models of diabetic nephropathy, a series of DPP4 inhibitors

such as sitagliptin, linagliptin, vildagliptin, and gemigliptin

exhibited both a glucose lowering effect and renoprotective

effects including the prevention of tubulointerstitial fibrosis

and glomerulosclerosis and reduced albuminuria, consis-

tent with a decrease in oxidative stress markers (Alter et al.

2012; Kanasaki et al. 2014; Jung et al. 2016; Kanasaki

2018). More specifically, linagliptin was reported to ame-

liorate kidney fibrosis in type 1 diabetic mice by inhibiting

the endothelial-to-mesenchymal transition (Kanasaki et al.

2014).

Likewise, DPP4 inhibitors have a protective effect

against other microvascular complications, such as

retinopathy and neuropathy (Avogaro and Fadini 2014).

The beneficial effects might be derived from the inhibition

of inflammatory features of immune cells by decreasing

monocyte adhesion or decreasing inflammatory cytokines

such as tumor necrosis factor-alpha, interleukin (IL)-6, and

IL-1b (Avogaro and Fadini 2014). Intriguingly, DPP-4 has

protease activities on substrates other than GLP-1. These

include stromal cell-derived factor 1-alpha, brain natri-

uretic peptide, and neuropeptide Y-1. The results are

interference with vascular tone regulation, inflammation, or

cell migration (Kawanami et al. 2016), demonstrating that

the protective effect of DPP4 inhibitors on microvascular

complications could be in part achieved by these off-target

effects.

The GLP-1 receptor agonist also protects from diabetic

microvascular complications. In one study, long-term

liraglutide administration reduced diabetic nephropathy by

22%, defined as new-onset albuminuria, doubled the serum

creatinine level, and lead to an estimated glomerular fil-

tration rate below 45 mL/min/1.73 m2. It also led to the

need for continuous renal-replacement therapy or death

from renal disease (Marso et al. 2016b). This renoprotec-

tive effect was also confirmed in a clinical trial with

semaglutide (Marso et al. 2016a).

Lastly, SGLT2 inhibitors improve hyperglycemia by

increasing the excretion of urinary glucose that accompa-

nies natriuresis. This restores tubuloglomerular feedback,

which is impaired in diabetic nephropathy. Subsequently,

glomerular hyperfiltration is reduced, beneficially affecting

glomerular albumin filtration. SGLT2 inhibitors can also

reduce renal hypertrophy, albuminuria, and inflammation

by reducing glycemia (Wanner 2017). Indeed, treatment

with the SGLT2 inhibitor empagliflozin in a type 1 diabetic

animal model attenuated renal growth and albuminuria, as

well as decreased inflammatory markers in the kidney

(Vallon et al. 2014). Since the glucose lowering effect is

tightly coupled with microvascular complications, it is not

easy to dissect the glucose lowering effect from the pre-

ventive effect of microvascular complications in human

clinical trials. Nevertheless, the benefits were convincingly

proven in the recent EMPA-REG OUTCOME mega clin-

ical trial involving empagliflozin (Wanner et al. 2018). In

addition, another clinical trial with dapagliflozin demon-

strated a decreased renal composite outcome comprising a

greater than 40% decrease in eGFR to \ 60 mL/min/

1.73 m2, ESRD, or death from renal or cardiovascular

cause (Wiviott et al. 2019). Taken together, the pleiotropic

effects of new and recently developed classes of anti-dia-

betic agents provide additional benefits in microvascular

complications, especially in diabetic nephropathy. The

emerging evidences have been solidly accumulated by

succeeding large clinical trials.
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Conclusions

The currently available drugs for the treatment of type 2

diabetes lower blood glucose levels via diverse mecha-

nisms. Additionally, their anti-inflammatory effects might

be mediated via their metabolic effects on hyperglycemia

and hyperlipidemia or direct modulation of the immune

system. Metabolic reprogramming is indispensable for

distinct immune cell polarization and plasticity, which has

been implicated in mitochondrial function. Oxidative stress

mediated by mitochondrial repurposing plays a pivotal role

in the development of diabetic complications by activating

PKC and increasing the formation of AGEs, which in turn

leads to metabolic abnormalities. Therapeutic strategies to

prevent diabetic complications like retinopathy,

nephropathy, and neuropathy are multi-factorial. There-

fore, it is crucial to understand the fundamental mecha-

nisms by which regulation of mitochondrial function

allows the validation of new targets to prevent vascular

complications in addition to the intensive glycemic control

by well-known anti-diabetic drugs.
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