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Abstract Cancer can be identified as a chaotic cell state,

which breaks the rules that govern growth and reproduc-

tion, with main characteristics such as uncontrolled divi-

sion, invading other tissues, usurping resources, and

eventually killing its host. It was once believed that cancer

is caused by a progressive series of genetic aberrations, and

certain mutations of genes, including oncogenes and tumor

suppressor genes, have been identified as the cause of

cancer. However, piling evidence suggests that epigenetic

modifications working in concert with genetic mechanisms

to regulate transcriptional activity are dysregulated in many

diseases, including cancer. Cancer epigenetics explain a

wide range of heritable changes in gene expression, which

do not come from any alteration in DNA sequences.

Aberrant DNA methylation, histone modifications, and

expression of long non-coding RNAs (lncRNAs) are key

epigenetic mechanisms associated with tumor initiation,

cancer progression, and metastasis. Within the past decade,

cancer epigenetics have enabled us to develop novel

biomarkers and therapeutic target for many types of can-

cers. In this review, we will summarize the major epige-

netic changes involved in cancer biology along with

clinical and preclinical results developed as novel cancer

therapeutics.
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Introduction

According to the Centers for Disease Control and

Prevention (CDC), cancer is the second leading cause of

death in the top ten diseases, next to heart disease (Heron

et al. 2012). Although we have accumulated vast knowl-

edge about cancer, the statistics show that we are still far

from overcoming cancer. What makes cancer so hard to

overcome and how much do we know about cancer? Until

early 2000s, cancer was considered as a set of diseases

caused by the accumulation of genetic mutations that

control normal cellular homeostasis (Vogelstein et al.

2013). Oncogenes and tumor suppressor genes (TSGs) are

the most well-known classes of genes implicated in cancer

(Zhu et al. 2015). Proto-oncogenes, which normally help to

regulate cell growth or differentiation, can become onco-

genic by genetic mutation. Point mutation, chromosomal

mutation, or copy number variation can lead to oncogene

activation through amplified expression or gain-of-function

from protein structural rearrangement. Translocation of the

Philadelphia (Ph) chromosome in chronic myeloid leuke-

mia (CML) was discovered in 1960 (Nowell 2007).

Translocation of proto-oncogene ABL at 9q34 to BCR on

chromosome 22 can produce a fusion gene called BCR-

ABL1, coding for a hybrid oncoprotein (Rowley 2001;

Imbach 2014). BCR-ABL1 fusion oncoprotein is a con-

stitutively active tyrosine kinase signaling protein, causing

the cell to divide uncontrollably and therefore develop

CML. Ras mutation is another most well-known gain-of-

function mutation identified in human cancer (Bos 1989;

Fernández-Medarde and Santos 2011; Prior et al. 2012).

RAS proteins (KRAS, NRAS, and HRAS) function as

GDP–GTP-regulated binary on–off switches, which regu-

late cytoplasmic signaling networks that are responsible for

proliferation and cell survival (Bos 1989). Mutation of
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RAS proteins at 12, 13, or 61 codon enhances the binding

of GTP to the Ras protein, resulting in constitutive acti-

vation of Ras, which is associated with hyperproliferative

developmental disorders and cancer. Among three iso-

forms, K-Ras has been shown to be the most frequently

mutated isoform in most cancers. K-Ras gene is found to be

mutated in 22% of all tumors, especially 90% of pancreatic

tumors (Forbes et al. 2011).

In contrast to oncogenes that are activated mainly by

gain-of-function mutations, tumor suppressors lose their

functions (loss-of-function mutation) through deletions or

point mutations. The retinoblastoma protein (RB) is a

tumor suppressor protein, which mutation was originally

identified in a rare childhood cancer retinoblastoma

(Knudson 1971). Rb can suppress cellular proliferation by

regulating the E2F transcription factor, and the Rb/E2F

pathway plays a critical role in the initiation of DNA

replication (Nevins 2001). Later studies have identified

complex molecular functions of Rb through interactions

with various proteins, and the Rb/E2F pathway was found

to be functionally inactivated in virtually all human cancers

(Chinnam and Goodrich 2011; Dyson 2016).

The functions of proto-oncogene proteins are to enhance

cell division or inhibit cell death, while the functions of

tumor suppressors are normally to prevent cell division or

cause cell death. Therefore, either gain-of-function muta-

tions of proto-oncogenes or loss-of-function mutations of

tumor suppressors could initiate cancer through uncon-

trolled cell growth and defective apoptosis (Zhu et al.

2015). After the Human Genome Project (HGP) was

completed, we achieved a great deal in human genetics,

and it became the starting point for human genomics

(Gonzaga 2012; Hood and Rowen 2013). Moreover, large-

scale cancer genome projects, such as The Cancer Genome

Atlas (TCGA), the Wellcome Trust Sanger Institute’s

Cancer Genome Project, and the International Cancer

Genome Consortium (ICGC), have shed light on cancer

genomics. In addition, somatic mutations from thousands

of tumors have provided insights into cancer development

processes along with available therapeutic targets for can-

cer (McLendon et al. 2008; Hudson et al. 2010; Pleasance

et al. 2010).

Achievements of HGP and other big studies have been

powerful; however, the sequence itself does not explain

how the genome is packaged into chromatin and provide

differential expression of genes for proliferation, develop-

ment, and differentiation. Therefore, the current paradigm

to explain cancer development has now expanded to cancer

genetics and epigenetics. While cancer genetics focus on

abnormal gene expression, including altered protein

expression by either deletion or amplification mutations,

cancer epigenetics focus on the regulation of gene

expression without changing the genome sequence. Altered

gene expression in cancer through epigenetic pathways is

very complex and is determined by chromatin structure

changes, including DNA methylation, histone variants and

various modifications, nucleosome remodeling, and small

non-coding RNAs (Dawson and Kouzarides 2012). This

review highlights the basic principles of epigenetic path-

ways involved in cancer development along with recent

progress in clinical and preclinical studies targeting cancer

epigenetics.

DNA methylation

Epigenetic control is the way to determine which genes

should be turned on or off for normal development and in

response to the environment. They are mostly regulated by

groups of proteins called ‘epigenetic writers’, ‘epigenetic

readers’, and ‘epigenetic erasers.’ The writer is the enzyme

that creates modifications around the genome. This change

is recognized by the reader. Finally, when the epigenetic

change is no longer needed, erasers can remove it.

DNA methylation was the first epigenetic modification

found in humans in the early 1980s (Cooper 1983; Doerfler

1983). DNA methylation occurs in cytosines of CpG

(Cytosine-phosphate-Guanine) dinucleotide sequences to

create 5-methylcytosine (5mC), which is catalyzed by

DNA methyltransferases (DNMTs) using S-adenyl

methionine (SAM) as the methyl donor. Promoter regions

containing higher GC content are called CpG islands

(CGIs). Hypermethylation of CGIs occurs in heterochro-

matin regions, while hypomethylation commonly occurs in

actively expressed genes (Ohm et al. 2007; Meissner et al.

2008). DNA methylation of CGIs can be found at many

different locations within the genome, including cen-

tromeres, telomeres, and inactive X-chromosomes (Vera

et al. 2008; Pasque et al. 2018; Skakkebæk et al. 2018).

There are three identified DNMT enzymes, which are

DNMT1, DNMT3A, and DNMT3B. DNMT3A and

DNMT3B are de novo methyltransferases that are

responsible for the initial CpG methylation during

embryogenesis (Okano et al. 1998). DNMT1 maintains the

methylation pattern during chromosome replication by

preferential methylation on hemimethylated CpGs. After

CpG methylation, 5mC can become a platform for several

methyl-CpG-binding domain (MBD) proteins, such as

MBD1, MBD2, MBD3, MBD4, and MeCP2, for further

chromatin-templated processes (Mashimo et al. 2013).

There are other MBD-containing proteins, such as MBD5/

6, SETDB1/2, and BAZ2A/B. The MBD proteins cooper-

ate with other epigenetic proteins like histone modifying

enzymes or chromatin remodeling complexes at the 5mC

region and facilitate transcriptional repression (Du et al.

2015a).
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Although direct removal of DNA methylation has not

been detected so far, there are a few ways to remove DNA

methylation. First, passive DNA demethylation through

steady dilution of methylation patterns can happen by

replication (Kriukiene et al. 2012). Secondly, ten–eleven

translocation (TET 1–3) enzymes can oxidize 5mCs to

create 5-hydroxymethylcytosine (5hmC), and subsequently

formyl-(5-fc) and carboxyl-(5caC) derivatives are formed.

The derivatives finally can be excised by the DNA repair

protein thymine glycosylase (TDG) to be replaced by

unmodified cytosine via the base excision repair (BER)

pathway (Kohli and Zhang 2013).

Aberrant DNA methylation patterns, both hyper- and

hypo-methylation, have been reported in many different

types of cancer, including prostate, breast, gastric, liver,

lung, glioblastoma, and leukemia (Sun et al. 2010; Barbano

et al. 2013; Chao et al. 2013; Mehta et al. 2015; Liu and

Brenner 2016; Cecotka and Polanska 2018; Klughammer

et al. 2018). First cancer implication was the global

hypomethylation at CpG sites of DNA repetitive elements

identified in tumor cells (Bedford and van Helden 1987;

Lin et al. 2001). Loss of imprinting at the insulin-like

growth factor 2 (IGF2) gene locus is frequently observed in

cancer and is provided as a colon cancer diagnosis (Cui

et al. 2002). Conversely, hypermethylation of specific

genes have also been identified to explain the role of

DNMTs in tumorigenesis. Hypermethylation of CpG

islands in TSG promoters, including Braca1, Rb, or p53

promoters, leads to inactivation of each protein and can

enhance cancer development (Rideout et al. 1991; Sakai

et al. 1991; Baldwin et al. 2000). Alteration of normal

DNA methylation has been well profiled for over 25 years

of epigenetic studies and provides its application for

diagnostic and therapeutic targets (Heyn and Esteller

2012). Although the exact cause of deregulated DNA

methylation patterns in cancer is not yet well established,

an accumulation of data has shown that either mutation or

overexpression of DNMT proteins and MBD protein is

correlated with tumorigenesis (Du et al. 2015b; Spencer

et al. 2017). In addition, several reports have emerged that

mutations of TET family genes were found in numerous

hematological malignancies (Cimmino et al. 2011; Naka-

jima and Kunimoto 2014).

Targeting of aberrant DNA methylation patterns has

been attempted, and two cytidine analogs, 5-azacytidine/

vidaza (AZA) and 5-aza-20-deoxycytidine/dacogen (DAC),

have been approved for the treatment of myelodysplastic

syndromes (MDS) by the FDA (Raj and Mufti 2006;

Santos et al. 2010). These two compounds form an irre-

versible covalent complex with DNMT1 and trigger pro-

teasome-mediated DNMT1 degradation. Second-

generation analog guadecitabine (SGI-110), which is an

active metabolite of decitabine, is being tested in clinical

trial for MDS and acute myeloid leukemia (AML) (Kan-

tarjian et al. 2017). Although the role of the TET family in

several cancers has been suggested from recent studies, a

TET protein inhibitor has yet to be tested for cancer

treatment.

Writers, readers, and eraser enzymes for DNA methy-

lation and inhibitors are summarized in Table 1.

Histone modification-lysine acetylation

DNA within eukaryotic cells is packaged as chromatin, and

the histone octamer is the central component of the

nucleosomal subunit. The histone subunit in the nucleo-

some possesses a characteristic tail, which contains specific

amino acid residues for covalent posttranslational modifi-

cations (PTMs), such as acetylation, methylation, phos-

phorylation, ubiquitylation, sumoylation, or ADP

ribosylation. Each epigenetic PTM cooperates to regulate

chromatin states.

Histone acetylation is crucial for active gene transcrip-

tion to influence the compaction state of chromatin by

neutralizing basic charges on unmodified lysine residues,

decreasing the electrostatic interaction between negatively

charged DNA and histones. Histone acetylation occurs on

the lysine residue, balanced by two enzymes: histone

acetyltransferase (HAT) and histone deacetylases (HDAC).

There are primarily three families of HAT enzymes,

including GNAT family (Gcn5, PCAF, Hat1), MYST

Table 1 Epigenetic drugs against DNA methylation changes

Writer (DNMTs) Reader (MBD family) Eraser (TET family)

Enzyme DNMT1, DNMT3a, DNMT3b MBD1, MBD2, MBD3, MBD4, MeCP2, MBD5/6, SETDB1/2, BAZ2A/B TET1, TET2, TET3

Drugs 5-azacytidine (approved)

5-aza-20-deoxycytidine
(approved)

SGI-110 (clinical trials)

Enzymes for the drug target are highlighted in bold
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family (MOZ/Morf, Ybf2, Sas2, Tip60), and CBP/P300

family (p300/CBP, Taf1) (Marmorstein and Roth 2001).

These enzymes are also known to acetylate hundreds of

other proteins besides histones, such as p53, sTAT3,

GATA, etc., and have numerous biological functions,

including regulation of protein stability, DNA binding

affinity, and protein interactions (Spange et al. 2009). As

epigenetic erasers, 18 HDAC isoforms have been identified

in humans. Class I (HDACs 1, 2, 3, 8), Class IIa (HDACs

4, 5, 7, 9), Class IIb (HDACs 6, 10), and Class IV

(HDAC11) are classical HDAC families that require a zinc

ion (Zn2?) for their actions, whereas Class III HDACs

(SIRT1 to 7) require NAD? and are Zn2?-independent

(Zhang et al. 2015). Aberrant histone lysine acetylation

patterns, especially loss of histone H4 lysine (K) 16

acetylation, have been reported as a common hallmark of

human cancer (Fraga et al. 2005). There are numerous

reports showing involvement of HAT mutation or loss-of-

function with many diseases, including cancer. Truncation

mutations and in-frame insertion mutations of EP300 have

been identified in several different cancers (Gayther et al.

2000). Further, it has been reported that the genes for p300,

CBP, MOZ, and MORF are rearranged in recurrent leu-

kemia-associated chromosomal abnormalities (Yang

2004). Although involvement of dysregulated HAT in

many diseases is becoming clear, clinical application of the

HAT inhibitor was not successful.

In addition to histone deacetylation, HDACs have other

roles in association with several transcription factors,

tumor suppressors, and oncogenes. For example, HDAC1

forms a complex with Rb and E2F transcription factors and

regulates gene expression of the cell cycle (Brehm et al.

1998; Kennedy et al. 2001). Moreover, increased expres-

sion of HDAC family proteins has been observed in many

cancers, including B cell acute lymphoblastic leukemia

(ALL) and T cell ALL, indicating the role of histone

acetylation in various leukemogenesis (Moreno et al. 2010;

Tao et al. 2013). Although HAT inhibitors were not clin-

ically successful, HDACs have become great targets for

anticancer agents. Five classes of compounds—(I) hydrox-

amic acids; (II) short chain fatty acids; (III) benzamides;

(IV) cyclic tetrapeptides; and (V) sirtuin inhibitors—are

currently developed as anticancer reagent, and they are

either isoform-selective or pan-inhibitors. Among hydrox-

amates, SAHA, Belinostat and Panobinostat are approved

for T cell lymphoma. Romidespsin is a cyclicpeptide

HDAC inhibitor which is approved for cutaneous T cell

lymphoma (CTCL) and peripheral T-cell lymphoma

(PTCL). The short chain fatty acid, Valproic acid, is

approved for epilepsy. Many other classes of HDAC

inhibitors are in different clinical stages for various cancers

(Eckschlager et al. 2017).

Acetylated histone can serve as a binding site for reg-

ulatory factors, chromatin-remodeling complexes, and

especially for bromodomain-containing proteins, which are

known as histone acetylation readers. The human genome

encodes 61 bromodomains present in 46 proteins, which

are HATs, histone methyltransferases (HMTs), and tran-

scription initiation factors. Among these BRD proteins,

Bromodomain and extra-terminal (BET) proteins (BRD2,

BRD3, BRD4, BRDT) are highly associated with several

types of cancer (Padmanabhan et al. 2016). Small molecule

triazolodiazepine-based inhibitors of the BET bromod-

omain, JQ1 and I-BET, were first developed (Pérez-Salvia

and Esteller 2017). They selectively bind to bromodomains

BD1 and BD2 of the BET family. BET inhibitors have

shown great efficacy against human and murine MLL-fu-

sion leukemic cell lines and mouse leukemia models. From

further mechanistic studies, BET inhibition has been shown

to suppress cancer through inhibition of Myc expression,

targeting JAK-STAT, NF-jB pathway, and p53 acetylation

(Chan et al. 2015; Huang et al. 2017; Xu and Vakoc 2017).

Currently, many different BET inhibitors are in clinical

trial phase I or II for various different types of cancers.

Enzymes for histone acetylation, deacetylation, and readers

are summarized in Table 2.

Histone modification-lysine and arginine
methylation

Another well-known histone modification is histone

methylation on arginine and lysine residues. Different from

histone acetylation, methylation does not change the

physical interaction between DNA and histone by neu-

tralizing the histone charge. Further, methylation of

specific lysine or arginine residues refers to either an active

or repressive gene expression. Lysine methylation can exist

in a mono-, di-, or tri-methylated state, implying the

complexity of the regulatory mechanisms. Generally, H3

lysine 4 (H3K4), H3K36, and H3K79 methylation is cor-

related with active gene expression, while di- and tri-

methylation of H3K9, H3K27, and H3K20 are linked to

gene repression (Vermeulen et al. 2010).

Similar to other epigenetic modifications, histone

methylation is also regulated by writer (lysine methyl-

transferases: KMTs), reader, and eraser (lysine demethy-

lases: KDMs) proteins. KMTs are comprised of 51 SET

(Su (var)3-9, Enhancer of Zeste, Trithorax) domain KMTs

and one non-SET domain lysine HMT, known as DOT1L

(Qian and Zhou 2006). DOT1L contains a catalytic

domain, which is structurally related to the domains of

protein arginine methyltransferases (Nguyen and Zhang

2011). SET-domain proteins transfer a methyl group from

S-adenosyl-L-methionine (SAM) to the amino group of a
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lysine residue on the histone or other protein, leaving a

methylated lysine residue and the cofactor byproduct

S-adenosyl-L-homocysteine (SAH). Most KMTs can

methylate several non-histone proteins, including p53,

PCNA, STAT3, RARa, E2F1, FOXO3, DNMT1, and

KMT1c (Moore and Gozani 2014). KDMs are comprised

of two families of proteins based on the organization of

their catalytic domains and the type of oxidative mecha-

nisms for the demethylation reaction. The first group is the

Jumonji (Jmjc) domain-containing KDM family, which

utilizes 2-oxoglutarate (2-OG; a-ketoglutarate) as a co-

factor. The second group is KDM1A (LSD1, BHC110,

AOF2) and KDM1B (LSD2), which utilizes flavin adenine

dinucleotide (FAD) as a co-factor for demethylation

activity.

Aberrant histone lysine methylation patterns have been

identified in various human cancers. For example, low

levels of H3K4me2 correlated with low survival rates in

both lung and kidney cancers and was also associated with

adverse prognosis in non-small cell lung carcinomas

(NSCLC), hepatocellular carcinomas (HCC), and breast

cancers (Barlési et al. 2007; Elsheikh et al. 2009; Seligson

et al. 2009). Either up- or down-regulated KMTs frequently

found in cancer and KDMs are involved in tumorigenesis

by several other mechanisms, including alteration of his-

tone or non-histone protein methylation (Varier and Tim-

mers 2011; Colón-Bolea and Crespo 2014). Dysregulation

of H3K27me3 is frequently observed in many types of

cancers, and overexpression of EZh2 or mutations in the

SET domain of EZH2 have been reported in lymphomas,

causing an increase of H3K27me3 (Pawlyn et al. 2017;

Nienstedt et al. 2018). The histone demethylase LSD1

(KDM1A) is highly expressed in several cancers and is

specifically required for terminal differentiation of

hematopoietic cells (Sprüssel et al. 2012). By histone

H3K4 1/2 demethylase activity, LSD1 (KDM1A) represses

gene expression, but LSD1 can stimulate transcription

through interaction with the androgen receptor (Metzger

et al. 2005). Several LSD1 inhibitors, such as ORY-1001 or

GSK2879552, have been developed and are under clinical

trial for AML treatment (Maes et al. 2015).

Similar to any other PTMs, histone lysine methylation

can serve as a recognition site for the ‘reader’ or effector

proteins. The malignant brain tumor (MBT) domain pro-

tein, PHD (plant homeodomain) proteins, chromodomain

proteins, PWWP domain, and WD40 repeat proteins are

identified as histone lysine methylation readers (Herold

et al. 2011). The inhibitor of growth (ING) family of tumor

suppressor genes (ING1-5) contains a C-terminal PHD,

which is known to preferentially bind di- and tri-methy-

lated H3K4 and mediate many cellular processes (Cham-

pagne and Kutateladze 2009). Heterochromatin protein 1

(HP1) is another example of a methyl-lysine reader. Three

isoforms of HP1 can interact with methylated H3K9 via its

chromodomain. Much evidence has shown that not only

alteration of histone modifying enzyme levels, but also

alteration of methyl-lysine reader expression has cancer

implications. For example, downregulation of HP1a has

been linked to the higher invasive potential of breast cancer

cells and papillary thyroid carcinoma (Wasenius et al.

2003; Norwood et al. 2006; De Koning et al. 2009).

Alterations in histone lysine methylation are tightly

linked to the development of cancer and are suggested as

potential cancer therapeutic targets. Many KMT inhibitors,

such as DOT1L, EZH2, and SUV 39H1 inhibitors, are in

preclinical or clinical trials. Many groups have developed

EZH2 inhibitors, and among them, EPZ-6438 is in phase

I/II trial for refractory B-cell lymphoma (Knutson et al.

2014). In addition, the DOT1L inhibitor EPZ-5676 is in

phase I clinical trial for refractory AML and ALL (Lillico

et al. 2018; Stein et al. 2018). However, the search for

KMT or KDM inhibitors is still in its very first stages.

Table 2 Epigenetic drugs against histone acetylation changes

Writer (HATs) Reader (BRD family) Eraser (HDACs)

Enzyme GNAT family (Gcn5, PCAF, Hat1)

MYST family (MOZ/Morf, Ybf2, Sas2, Tip60)

CBP/P300 family (p300/CBP, Taf1)

BET proteins (BRD2, BRD3, BRD4, BRDT) Class I (HDACs 1, 2, 3, 8)

Class IIa (HDACs 4, 5, 7, 9)

Class IIb (HDACs 6, 10)

Class IV (HDAC11)

Class III HDACs (SIRT1 to 7)

Drugs JQ1 (preclinical), I-BET762(Clinical trials) Belinostat (approved)

SAHA (approved)

Romidepsin (approved)

Valproic acid (approved)

Enzymes for the drug target are highlighted in bold
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Histone arginine methylation is similar to lysine

methylation in many ways. Protein arginine methyltrans-

ferases (PRMTs) also utilize SAM to transfer a methyl

group to the guanidine nitrogen atoms of arginine to form

methylarginines and SAH. There are three different forms

of methylarginines: x-NG-monomethylarginine (MMA),

x-NG,NG-asymmetric dimethylarginine (aDMA), and

u-NG,N0G-symmetric dimethylarginine (sDMA). PRMTs

can be subcategorized into three groups by their catalytic

activity; type I (PRMT1, PRMT2, PRMT3, PRMT4,

PRMT6, and PRMT8) and type II (PRMT5 and PRMT9)

enzymes initially forms MMA as an intermediate before

the establishment of aDMA or sDMA, respectively, while

type III (PRMT7) enzymes only catalyze to form MMA

(Yang and Bedford 2013). Generally, H4R3me2a,

H3R2me2s, H3R17me2a, and H3R26me2a are correlated

with active gene expression, while H3R2me2a,

H3R8me2a, H3R8me2s, and H4R3me2s are linked to gene

repression. PRMTs also can methylate many non-histone

proteins that have arginine- and glycine-rich (GAR) motifs.

RNA-binding proteins (RBPs), Tumor suppressor

53-binding protein 1 (53BP1), and many other proteins

have been identified as substrates for PRMTs, and arginine

methylation of these proteins is involved in various bio-

logical processes, such as transcription, cell signaling,

mRNA translation, DNA damage signaling, receptor traf-

ficking, protein stability, and pre-mRNA splicing (Wei

et al. 2014).

Arginine methylation is a very stable modification;

therefore, the existence of direct arginine demethylases is

still controversial. Jumonji domain-containing protein,

JmjD6, was reported to demethylate H3R2me2 and

H4R3me2, but later it was identified as a lysine hydroxy-

lase (Webby et al. 2009). Moreover, a recent study showed

that one of peptidylarginine deiminases (PAIDs) protein

PADI4 was recruited to the pS2 promoter region just prior

to H3R17me2a loss, suggesting that it is responsible for

removing this methyl mark (Denis et al. 2009). However,

PADIs catalyze the deimination of arginine; therefore, they

are not considered as ‘‘true’’ demethylases.

As epigenetic readers of arginine methylation, Tudor

domain-containing proteins, such as SMN (Survival of

motor neuron), SPF30 (Splicing factor 30), and TDRD1/2/

3/6/9/11, have been identified to interact with methyl-

arginine residues (Gayatri and Bedford 2014). However,

the biological role of the interaction between these two is

still unclear.

Aberrant expression of PRMT or dysregulation of

PRMT activity are associated with several diseases,

including many types of cancers. For example, PRMT1 is

the major PRMT, which is responsible for 90% of arginine

methylation, and it is upregulated in breast cancer, bladder

cancer, pediatric ALL, etc. (Yoshimatsu et al. 2011; Zou

et al. 2012). Most other PRMTs are also found to be

upregulated in various types of cancers; as a result, PRMTs

are attractive cancer targets. Recently, a few PRMT inhi-

bitors, such as the PRMT5 selective inhibitor

(EPZ015666), have been generated and demonstrate

promising therapeutic results against specific cancer types

in pre-clinical trials (Chen et al. 2017). Enzymes for his-

tone methylation, demethylation, and readers are summa-

rized in Tables 3 and 4.

Histone modification-phosphorylation,
ubiquitination, and histone variant

Protein phosphorylation is a very important PTM involved

in many cellular processes. Proteins with specific amino

acid residues, such as serine, threonine, and tyrosine resi-

dues, are phosphorylated by a protein kinase by the addi-

tion of a covalently bound phosphate group.

Table 3 Drugs against histone lysine methylation changes

Writer (KMTs) Reader Eraser (KDMs)

Enzyme KMT1 (SUV 39H1, SUV 39H2, G9a, GLP, SET DB1, SET DB2)

KMT2 (MLL 1–5, hSET1A, hSET1B, ASH2)

KMT3 (SET2, NSD1, SMYD1-3)

KMT4 (DOT1L)

KMT6 (EZH1, EZH2)

KMT7 (SET7/9)

KMT8 (PRDM2/RIZ1)

MBT family

PHD fingers proteins

Chromodomain proteins

PWWP domain proteins

WD40 repeat proteins

KDM1 (KDM1A, KDM1B)

KDM2 (JHDM1A, JHDM1B)

KDM3 (JHDM2A, JHDM2B)

KDM4 (JMJD2A-2D)

KDM5 (JARID1A-1D)

KDM6 (UTX, JMJD3)

KDM7 (JHDM1D, PHF2, PHF8)

Drugs EPZ6438 (phase I/II)

EPZ5676 (phase I)

ORY-1001 (phase I/IIa)

GSK2879552 (phase I)

Enzymes for the drug target are highlighted in bold
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Phosphorylation alters the structural conformation of a

protein, causing the target protein to become either acti-

vated or deactivated. Protein kinases and phosphatases

work independently and balance modifications to regulate

the function of proteins. The most well-characterized his-

tone phosphorylation is H3S10. S28 and T11 phosphory-

lation are known for transcriptional regulation and mitosis.

Aurora B kinase, mitogen and stress-activated protein

kinases 1 and 2 (MSK1 and MSK2), Ribosomal s6 kinase 2

(RSK2) IjB kinase-a (IKK-a), or PIM1 kinase can phos-

phorylate H3S10 in a DNA-context manner upon different

stimuli for immediate-early gene expression (Nowak and

Corces 2004). In fact, several studies reported that Aurora

B is overexpressed in a variety of human cancers, partic-

ularly in colorectal and breast cancer (Ota et al. 2002;

Tanaka et al. 2008). Histone phosphorylation, in coopera-

tion with other histone modifications, plays a crucial role in

DNA damage response pathways and participates in

recruitment of downstream DNA damage response and

repair proteins, as well as in the amplification of DNA

damage signals. The histone H2A variant, H2AX, is

rapidly phosphorylated at S139 by ATM, DNA PK kinases,

or ATR upon DNA damage stresses and spread over

megabases from the break site, which serves as a platform

for recruiting other DNA damage response proteins,

including 53BP1 (p53-binding protein 1), BRCA1, and

NBS1 (Turinetto and Giachino 2015). H2AX gene is fre-

quently lost in cancer, and H2AX deficiency can lead to

increased sensitivity to ionizing radiation, which exhibit

genomic instability and enhanced susceptibility to cancer

(Georgoulis et al. 2017). However, epigenetic drugs tar-

geting histone phosphorylation have yet to be established.

Ubiquitin is a small (8.5 kDa) regulatory protein, and

ubiquitination is the addition of ubiquitin to the lysine

residue of a substrate protein. The most well-known role of

protein ubiquitination is to degrade target protein primarily

via the proteasomal degradation pathway (Swatek and

Komander 2016). Histones, especially H2A and H2B, are

well-known substrates for ubiquitination. All four histones

and linker histone H1 can be ubiquitinated, and a single

ubiquitin moiety conjugated to H2A-K119 (ubH2A) and

H2B k120 (ubH2B) is the most dominant form. There are

several histone ubiquitin ligases and deubiquitinating

enzymes (DUBs) identified, and histone ubiquitination

plays critical roles, including transcription, maintenance of

chromatin structure, and DNA repair (Cao and Yan 2012).

H2Bub is highly associated with active gene expression,

while H2Aub plays a role in transcriptional silencing with

other repressive histone modifying enzyme complexes,

such as polycomb repressive complex 1 (PRC1) (Minsky

et al. 2008; Zhou et al. 2008). Conversely, H2A DUBs are

often required for gene activation, indicating the impor-

tance of histone ubiquitination in gene expression (Joo

et al. 2007; Zhu et al. 2007). Histone ubiquitination also

plays an important role in DNA damage. When DNA

damage causes DNA double-strand breaks (DSB), histone

variant H2AX is rapidly phosphorylated and recruits DNA

damage response regulators followed by subsequent

recruitment of histone ubiquitin ligases RNF8 and

RNF168, which catalyze the K63-linked polyubiquitination

chain formation of histone H2A and H2AX (Uckelmann

and Sixma 2017). Aberrant histone ubiquitination, such as

down-regulated H2Aub and H2Bub, was found in several

cancers (Zhu et al. 2007; Prenzel et al. 2011). To date,

there are no therapeutic reagents targeting ubiquitination or

deubiquitination. Very little is known about histone mod-

ification through the small ubiquitin-related modifier

(SUMO) or neddylation. SUMO shares 18% identity with

ubiquitin, and NEDD8 is 90% homologous to ubiquitin.

Histone H4 can be modified by SUMO family proteins and

can associate with transcriptional repression through

recruitment of HDAC1 and HP1 (Shiio and Eisenman

2003). Histone neddylation to H2A antagonizes H2A

ubiquitination, which negatively regulates DNA damage

repair pathways (Li et al. 2014). Although SUMO or

Nedd8 share a similar structure with ubiquitin, they play

distinctive epigenetic roles in cooperation with other

modifiers, indicating the complexity of regulating the epi-

genetic process.

Histone variants are proteins that substitute for the core

canonical histones (H3, H4, H2A, H2B) in nucleosomes in

eukaryotes and often confer specific structural and func-

tional features. Unlike epigenetic regulation of ‘canonical’

histones through posttranslational modification, histone

variants work through specific deposition and removal

machineries. They have important roles in early embryonic

Table 4 Drugs against histone arginine methylation changes

Writer (PRMTs) Reader Eraser

Enzyme PRMT1, PRMT2, PRMT3, PRMT4, PRMT5, PRMT6, PRMT7, PRMT8, PRMT9 Tudor domain proteins JmjD6

PAID

Drugs EPZ015666 (preclinical)

Enzymes for the drug target are highlighted in bold
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development, chromosome segregation, transcriptional

regulation, DNA repair, and other processes. There are

interesting reports for histone variants macroH2A1 asso-

ciation with cancer. Reduction of macroH2A1.1 protein is

negatively associated with lung cancer recurrence, and

later reports have shown that alternative splicing of mac-

roH2A1 regulates cancer cell proliferation (Sporn et al.

2009; Novikov et al. 2011). There is a growing awareness

that histone modifications and chromatin organization

influence pre-mRNA splicing and its epigenetic role in

cancer (Khan et al. 2012). It suggests that not only epige-

netic modifying enzyme, but also the enzyme for pre-

mRNA splicing could be epigenetic therapeutic targets.

Conclusion

Involvement of epigenetic factors in cancer development is

now widely accepted. We have accumulated vast knowl-

edge on how epigenetic aberration can affect cancer

Me Me Me Me Me Me Me Me Me
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Fig. 1 Graphic summary of epigenetic alterations involved in cancer and available drugs targeting epigenetic mechanisms. a Tumorigenesis

through aberrant methylation of CpG islands. DNA methylation can be written by DNMTs (in blue), recognized by MBD proteins (in green) and

erased by TET proteins (in red). Epigenetic drugs targeting DNMT1 are approved by the FDA. b Tumorigenesis through aberrant histone

modifications. Writers of each histone modification such as histone lysine methyltransferase (KMT), histone acetyltransferase (HAT), ubiquitin

E3 ligases (E3 lig), protein arginine methyltransferase (PRMT), kinase are shown in blue. Readers such as methyl-lysine binding protein, tudor

domain protein, bromodomain and extra terminal domain family member (BRD) are shown in green. Erasers such as histone deacetylase

(HDAC), histone lysine demethylase (KDM), and deubiquitinating enzyme (DUB), phosphatase are shown in red. Canonical histone is shown in

blue and histone variants is shown in brown. KMT inhibitors, KDM1 inhibitors, BET inhibitors, HDAC inhibitors are either approved or under

clinical trials. Apart from the targets shown here other possible epigenetic targets for drug development are also available. AC acetylation, ME

methylation, Ub ubiquitination, P phosphorylation
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initiation, progression, and metastasis. In this review, we

have discussed basic epigenetics and its alteration in cancer

as well as available drugs targeting epigenetic mechanisms.

Major epigenetic modifications as a cancer target are

summarized in Fig. 1. We focused on DNA methylation

(Fig. 1a) and histone modification (Fig. 1b) among various

other mechanisms and summarized current studies

regarding how genetic alteration is linked to abnormal

epigenetic changes. We should note that each epigenetic

modification is not a separate or mutually exclusive event,

but rather they are networking with each other to cause

subsequent changes. For example, double-strand break

from DNA damage rapidly enhances histone H2A and

H2AX phosphorylation. In addition, other histone modifi-

cations, such as histone acetylation, and ubiquitination

follow for further recruitment of DNA damage repair

regulatory proteins.

Along with the accumulation of knowledge about the

biology and function of epigenetic modifications and their

regulatory mechanisms in cancer, four anti-cancer drugs

that target these mechanisms have been currently approved,

and many others are in clinical trials. However, use of these

drugs have a few limitations. As most of the histone

modifying enzymes have several different substrates, use

of enzyme inhibitors can have limitation in substrate

specificity. Conversely, targeting non-histone proteins for

cancer therapy can be another strategy for cancer drug

development. As cancer results from a series of genetic and

epigenetic molecular events, overcoming the disease would

need the use of a combination of multiple genetic and

epigenetic targets. To date, the only approved epigenetic

anticancer agents are HDAC inhibitors and DNMT inhi-

bitors. Our next challenge is to develop additional drugs

targeting other classes of epigenetic enzymes and to

attempt combinations with those developed to achieve

better substrate and cancer specificity.
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