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Abstract Communication between tumor cells and stro-

mal cells is crucial to tumor development and progression.

Fibroblasts and macrophages are the most common stromal

cells in the tumor microenvironment. Endothelial cells are

another type of stromal cell in the tumor microenvironment

required for angiogenesis via interaction with tumor cells.

Tumor angiogenesis provides not only oxygen and nutri-

ents for tumor cells but also the necessary anchorage to

facilitate tumor metastasis. The present review summarizes

studies on the crosstalk between cancer cells and

endothelial cells with a focus on implications for tumor

progression. The following four categories are discussed in

this review: (1) cell–cell communication in tumor

microenvironment; (2) induction of metastasis by interac-

tion between cancer cells and endothelial cells; (3) angio-

genesis induced by tumor cells; (4) therapeutic strategies

targeting adhesion and signaling molecules as well as

chemokines. This review provides useful information

highlighting the process of cancer aggressiveness affected

by the crosstalk between cancer cells and endothelial cells,

and suggests therapeutic strategies against tumor

progression.
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Introduction

The tumor microenvironment is complex, consisting of

many cell types and factors (O’Malley et al. 2016). Tumor

progression is induced by the activation of adjacent stromal

cells in the tumor microenvironment (Li et al. 2007; Ege-

blad et al. 2010). Endothelial cells are a type of stromal cell

present in the tumor microenvironment. Tumor cells pen-

etrate the normal epithelium and interact with the sur-

rounding endothelial cells to produce cytokines and growth

factors that affect cells in the microenvironment (Brenner

et al. 2010).

Metastasis is the main cause of mortality in cancer

patients. A major challenge for cancer therapy is defining

an appropriate strategy to control or inhibit metastasis.

Adhesion to the endothelium of tumor cells affects the

formation of metastases in which many adhesion molecules

and chemokines are involved (Iiizumi et al. 2007). Cancer

cell invasion is crucial for the metastatic spread of locally

proliferating tumors and is a step towards the development

of a life-threatening disease (Chambers et al. 2002; Keleg

et al. 2003).

The metastatic potential of a tumor is determined not

only by the cells in the tumor microenvironment but also

by the changes in these cancer cells (Gómez-Cuadrado

et al. 2017). Cancer cells can invade blood or lymph ves-

sels through the basal membrane in a process called

intravasation, a carcinogenic event in which cancer cells

begin to move from primary sites (Soon 2007). Epithelial-

mesenchymal transition (EMT) cells with migratory phe-

notypes can degrade the extracellular matrix (ECM) and

enable intravasation into tissues and blood or lymphatic

vessels (Tsuji et al. 2008). Many cell adhesion molecules

and proteinases are involved in the intravasation process of

the primary tumor into the blood vessels (Farahani et al.
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2014). Using a cell line derived from rat mammary ade-

nocarcinoma, the correlation between intravasation and

lung metastasis was revealed (Wyckoff et al. 2000).

Metastasis begins when tumor cells penetrate normal

tissues. Transcoelomic metastasis spreads through the

peritoneal cavity that connects the organ surface (Tan et al.

2006). In hematogenous metastasis, cancer cells penetrate

the blood vessels and extend their reach through blood

vessels that are widely spread throughout the body (Sunami

et al. 2000). A lymphatic metastasis penetrates the lymph

nodes through the lymphatic system and subsequently

spreads to other parts of the body (Karaman and Detmar

2014). When cancer cells arrive at a new location, they

multiply again, creating a small tumor called a

micrometastasis (Rampaul et al. 2001). The process of

metastasis ends when the micrometastasis is fully grown.

Cancer cells stimulate endothelial cells to promote tube

formation, which leads angiogenesis. Tumor cells induce

vascular growth by secreting various growth factors such as

basic fibroblast growth factors (bFGF) or vascular

endothelial growth factors (VEGF) (Ferrara 2002; Naoyo

et al. 2006). Interrupting this crosstalk reduces angiogen-

esis and the tumor size within the tumor (Vasudev and

Reynolds 2014). Therefore, it is important to understand

the surrounding microenvironment of cancer and identify

biomarkers that may influence cancer progression for the

diagnosis and treatment of cancer. The present review

summarizes the current collective understanding of the

interaction between cancer cells and endothelial cells in the

tumor microenvironment. We focus on the key molecules

involved in this crosstalk in the tumor microenvironment

and on therapeutic strategies targeting these molecules.

Cell–cell communication in tumor
microenvironment

The microenvironment includes extracellular matrix as

well as components surrounding the tumor cells and vas-

cular endothelial, fibroblast, and bone marrow-derived

cells (Tahmasebi and Carloni 2017). The mechanism of

cancer development is highly dependent on the interaction

between tumors with the components secreted by tumor

microenvironment (Witz 2009; Korneev et al.

2017). Cancer cells are surrounded by tumor microenvi-

ronment, consisting of fibroblasts, immune and inflamma-

tory cells, blood vascular networks, ECM, and so on

(Hanahan and Coussens 2012; Gkretsi et al. 2015). The

physiological condition of the tumor microenvironment is

related at every stage of tumorigenesis (Wang et al. 2017).

A microenvironment in an unhealthy state may cause

tumor growth and invasion (Goubran et al. 2014).

The interaction between cancer cells and stromal cells in

the microenvironment surrounding tumors plays an

important role in the formation and progression of cancer

(Bremnes et al. 2011). Major stromal cells include vascular

endothelial cells, cancer-associated fibroblasts (CAFs), and

tumor-associated macrophages (TAMs) in tumor

microenvironment (Junttila and de Sauvage 2013).

Endothelial cells are also important determinants of the

tumor microenvironment (Chouaib et al. 2010).

CAFs have heterogeneous origins, phenotypes, and

functions within the tumor microenvironment (Ishii et al.

2016). CAFs are a heterogeneous group of fibroblasts that

are redirected by cancer cells to carcinomas (Lim and

Moon 2016). CAFs are fibroblasts similar to activated

fibroblasts with stimulation of inflammatory conditions

(Augsten 2014). CAFs secrete signaling factors such as

VEGF, FGF, and platelet-derived growth factor (PDGF) to

support tumor growth (Xing et al. 2010). CAFs also secrete

transforming growth factor (TGF)-b associated with EMT

(Yu et al. 2014).

TAMs play a major role in tumor progression by pro-

ducing cytokines and matrix metalloproteinases (MMPs)

(Baay et al. 2011; Quatromoni and Eruslanov 2012).

MMPs are involved in ECM composition, and cancer cells

play an important role in cell migration during invasion and

metastasis (Bodey et al. 2001; Nabeshima et al. 2002).

Circulating monocytes in blood are differentiated into M1

macrophages and M2 macrophages which are also called as

TAMs (Chanmee et al. 2014; Almatroodi et al. 2016).

Infiltrating M1 macrophages present in the early stages of

tumorigenesis secrete pro-inflammatory cytokines and

inhibit tumor growth (Mantovani et al. 2002). M2 macro-

phages secrete proteases such as cathepsin, cytokines, and

an epidermal growth factor in the later stages of tumori-

genesis (Ham and Moon 2013; Rhee 2016; Choi et al.

2017). TAMs secrete cytokines, chemokines, MMPs, and a

variety of growth factors, which are associated with

angiogenesis, tumor growth, invasion, and metastasis

(Baay et al. 2011). TAMs promote the migration and

invasion of cancer cells through the cell-ECM (Finkernagel

et al. 2016). TAMs can produce proteases such as MMP-2

and MMP-9 which digest the ECM (Yang and Zhang

2017). In addition, an increase in TAM-derived interleukin

(IL)-6 has been shown to promote the development of

hepatocellular carcinoma (Kong et al. 2016). These results

suggest that TAMs play an important role in the occurrence

of cancer. Crosstalk between the cancer cells and the

endothelial cells (Upreti et al. 2013; Lim and Moon 2016)

in the tumor microenvironment was depicted in Fig. 1.

Tumor endothelial cells proliferate and migrate more

rapidly than normal endothelial cells (Hida et al. 2010).

Cancer cells induce changes in endothelial cells by tar-

geting cells through adhesion receptors, gap junctions, and
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vesicles (Lopes-Bastos et al. 2016). Cancer cells stimulate

signaling pathways by activating stromal cells, secreting

proteases into the extracellular space, or changing the pH

and temperature (Lopes-Bastos et al. 2016). Breast cancer

cells regulate lymphatic endothelial cells to promote

metastasis (Lee et al. 2014a). Tumor cell-secreted IL-6

induces the phosphorylation of signal transducer and acti-

vator of transcription (STAT)-3 in lymphatic endothelial

cells (Nilsson et al. 2005). The phosphorylation of STAT3

induces hypoxia-inducible factor (HIF)-1a and VEGF,

which activates chemokine (C–C motif) ligand (CCL)-5

expressions in lymphatic endothelial cells (Lee et al.

2014a).

Induction of metastasis via interaction
with endothelial cells

Adhesion molecules mediating the interaction

between cancer cells and endothelial cells

The initial contact between cancer cells and the endothe-

lium is mild or transient and is mediated via recognition of

carbohydrate–carbohydrate interactions (Dube and

Bertozzi 2005; Nakahara and Raz 2008). This contact

initiates activation of endothelial and cancer cells via

cytokines, free radicals, physiologically active lipids, and

growth factors (Orr et al. 2000). These mediators induce

the expression of adhesion molecules by endothelial and

cancer cells, thereby enhancing or fixing initial adhesion

bonds (Tang and Honn 1994; Kannagi 1997). Selectins,

integrins, cadherins, immunoglobulins, tetraspanins, and

thrombospondin (TSP) are known to regulate the adhesion

between cancer cells and the endothelium (Nicolson 1988;

Pauli et al. 1990). Adhesion and intravasation of cancer

cells by various cytokines and proteins are depicted in

Fig. 2.

Selectin is a vascular cell adhesion molecule (VCAM)

mediating the interaction between endothelium and

leukocytes and platelets in the blood circulation (Ala et al.

2003). E-selectin expressed in activated endothelial cells

has been detected in the liver metastatic colonies (Soto

et al. 2014). Down-regulation of E-selectin expression has

been shown to result in experimental liver metastasis

(Brodt et al. 1997; Khatib et al. 1999; Bendas and Borsig

2012). Selectin binds to a variety of molecules, most of

which function in vivo (Rinko et al. 2004). The selectin

family includes P-, E-, and L-selectin. According to other

Fig. 1 Crosstalk between

cancer cells and endothelial

cells in tumor

microenvironment
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studies, at least one selectin binds to all human carcinomas

that have been tested so far, and selectin mediates contact

with the tumor (Faryammanesh et al. 2014).

Expression of P-selectin on the cell surfaces of

endothelial cells and platelets contributes to metastasis by

inducing nuclear factor-kappa B (NF-jB) activation and

further expression of P-selectin (Foreman et al. 1994). The

expression of P-selectin on the cell surfaces of endothelial

cells and platelets also contributes to metastasis (Reyes–

Reyes et al. 2006). The absence of L-selectin induces a

significant reduction in metastasis, indicating that L-se-

lectin contributes positively to leukocyte recruitment and

metastatic crevice formation (Läubli and Borsig 2010).

E-selectin binds to its receptors and mediates the

adhesion of tumor cells (Zen et al. 2008). Inhibition or

down-regulation of E-selectin has been shown to attenuate

experimental liver metastasis, which was induced by the

overexpression of E-selectin (Kang et al. 2016). The

cytokines secreted by breast cancer cells stimulate mac-

rophages in order to produce tumor necrosis factor (TNF)-

a, the regulatory factor of E-selectin expression, resulting

in increased adhesion of endothelial cells (Eichbaum et al.

2011; Reymond et al. 2013). In colorectal cancer cells,

in vitro studies using sialyl-Lewis X (an E-selectin ligand)-

related carbohydrate determinants showed adhesion of

cultured vascular endothelial cells to TNF-a-induced

E-selectin (Takada et al. 1991). E-selectin levels were

significantly increased in the serum and tissues of breast

cancer patients compared to those of the control group

(Ragab et al. 2017). The E-selectin gene was found more

often in malignant tissues than in control tissues (Ragab

et al. 2017), suggesting that E-selectin may be associated

with aggressive tumors.

Integrin is a transmembrane receptor that promotes

ECM attachment and activates signal transduction path-

ways that mediate cellular signals such as cancer progres-

sion and metastasis (Seguin et al. 2015). Integrin is

composed of two chains, that is, a- and b-subunits

(Campbell and Humphries 2011). Binding of vascular

integrins to ECM components contributes to the invasion

of endothelial cells. Tumor-associated blood vessels

express avb3 and avb5 integrins, and the targeting of these

vessels has been studied with a promising anti-angiogenic

approach. (Brooks et al. 1994; Bendas and Borsig 2012).

Antagonists of integrin such as cilengitide, an inhibitor of

avb3 and avb5, have been shown to be promising anti-

cancer agents (Desgrosellier and Cheresh 2010).

Tetraspanins, cell surface proteins, are associated with

adhesion receptors in the integrin family (Hemler 2005).

The expression of tetraspanins correlates with the tumor

stage and type (Lazo 2007; Vences-Catalán et al. 2015).

Cell surface proteins of the tetraspanin family are present

in almost all cell and tissue types and regulate integrin-

dependent cell migration (Berditchevski 2001). Several

members of the tetraspanin superfamily, including CD9,

CD81, and CD151, are located in the tumor cell-endothe-

lial cell contact area (Longo et al. 2001). The interaction

between CD9 and TGF-a was decreased through ectodo-

main shedding to release soluble TGF-a (Imhof et al.

2008). CD9 can interact with transmembrane TGF-a to

activate epidermal growth factor receptor (EGFR) (Imhof

et al. 2008). Increased TGF-a-EGFR signaling is known to

induce cancer progression (Lee et al. 1995; Kenny and

Fig. 2 Adhesion and

intravasation of cancer cells by

various cytokines and proteins
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Bissell 2007). Expression of CD9 is often markedly

reduced in a variety of metastatic cancers, including lung,

colon, and pancreatic cancers (Parkes and Jewell 2001).

CD81 directly interacts with integrin a4b1 and CD151

directly binds with integrin a3b1 and a6b1 (Serru et al.

1999). Tetraspanin CD151 mediates cell adhesion with

integrins (a3b1, a6b1, a6b4, and a7b1) on different types

of laminin (Boucheix and Rubinstein 2001). Platelets

increase cancer cell adhesion to endothelial cells, which

enhances angiogenesis of endothelial colony-forming cells

in platelets with integrin a6b1 (Reymond et al. 2013;

Huang et al. 2016). The regulation of tetraspanin in tumor

cell lines significantly increases cell growth, morphology,

invasion, tumor growth, and metastasis (Detchokul et al.

2014; Hemler 2014). Among VCAMs and TSPs, VCAM-1

and thrombospondin (TSP)-1 have been extensively stud-

ied in cancer progression and metastasis (Sargiannidou

et al. 2001; Lin et al. 2007a).

TSPs, a family of ECM proteins, are involved in cell

proliferation and differentiation (Bornstein 2009; Huang

et al. 2017). TSP-1 plays an important role in the

microenvironment of the tumor and also affects tumor cell

adhesion, proliferation, invasion, migration, apoptosis, and

tumor immunity (Baenziger et al. 1971; Jeanne et al. 2015).

TSP-1 controls inflammation by regulating the activity of

other secreted factors (Varma et al. 2008; Lopez-Dee et al.

2011; Stenina-Adognravi 2014). TSP-1 regulates the pro-

duction and activation of pro-inflammatory cytokine IL-1b
by macrophages (Stein et al. 2016). TSP-1 has been shown

to exert its CD47-dependent inflammatory effect on the IL-

1b pathway (Stein et al. 2016). Other studies have con-

firmed that CD47 is an important regulator of lymphocyte

function-associated antigen (LFA)-1 and very late antigen

(VLA)-4 integrin-adherence in the proliferation and

recruitment of T cells (Azcutia et al. 2017).

VCAM-1 is involved in this process (Schlesinger and

Bendas 2015). VCAM-1 is abnormally expressed in breast

cancer cells and has been shown to bind to the natural

ligand a4b1 integrin (also known as VLA-4) (Sharma et al.

2017). This binding triggers metastasis of breast cancer

cells to the lungs, bones, and brain (Sharma et al. 2017).

Intercellular adhesion molecule (ICAM)-1 and VCAM-1

are involved in tumor progression and metastasis (Regidor

et al. 1998). Up-regulation of these adhesion molecules

promotes endothelial cell adhesion and angiogenesis, and

also contributes to changes in the invasive phenotype

(Regidor et al. 1998).

Invasion and migration in the interaction

between cancer cells and endothelial cells

The ability of malignant tumor cells to induce cell migra-

tion and the invasion of cancer has been investigated for

years (Clark and Vignjevic 2015; Krakhmal et al. 2015).

Metastasis occurs when cancer cells penetrate the basement

membrane and wall of the endothelium and travel to distant

organs (Valastyan and Weinberg 2011; van Zijl et al.

2011). Stroma and tumor cells exchange signals to modify

the ECM and stimulate cell migration (Lomberk 2010). It

is known that tumor cells overcome the ECM barrier and

spread to surrounding tissues (Krakhmal et al. 2015).

Cells are polarized during this migration process (Friedl

and Wolf 2003). This polarity can be reflected through

specific regions and molecules on the cell surface (Ridley

et al. 2003). Upon polarization, phosphatidylinositol-3, 4,

5-trisphosphate (PIP3), activated Rac, and Cdc42 are found

in the same direction (Ridley et al. 2003). In the opposite

direction, Rho GTPase and phosphatase and tensin homo-

log (PTEN) are observed (Parent and Devreotes 1999).

After establishment of polarity, actin filament polymer-

ization at the leading edge stimulates lamellipodium

(Atilgan et al. 2005). Next, translocation of the cell body

occurs due to the formation of adhesive contact (Shieh

et al. 2011). The depolymerization of the actin network

completes the cell migration assembly process (Carlsson

2010).

Tumor cells attach to endothelial cells and invade con-

nective tissue (Mierke et al. 2008). Vascular endothelial

cells promote cancer invasion and metastasis, mostly via

Akt and NF-jB pathways (Wang et al. 2013). The integrin-

induced signal pathway is involved in cell migration, and

the integrins-focal adhesion kinases -Rho GTPases are

activated in both endothelial and cancer cells (Feng et al.

2017). Cancer cells secrete growth factors, which signifi-

cantly increase endothelial cell proliferation, migration,

and tube formation (Hwang et al. 2016).

The invasiveness of cancer cells plays an important role

in the cytokines secreted following the interaction with

endothelial cells (Kamińska et al. 2015). TGF-b can induce

EMT and enhance intravasation (Tsuji et al. 2008). Also,

activation of EGFR family members stimulates invadopo-

dia through phosphoinositide 3-kinase (PI3K), neural

Wiskott–Aldrich syndrome protein (N-WASP), RhoA, and

WASP (Keklikoglou et al. 2012; Chiang et al. 2016).

Intratavation and invasion are associated with urokinase-

type plasminogen activator (uPA)/uPAR in relation to

proteinases, and the role of MMPs is important (Ossowski

1988; Ploug et al. 2001; Shin et al. 2011). Endothelial cells

co-cultured with invasive hepatocellular carcinoma cells

have been shown to increase the levels of IL-8 as well as

growth-regulated oncogene (Gro)-b expression in intrava-

sation (Fig. 2) (Loukinova et al. 2000; Mierke et al. 2008).

Expression of two chemokine receptors, chemokine (C-X-

C motif) receptor (CXCR) 2, has been shown to be up-

regulated in invasive cancer cells (Murdoch et al. 1999;

Salcedo et al. 2000). Invasive cancer cells, along with
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CXCR2 expression, contribute to the destruction of the

endothelial barrier (Mierke et al. 2008). Metastasis chips

have been developed in which endothelial cells and stromal

cells are patterned close to tumor cells (Caballero et al.

2017). These metastasis chips have made it possible to

imitate the production of microvascular blood vessels,

allowing for the identification of angiogenesis, intravasa-

tion, and extravasation (Lee et al. 2014b).

The chemokines that are most important for endothelial

progenitor cell migration include CCL2 (MCP-1) and

CCL5 (RANTES) (Yu et al. 2016; Phi et al. 2017). Cancer

cells secrete chemokines such as CCL2, which secrete

inflammatory stimuli that activate endothelial cells and

induce the expression of VCAM1 and vascular adhesion

protein 1 (VAP1) (Reymond et al. 2013). CCL5 is pro-

duced by several tumor cells (Azenshtein et al. 2002). High

plasma CCL5 levels are associated with advanced breast

cancer, and breast cancer cell-derived CCL5 promotes the

progression and invasion of breast cancer (Niwa et al.

2001; Azenshtein et al. 2002). Expression of CCL2 and

CCL5 is also increased in prostate cancer (Zhang et al.

2010). CCL2, CCL3, CCL4, and CCL5 are expressed by

inflammatory stimuli (Laurence 2006; Bobanga et al.

2013). In mouse models of liver cancer, tumor-associated

endothelial cells have been shown to up-regulate the

expression of CCL2, CCL3, CCL4, CCL7, and CCL8

(Spring et al. 2005; Ryschich et al. 2006). CCL1 and CCL3

promote the progression of tumor metastasis in leukemia

(Ridiandries et al. 2016). Chemokine (C-X-C motif) ligand

(CXCL) 1, CXCL2, and CXCL3 are important in the

growth of pancreatic cancer, melanoma, lung cancer, and

gastric cancer (Bendall 2005). CXCL4 was shown to be

involved in the proliferation of cancer as well as overex-

pressed in many cancers including prostate, breast, ovarian,

and lung cancers, as well as melanoma (Müller et al. 2001;

Kijima et al. 2002; Darash-Yahana et al. 2004; Sarvaiya

et al. 2013).

Angiogenesis induced by tumor cells

Heterologous interaction between tumor cells and

endothelial cells plays an important role in the vascular-

ization of neoplastic cells and the pathological angiogen-

esis of tumors (Longo et al. 2001). Tumor angiogenesis is a

complex process in which new blood vessels are formed in

response to the interaction between tumor cells and

endothelial cells, growth factors, and ECM components

(Jung et al. 2002; Khodarev et al. 2003). Angiogenesis is

characterized by mitosis of the ECM and endothelial cells

(Dudley 2012).

Since endothelial cells form a capillary-like tube struc-

ture, they proliferate and migrate in the presence of these

growth factors (Prior et al. 2004). Tumors induce vascular

growth by secreting various growth factors such as bFGF

or VEGF (Ferrara 2002; Naoyo et al. 2006). VEGF, a

potent stimulator of angiogenesis, plays an important role

in angiogenesis (Bloor 2005; Carmeliet 2005). The secre-

ted VEGF binds to receptors on the surface of vascular

endothelial cells, creating new blood vessels that supply

oxygen and nutrients to the tumor (Sounni and Noel 2013).

VEGF induces a large amount of signal transduction in

endothelial cells (Hofer and Schweighofer 2007). VEGF

receptors (VEGFRs) are associated with endothelial cell-

dependent tumor angiogenesis (Meng et al. 2017). uPA

inhibits the uPA dependence of VEGFR1 and VEGFR2

gene transcription by binding to the hematopoietically

expressed homeodomain protein or proline-rich home-

odomain protein (HHEX/PRH), mediating the angiogenic

effect of VEGF and the control of pathological angiogen-

esis (Stepanova et al. 2016; Song et al. 2018).

PDGF induces mitogenesis with angiogenesis, fibrob-

lasts, osteoblasts, stromal cells, vascular smooth muscle

cells, and mesenchymal stem cells (Hollinger et al. 2008).

PDGF is one of the many growth factors that regulate cell

growth and differentiation (De Donatis et al. 2008). The

important roles of PDGF-B and PDGFR-b in angiogenesis

have been demonstrated by gene targeting experiments,

and their expression has been found to be associated with

endothelial vascularization and maturation (Raica and

Cimpean 2010). PDGF-B directly induces endothelial cell

proliferation, migration, and tube formation, whereas

PDGF-A shows no such effect (Gacche and Meshram

2014). PDGF-D regulates VEGF signaling and promotes

tumor cell growth in a variety of cancer cell types (Li et al.

2003).

Notch signaling plays an important role in the devel-

opment and differentiation of various hematopoietic sys-

tems (Artavanis-Tsakonas et al. 1999; Milner and Bigas

1999). Notch receptors promote the growth and survival of

tumor cells through the interaction between tumor cells and

Notch ligands (Jundt et al. 2004). One of the Notch ligands,

Jagged (JAG) 1, is overexpressed in many cancer types

(Grochowski et al. 2016). JAG1 can indirectly affect tumor

microenvironmental components such as the vasculature of

the tumor (Li et al. 2014). Blocking the Notch in the tumor

vasculature has been shown to inhibit tumor growth (Wu

et al. 2010). Tumor vessels use Notch signaling for vas-

cular stability while controlling vascular wall cell function

(Kofler et al. 2011). JAG1 expression is induced by TGF-b
which induces EMT phenotype in vitro (Camenisch et al.

2002; Zavadil et al. 2004).

Semaphorin (SEMA)-4D, also known as CD100, is a

protein belonging to class IV semaphorin that is strongly

implicated in tumor progression via interaction with the

high affinity receptor Plexin-B1 (Lin et al. 2007b; Okuno
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et al. 2010). SEMA4D-Plexin-B1 signaling pathway in

angiogenesis occurs as SEMA4D binds to Plexin-B1 and

induces tumor angiogenesis via two independent down-

stream pathways (Ch’ng and Kumanogoh 2010).

SEMA4D-Plexin-B1 signaling pathway in angiogenesis

occurs as SEMA4D binds to Plexin-B1 and induces tumor

angiogenesis via two independent downstream pathways

(Ch’ng and Kumanogoh 2010). When SEMA4D interacts

with Plexin-B1, a Plexin-B1-Met interaction on its binding

is possible, resulting in Met activation and tyrosine phos-

phorylation (Conrotto et al. 2005). Another mechanism

involves Plexin-B1 and PDZ-binding motifs in order to

activate RhoA (Basile et al. 2007). In addition, cancer cells

activate the PI3K/Akt signaling pathway and increase

endothelial tube formation as well as survival (Lauring

et al. 2013; Massihnia et al. 2016; Zhou et al. 2016).

Cancer cells also partially activate the PI3K/Akt signaling

pathway and promote endothelial tube formation and sur-

vival (Cheng et al. 2017).

Strategies targeting the crosstalk between cancer
cells and endothelial cells

Targeted cancer therapy should cause minimal collateral

damage to normal cells while targeting cancer cells. Drugs

used in chemotherapy work in multiple ways to stop the

growth of cancer cells by killing, stopping the division of,

or preventing the spread of cells (Shewach and Kuchta

2009). Molecular targets include adhesion molecules, sig-

naling molecules, and chemokines mediating the interac-

tion of cancer cells with endothelial cells (Agemy et al.

2013; Kummar and Doroshow 2013; Farahani et al. 2014).

Molecules associated with angiogenesis and regulators of

invasion can also be effective targets for anti-cancer

strategies (Ferrara and Kerbel 2005; Zhao and Adjei 2015).

The most widely known approach inhibiting tumor

angiogenesis involves blockade of the VEGF pathway

(Kuhnert et al. 2011). VEGF-targeted therapy was initially

designed to inhibit neoangiogenesis and starve the tumor of

needed oxygen and nutrients (Ellis and Hicklin 2008). In

clinical trials, the anti-VEGF approach increased survival

rates in metastatic cancer patients (Gyanchandani and Kim

2013). Bevacizumab was the first VEGF inhibitor approved

as a cancer treatment (Meadows and Hurwitz 2012).

Adding a VEGF-specific antibody, bevacizumab, to

chemotherapy improves the overall survival in patients

with colorectal cancer and lung cancer (Jain et al. 2006).

Sunitinib is a targeted therapy that is a receptor protein-

tyrosine kinase inhibitor (Demetri et al. 2006). Multikinase

inhibitors that inhibit VEGFR1, 2, 3, PDGFR, and c-Kit

include sunitinib, sorafenib, and pazopanib (Keating and

Santoro 2009; Sternberg et al. 2013). A number of VEGF

inhibitors, including brivanib alaninate, cediranib, and

vandetanib, are currently in phase 3 clinical trials or in

clinical development (Meadows and Hurwitz 2012). These

drugs and their target molecules are summarized in

Table 1.

Kangai-1 (KAI1), also known as CD82, is a typical

tumor metastasis suppressor (Singh et al. 2016). Inhibition

of KAI1 has been shown to negatively regulate VEGF-

induced angiogenesis (Nomura et al. 2016). KAI1 is known

to block the metastatic process without affecting primary

tumor growth (Park et al. 2012; Lee et al. 2017). Imatinib

Table 1 Drugs that target key

molecules in the crosstalk

between cancer cells and

endothelial cells

Drug Target molecule Clinical trial References

Bevacizumab VEGF-A Phase III Los et al. (2007)

Brivanib alaninate FGFR

VEGFR

Phase II Finn et al. (2012)

Park et al. (2011)

Cediranib VEGF Phase III Batchelor et al. (2013)

Imatinib PDGFR

c-kit

Phase II McGary et al. (2004)

Hantschel et al. (2008)

Sunitinib PDGFR

VEGFR2

Phase III Demetri et al. (2006)

Sorafenib PDGFR

VEGFR

Raf kinase

Phase III Keating and Santoro (2009)

Smalley et al. (2009)

Wilhelm et al. (2008)

Pazopanib FGFR

PDGFR

VEGFR

c-kit

Phase III Pick and Nystrom (2012)

Sternberg et al. (2013)

Verweij and Sleijfer (2013)

Zivi et al. (2012)

Vandetanib EGFR

VEGFR

Phase III Yoshikawa et al. (2009)

Zhang et al. (2011)
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mesylate inhibits the growth of cancer cells by blocking a

few of the enzymes needed for cell growth (Table 1)

(Dewar et al. 2003; Danchev et al. 2008). Imatinib mesy-

late regulates metastasis by up-regulating KAI1 gene

expression in human breast cancer MCF-7 cell line

(Shandiz et al. 2016).

TSP-1 serves as an angiogenesis inhibitor by regulating

the bioavailability and activity of VEGF (Lawler 2000).

TSP-1 is a multifunctional glycoprotein involved in various

biological processes including angiogenesis, apoptosis, and

activation of TGF-b1 (Crawford et al. 1998; Murphy-Ull-

rich and Poczatek 2000). Tumors overexpressing TSP-1

show decreased growth, metastases, and angiogenesis,

suggesting TSP-1 as a therapeutic target for cancer

(Kazerounian et al. 2008). Both ABT-510 and ABT-898,

TSP-1 synthetic analogs mimicking anti-angiogenic activ-

ity, have been shown to inhibit the growth of prolactinoma

(Recouvreux et al. 2012).

Notch signaling is important in tumor angiogenesis

through VEGF-A (Funahashi et al. 2008). Inhibition of

Notch signaling in endothelial cells limited VEGF-A-in-

duced tumor growth and caused endothelial dysfunction

(Patenaude et al. 2014). Using co-culture and tumor growth

assays, Notch-mediated nitric oxide (NO) production in

endothelial cells demonstrates the need for VEGF-A sig-

naling (Fukumura et al. 2006). NO, mainly produced by

endothelial NO synthase (eNOS), acts as a cardiovascular

signal molecule. The eNOS activated by the phosphoryla-

tion of the Ser1177 residue was reduced through Notch

inhibition, which caused tumor growth and diminished

vascular function (Miller et al. 2009). BAY41-2272, a

soluble guanylate cyclase activator and vasodilator, can

inhibit tumor growth and the vascular function of eNOS

(Patenaude et al. 2014).

Conclusions

The tumor microenvironment is composed of complex and

diverse elements such as extracellular matrix, growth fac-

tors, signaling substances, and cells surrounding cancer

cells. Cancer-endothelial cell interactions in the tumor

microenvironment secrete adhesion molecules and

chemokines, which are critical to tumor growth and

metastasis (Buess et al. 2009). Drug resistance and cancer

recurrence may be overcome through control of this tumor

microenvironment. Studies investigating the anti-cancer

mechanisms targeting cytokine secretion by cancer-derived

stromal cells or stromal cells in particular provide a new

breakthrough in the development of selective chemother-

apeutic agents. In the present study, we summarize the

current perspective on the interaction between cancer cells

and endothelial cells and also suggested anti-cancer

strategies based on these interactions.

Intercellular interactions between cancer and other cells

in the surrounding tumor microenvironment are critical for

tumorigenesis and tumor progression. Understanding the

mechanisms of these interactions can lead to the develop-

ment of new therapies that block tumor progression and

metastasis. This review provides useful information

underlying cancer aggressiveness affected by the crosstalk

between cancer cells and endothelial cells, and suggests

therapeutic strategies against tumor progression.
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