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Abstract The occurrence of drug–drug interactions

(DDIs) can significantly affect the safety of a patient, and

thus assessing DDI risk is important. Recently, physio-

logically based pharmacokinetic (PBPK) modeling has

been increasingly used to predict DDI potential. Here, we

present a PBPK modeling concept and strategy. We also

surveyed PBPK-related articles about the prediction of DDI

potential in humans published up to October 10, 2017. We

identified 107 articles, including 105 drugs that fit our

criteria, with a gradual increase in the number of articles

per year. Studies on antineoplastic and immunomodulatory

drugs (26.7%) contributed the most to published PBPK

models, followed by cardiovascular (20.0%) and anti-in-

fective (17.1%) drugs. Models for specific products such as

herbal products, therapeutic protein drugs, and antibody–

drug conjugates were also described. Most PBPK models

were used to simulate cytochrome P450 (CYP)-mediated

DDIs (74 drugs, of which 85.1% were CYP3A4-mediated),

whereas some focused on transporter-mediated DDIs (15

drugs) or a combination of CYP and transporter-mediated

DDIs (16 drugs). Full PBPK, first-order absorption mod-

ules and Simcyp� software were predominantly used for

modeling. Recently, DDI predictions associated with

genetic polymorphisms, special populations, or both have

increased. The 107 published articles reasonably predicted

the DDI potentials, but further studies of physiological

properties and harmonization of in vitro experimental

designs are required to extend the application scope, and

improvement of DDI predictions using PBPK modeling

will be possible in the future.
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Introduction

Outstanding achievements in the pharmaceutical industry

have led to the approval of numerous drugs for use in

clinical settings, and consequently, patients are frequently

exposed to polypharmacy to treat concurrent diseases or to

treat a single disease effectively (Hajjar et al. 2007). Co-

administration of multiple drugs increases the prevalence

of drug–drug interactions (DDIs), and clinically significant

DDIs are mainly mediated by pharmacokinetic (PK)

mechanisms. PK DDIs are caused by changes in the

absorption, distribution, metabolism, and excretion

(ADME) properties of a drug due to co-administered drugs,

which often involve inhibition or induction of drug

metabolizing enzymes, transporters, or both (Varma et al.

2015b). The occurrence of DDIs can reduce the efficacy or

safety of a drug. Furthermore, rare but fatal adverse reac-

tions could result from DDIs and be a major cause of the

withdrawal of a drug from the market (Zhang et al. 2009).

Therefore, understanding and assessing PK DDIs are

essential for rational therapeutics and have traditionally

been investigated by conducting clinical trials. However,

the high expense and potential risks related to conducting

clinical trials have necessitated the introduction of alter-

native approaches to studying DDIs (Von Moltke et al.

1998). Therefore, efforts to develop models that utilize

drug parameters for the in vitro prediction DDIs in humans

are increasing, and specific detailed information about
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these approaches are available in previously published

studies (Einolf 2007; Boulenc and Barberan 2011; Bohnert

et al. 2016).

Briefly, the approaches are generally classified into three

categories, simple static, mechanistic static and mecha-

nistic dynamic models. For simple static models, quantifi-

cation of the DDI potential is mainly based on a single

constant inhibitor concentration and inhibition constant

derived from in vitro data. The model assumes that the

concentration of the inhibitor does not change over time. In

addition, the substrate drug is assumed to be metabolized

only in the liver, and the fraction metabolized (fm) for the

substrate drug is 100%. Hence, the simple static model

represents the worst-case scenario, and the DDI magnitude

could be overestimated (Einolf 2007). The mechanistic

static model includes additional information, and the sub-

strate drug is assumed to be metabolized not only in the

liver but also the intestines. The fm of substrate drugs are

considered, and the net effect of competitive or mecha-

nism-based inhibition and induction can be incorporated

into the model (Fahmi et al. 2008). Nevertheless, the model

is not capable of describing the complete dynamic char-

acteristics of drug metabolism in humans because a single

constant inhibitor concentration is used and the DDI

magnitude difference between staggered and simultaneous

dosing cannot be described (Fowler et al. 2017). Above all,

the greatest weakness of both simple and mechanistic static

models is the associated challenges in applying the most

relevant inhibitor concentration, and therefore the DDI

magnitude could differ based on the inhibitor concentration

(e.g., the maximum concentration [Cmax], average con-

centration [Caverage], and hepatic inlet concentration)

(Boulenc and Barberan 2011; Cho et al. 2014).

Unlike other approaches, mechanistic dynamic models

such as the PBPK model aim to explain all PK character-

istics of a drug and describe time-variable concentrations

of the substrate and inhibitor drug in different organs

(Jones et al. 2015). Therefore, temporal profiles of inhibi-

tion procedure are defined, and the model has been shown

to be more predictive than static models are generally

(Einolf 2007). For example, the prediction of the DDI

potential of AZD2066 as a perpetrator using the simple

static model indicated that the occurrence of clinically

significant DDIs is possible (area under the curve [AUC]

ratio[ 1.1) (Nordmark et al. 2014). However, the likeli-

hood of DDIs occurring in vivo was low when the same

in vitro data were analyzed using the PBPK model. The

in vivo study also indicated no or low risk for clinically

significant DDIs, and this improved accuracy may be par-

tially attributable to the ability of the PBPK model to use

time-variable drug concentrations instead of a single inhi-

bitor concentration (Nordmark et al. 2014).

In addition, the PBPK model considers inter-individual

variabilities such as the age, sex, ethnicity, and genetic

polymorphisms and can assess individual PK variability.

Hence, the magnitude and range of DDIs in the virtual

population that reflects individual variability can be

investigated using the PBPK model (Einolf 2007). Fur-

thermore, the effect of factors such as the dosing regimen

and population on changes on DDI potentials can be

explored. Overall, the PBPK model is a more powerful

strategy for predicting the DDI potential than existing

methods, and regulatory agencies have approved DDI

studies using PBPK models to replace clinical trials.

Consequently, the application of PBPK modeling for DDI

prediction has increased widely in recent years, and

numerous articles have been published (Huang et al. 2013).

However, the PBPK model has limitations because

abundant input data related to the PK characteristics of the

drug are required for successful DDI prediction. Thus, it is

a time-consuming process compared to static approaches

and generally more preferably used in the late drug

development stage. In addition, input parameters derived

from in vitro assay or in silico prediction methods are

highly variable, and uncertainty exists. Therefore, contin-

uous refinement of the model is required as the drug-related

knowledge accumulates. In addition, precise input param-

eter values related to the human physiology are currently

lacking, and further studies are necessary for more accurate

PBPK modeling (Boulenc and Barberan 2011; Varma et al.

2015b).

Nevertheless, the utility of PBPK modeling has recently

been expanded to drug development, and clinical practice

and the investigation of DDI potentials accounts for the

highest application (Zhang et al. 2009). However, the

systemic evaluation of PBPK modeling articles focused on

DDI potentials has not been reported yet. In this review, we

briefly described the concept of PBPK modeling and its use

in predicting DDI potentials, and we examined 107 pub-

lished articles on PBPK modeling for predicting DDI

potentials up to October 10, 2017.

PBPK modeling: concept and methodology

Concept of PBPK modeling

PBPK modeling is a mathematical modeling technique that

uses a series of mass balance differential equations to

predict the ADME characteristics of drugs in humans and

other animal species. The solutions to these differential

equations are typically concentrations of a drug in each

organ or tissue as a function of time. Indeed, the concept of

PBPK modeling is not new. The use of multi-compart-

mental models that incorporate physicochemical and
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physiological components in the simulation of PK data was

first adapted by Teorell as early as 1937 (Teorell 1937).

Despite the long history of PBPK modeling, the expansion

of its use has been limited due to its mathematical com-

plexity. However, for several decades, efforts have been

made to refine PBPK models so they can be used in drug

development and environmental toxicology (Rowland et al.

2011 and references therein). Currently, with the

advancements in computing power, improvements in sil-

ico/in vitro tools, and knowledge of physiology coupled

with the availability of user-friendly software, PBPK

modeling is rapidly becoming a powerful tool for predict-

ing human PK (Khalil and Laer 2011; Rowland et al. 2011;

Rowland-Yeo et al. 2013; Jones et al. 2015; Zhuang and Lu

2016). Thus, PBPK modeling is becoming increasingly

popular and can be used to (1) predict preclinical/clinical

PK profiles; (2) determine oral absorption characteristics

including food or formulation effects, or both; (3) select the

first-in-human dose; (4) predict clinical DDI potentials; (5)

predict special population PK characteristics such as

pediatric, geriatric, pregnancy, obstetric, and profiles of

patients with concurrent disease states; and (6) predict

large molecule PK during the drug discovery and devel-

opment process (Khalil and Laer 2011; Rowland et al.

2011; Baneyx et al. 2012; Wagner et al. 2015). Of these

applications, the highest portion was related to the pre-

diction of DDIs (Huang et al. 2013), and a recent literature

review reported that DDI-related articles accounted for the

highest percentage (28%) of a total of 366 PBPK-related

studies (Jones et al. 2013; Vieira et al. 2014; Sager et al.

2015). Presently, PBPK modeling and simulation is rec-

ommended by regulatory agencies, e.g., the US Food and

Drug Administration (FDA), the European Medicines

Agency (EMA), and the Ministry of Health Labor and

Welfare of Japan to inform DDI study design and estimate

the magnitude (Huang et al. 2013; Jones et al. 2015; Sager

et al. 2015).

The full (whole-body) PBPK model consists of a num-

ber of compartments that represent different body organs or

tissues, connected by the systemic circulation, e.g., the

arterial and venous blood. Each organ is generally identi-

fied as either perfusion or permeability rate limited (Jones

et al. 2006). The perfusion rate limited model is assigned

under the assumptions that the tissue membrane is present

without a barrier and that the blood flow rate is the rate-

limiting factor. In the permeability rate limited model,

drug-specific permeability rather than the blood flow rate is

the rate-limiting factor. For example, if drugs cross the

tissue membrane by an active transport process, the per-

meability rate limited model incorporating efflux- or

influx-related parameters is used to describe the active

transport process (Jones et al. 2013; Sager et al. 2015). In

contrast, the minimal PBPK model construct reduces the

number of compartments to no more than five, and other

organs with comparable blood flow rates are grouped as

one compartment to simplify the model (Jones et al. 2013;

Sager et al. 2015).

Construction of PBPK models

Input parameters included in the PBPK model can be

divided into three categories: system, drug, and the study

design (Jamei et al. 2009a). System-dependent parameters

are related to the physiological properties of the body and

are defined by organ volume, mass, blood flow rate,

enzyme or transporter abundance, plasma protein abun-

dance, hematocrit, or genetic polymorphisms (Rowland

et al. 2011). Information on these physiological properties

of humans or other species are now available in the liter-

ature, and PBPK modeling also enables the incorporation

of the altered physiological properties in different disease

states or population groups (Jones et al. 2013).

Drug-dependent parameters consist of physicochemical

parameters as well as ADME related parameters of the

drug determined from a variety of in vitro, in silico, or

in vivo data, or a combination of these (Tsamandouras

et al. 2015). To explain the absorption process, mechanistic

absorption models are required and rely on various drug-

specific parameters including molecular weight,

lipophilicity, solubility, and pKa values. Initially, a first-

order absorption model was developed based on one-

compartment kinetics. In addition, a compartmental

absorption and transit (CAT) model, which divided the

gastrointestinal tract into nine compartments (the stomach,

seven small intestinal compartments, and the colon), has

been introduced. Recently, advanced compartmental

absorption and transit (ACAT) and advanced dissolution,

absorption, and metabolism (ADAM) models have also

been developed to supplement the CAT model (Jamei et al.

2009b). Distribution of the drug in each organ is generally

described by either a perfusion or permeability rate limited

model, as mentioned above. Clearance, which is a key

parameter of the PBPK model, has a considerable effect on

the PK behavior of the drug. Several approaches have been

introduced for the characterization of in vivo clearance,

and the in vitro–in vivo extrapolation (IVIVE) method,

which was developed to predict the PK profiles of humans

before the first dosing, is coupled with PBPK modeling to

describe whole-organ clearance. In addition, the retrograde

approach, which is a back-calculation method from oral

clearance to in vitro intrinsic clearance, or direct incorpo-

ration of in vivo clearance could be used. Parameter esti-

mation, which is the estimation of an in vitro intrinsic

clearance parameter from observed PK profiles, can also be

used when essential in vitro data and scaling factors are not

available (Tsamandouras et al. 2015). For hepatic
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clearance, the application of IVIVE has been well studied,

and in vitro data derived from experiments with recombi-

nant enzymes, microsomes, or hepatocytes have been

extrapolated to whole-liver clearance using scaling factors

(Chen et al. 2012). For non-hepatic clearance, such as renal

or biliary excretion, other approaches can be used to pre-

dict in vivo organ clearance. When a single approach is

insufficient to characterize the in vivo clearance, any

combination of the abovementioned information can be

used to compensate for the missing clearance details.

Finally, information on the study design such as dose,

route, and frequency of administration, the effect of con-

comitant drugs and food, and formulation properties is

required to define a PBPK modeling and simulation.

PBPK modeling software

In the last step, the PBPK model equations and integration

algorithms can be written and solved using specific pro-

gramming languages, simulation software, or spreadsheet

programs to simulate the PK profile of a drug in the plasma

and tissues (Khalil and Laer 2011). The open and designed

software are two main types of software currently used for

PBPK modeling and simulation (Khalil and Laer 2011;

Bouzom et al. 2012). The open software packages for

PBPK modeling such as MATLAB�, NONMEM�,

Berkeley Madonna�, SAAM II�, and acslX� require the

modeler to write and code their model equations and

functions. Thus, they are less suitable for novice modelers

(Khalil and Laer 2011; Bouzom et al. 2012). The designed

software comprises Simcyp�, GastroPlus�, PK-Sim�, Cloe

PK �, and MoBi�, which have made PBPK modeling more

accessible to those without extensive modeling and pro-

gramming experience. These user-friendly software pack-

ages include physiological databases of predefined species

and populations that are combined with compound-specific

information and are used to parameterize a whole-body

PBPK model (Bouzom et al. 2012; Kuepfer et al. 2016).

The availability of user-friendly software has broadened

the use of PBPK models in the drug discovery and devel-

opment process (Khalil and Laer 2011; Bouzom et al.

2012; Jones et al. 2015; Kuepfer et al. 2016).

PBPK model verification

A newly developed PBPK model is used to simulate PK

profiles of predefined populations and actual clinical trials

using the aforementioned user-friendly software packages.

The performance of the PBPK model is subsequently

verified by comparing the simulated PK parameters (AUC

and Cmax) with the observed clinical data and using the

visual inspection approach for the concentration–time

profiles (Kuepfer et al. 2016). The predictive performance

of PBPK models is evaluated using the mean observed/

predicted ratio of the AUC and Cmax, and is considered

acceptable when the ratios fall within the predefined suc-

cess range (e.g., 1.25-, 1.5-, or 2-fold) (Guest et al. 2011;

Abduljalil et al. 2014; Wagner et al. 2015; Ke et al. 2016).

In addition, the visual inspection checks were deemed

acceptable if the clinically determined plasma concentra-

tions are within the 5th and 95th percentiles of the pre-

dicted profile (Zhou et al. 2016). Although there appears to

be a lack of consistency in the acceptance criteria for

model verification, it was recently reported that the criteria

should be predefined by considering various factor and

should be appropriate (Jones et al. 2015). This PBPK

model should also adequately predict independent clinical

data (e.g., different dose levels, population, and route of

administration) that are not used in the model construction,

if possible. The PBPK model is refined during this step by

parameter optimization and sensitivity analysis is manda-

tory for model optimization. Sensitivity analysis is infor-

mative for identifying key parameters that are likely to

affect the model performance. The identified sensitive

parameters should be reflected in the model (Zhou et al.

2016; Zhuang and Lu 2016). The verification/modification

step is essential for the subsequent use of the model, and

afterward, the verified PBPK model can be used to simulate

other uninvestigated clinical scenarios or DDI predictions.

PBPK modeling for predicting DDI potentials

The DDI prediction study using PBPK modeling involves

the development of PBPK models for both the victim and

perpetrator drugs. The developed models are subsequently

verified based on clinical data obtained using the dosage

regimen planned for the study where possible, followed by

model refinement. Then, the DDI prediction is carried out

by simulating the substrate-inhibitor interaction according

to the study design.

PBPK modeling articles on predicting DDI
potentials

Journal search

Journal articles were selected using the PubMed search

engine. The search terms were ‘‘Physiologically based

pharmacokinetic modeling’’ and ‘‘drug–drug interaction,’’

and 214 articles were identified for the period up to

October 10, 2017. Among the articles, a review article and

a study on the application of PBPK modeling in animals

were excluded, whereas articles on the PK of DDI using

PBPK modeling in humans were analyzed. Finally, we

identified 107 articles, including 105 involving different
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drugs that fit our scope and were further categorized by

publication year (Fig. 1). The first article on PBPK mod-

eling for DDI prediction was reported in 2008 (Chenel

et al. 2008; Hyland et al. 2008), and the number of related

articles has consistently increased since then to more than

20 articles per year (Fig. 1). Although most of the articles

studied CYP-mediated DDIs, transporter-mediated DDIs

were first reported in 2012. Similarly, articles on PBPK

modeling for predicting complex DDI potentials that con-

sidered the effects of both CYP- and transporter-mediated

DDIs have also been reported since 2012 (Fig. 1). The

increase in the number of articles on DDI-related PBPK

modeling may be attributable to the development of user-

friendly software, and the regulatory authorities’ approval

of the application of PBPK modeling in the drug devel-

opment process. The increased knowledge of the body’s

physiology and the advancement of in vitro experimental

techniques for investigating drug properties and providing

improved drug PK profiling are anticipated to increase the

number of articles on predicting DDIs using PBPK mod-

eling. Detailed information on DDI mechanisms, PBPK

model description, and interactive predictions of DDIs of

the 105 classified drugs are summarized in Tables 1, 2, 3,

4, 5, 6, along with references.

Classification of selected drugs from articles on DDI-

related PBPK modeling

A total of 105 drugs were categorized according to the first

level of the Anatomical Therapeutic Chemical (ATC)

classification system, which groups drugs according to

their main anatomical group, as developed by the World

Health Organization (http://www.whocc.no/atcddd/). The

developed PBPK models for the drugs were found in the

following therapeutic categories at the indicated propor-

tions: antineoplastic and immunomodulatory had the

highest contribution (28 drugs, 26.7%), followed by the

cardiovascular system (21 drugs, 20.0%), systemic anti-

infective (18 drugs, 17.1%), alimentary tract and metabo-

lism (11 drugs, 10.2%), nervous system (11 drugs, 10.5%),

blood and blood-forming organs (six drugs, 5.7%), respi-

ratory system, anti-parasitic (three drugs, 2.9%, each),

musculoskeletal system (two drugs, 1.9%), systemic hor-

monal, and various other categories (one drug, 1.0%, each)

(Fig. 2).

Among the antineoplastic and immunomodulatory

agents, 24 drugs were antineoplastic with the highest

contribution. Antineoplastic drugs are highly toxic and

have a narrow therapeutic index. In addition, chemotherapy

regimens include at least one or more antineoplastic drugs

(Chabner and Roberts 2005). Thus, the DDI risk is

increased in patients with cancer and, therefore, the eval-

uation of DDI potential is important under such conditions.

However, volunteer recruitment is challenging for clinical

trials and, consequently, the use of PBPK modeling for

determining antineoplastic DDIs has increased (Table 1).

However, this strategy is limited because most simulations

were performed in healthy populations and the altered

physiological properties in patients with cancer were not

incorporated in the models. Nevertheless, it is encouraging
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Table 1 List of drugs classified as antineoplastic and immunomodulatory agents that used in DDI prediction by PBPK modeling

Mediator PBPK

models

Modules Predicting drugs References

Mechanism Absorption Elimination

Antineoplastic agents

All-trans-

Retinoic-

Acid

CYP2C8, 3A4, 26A1 Full First-order IVIVE Ketoconazole, Liarozole Jing et al.

(2017)Inducer, Substrate

Baricitinib BCRP, OAT3, P-gp, MATE2-K Full First-order IVIVE and

in vivo

Diclofenac*, Ibuprofen*,

Probenecid

Posada et al.

(2017)Substrate

Blinatumomaba CYP1A2, 2C9, 3A4 Minimal ND In vivo Caffeine*, Midazolam*,

Simvastatin*,

Theophylline*, (S)-

Warfarin*

Xu et al.

(2015)Reverse supression

Bosutinib CYP3A4 Full First-order Retrograde Ketoconazole, Rifampicin,

Erythromycin*,

Fluconazole*,

Fluvoxamine*,

Verapamil*

Ono et al.

(2017)Substrate

Brentuximab

Vedotinb
CYP3A4 Minimal ND IVIVE and

Retrograde

Ketoconazole, Midazolam,

Rifampicin

Chen et al.

(2015b)Inhibitor, Substrate

Cobimetinib CYP3A4 Full First-order Retrograde Diltiazem, Efavirenz,

Erythromycin,

Fluvoxamine,

Itraconazole, Rifampicin

Budha et al.

(2016)Substrate

Crizotinib CYP3A4 Full First-order Retrograde Ketoconazole, Rifampicin,

Diltiazem*,

Erythromycin*,

Fluconazole*,

Fluvoxamine*

Yamazaki

et al. (2015)Inducer, Inhibitor, Substrate

Dasatinib OATP1B1/3 Minimal First-order In vivo Pravastatin Pahwa et al.

(2017)Inhibitor

Enzalutamide CYP3A4 Full First-order In vivo Midazolam Rangaraj

et al. (2016)Inducer

Erlotinib CYP3A4 Full CAT IVIVE Darunavir/Ritonavir,

Efavirenz, Etravirine

Moltó et al.

(2017)Substrate

Gefitinib CYP3A4 Full CAT IVIVE Darunavir/Ritonavir,

Efavirenz, Etravirine

Moltó et al.

(2017)Substrate

Ibrutinib CYP3A4

Substrate

Full ADAM IVIVE, in vivo

and

Retrograde

Ketoconazole, Rifampicin,

Azithromycin*,

Carbamazepine*,

Clarithromycin*,

Diltiazem*, Efavirenz*,

Erythromycin*,

Itraconazole*,

Fluvoxamine*,

Voriconazole*

de Zwart

et al. (2016)

Icotinib CYP3A4 Full ADAM IVIVE Ketoconazole*,

Rifampicin*

Chen et al.

(2015a)Substrate

Ixazomib CYP3A Full ADAM In vivo and

Retrograde

Clarithromycin,

Ketoconazole, Rifampicin

Gupta et al.

(2017)Substrate

LCL161 CYP3A Full First-order In vivo Midazolam Dhuria et al.

(2013)Inducer, Inhibitor

LY2603618 CYP2D6 Minimal ND In vivo Desipramine,

Dextromethorphan

Hynes et al.

(2015)Inhibitor
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Table 1 continued

Mediator PBPK

models

Modules Predicting drugs References

Mechanism Absorption Elimination

Orteronel CYP1A2, 2C8, 2C9, 2C19 Minimal First-order In vivo Omeprazole, Repaglinide,

Theophylline,Warfarin

Lu et al.

(2014)Inhibitor

Palbociclib CYP3A Full First-order Retrograde Diltiazem, Itraconazole,

Rifampicin, Efavirenz*,

Fluoxetine*,

Fluvoxamine*,

Midazolam*, Verapamil*

Yu et al.

(2016)Inhibitor, Substrate

Panobinostat CYP3A Minimal First-order IVIVE, in vivo

and

Retrograde

Dexamethasone,

Ketoconazole,

Midazolam*, Rifampicin*

Einolf et al.

(2017b)Inhibitor, Substrate

Pemetrexed OAT3/4 Full ND IVIVE Ibuprofen Posada et al.

(2015)Substrate

Ruxolitinib CYP2C9, 3A4, P-gp Full ACAT IVIVE and

in vivo

Erythromycin,

Ketoconazole,

Rifampicin, Digoxin*,

Fluconazole*

Shi et al.

(2015)Inhibitor, Substrate

Antineoplastic agents

Sonidegib CYP3A Full First-order Retrograde Ketoconazole, Rifampicin,

Efavirenz*,

Erythromycin*

Einolf et al.

(2017a)Substrate

Veliparib CYP2D6, OCT2 Full First-order IVIVE and

Retrograde

Cimetidine*, Quinidine* Li et al.

(2014)Substrate

Venetoclax CYP3A Minimal ADAM IVIVE Ketoconazole,

Rimfampicin, Diltiazem*,

Efavirenz*,

Erythromycin*,

Fluconazole*,

Fluoxetine*,

Fluvoxamine*,

Itraconazole*,

Prednisone*, Verapamil*

Freise et al.

(2017)Substrate

Immunomodulatory agents

Cyclosporine A CYP3A4, OATP1B1/3 Full CAT IVIVE Repaglinide Gertz et al.

(2013)Inhibitor

Cyclosporine A OATP1B1/3 Full First-order IVIVE Pitavastatin Shitara and

Sugiyama

(2017)
Inhibitor

G2917 CYP3A Full First-order IVIVE Midazolam* Mao et al.

(2017)Inducer

Sirolimus CYP3A4 Full ADAM IVIVE Diltiazem* Emoto et al.

(2013)Substrate

Sirukumaba CYP1A2, 2C9, 2C19, 3A Minimal ND In vivo Caffeine, Midazolam,

Omeprazole, Warfarin

Jiang et al.

(2016)Reverse supression

ACAT advanced compartmental absorption and transit, ADAM advanced dissolution, absorption, and metabolism, CAT compartmental absorption

and transit, First-order first order absorption model according to one compartment kinetics, IVIVE in vitro-in vivo extrapolation method, In vivo

in vivo clearance, MATE multidrug and toxin extrusion protein, Retrograde retrograde calculation from in vivo clearance parameter, ND not

determined, OAT organic anion transporter, OATP organic anion-transporting polypeptide, OCT organic cation transporter
aCytokine modulating therapeutic protein drug
bAntibody drug conjugate

* Prospective DDI prediction to simulate unstudied scenarios
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Table 2 List of drugs classified as cardiovascular system that used in DDI prediction by PBPK modeling

Mediator PBPK

models

Modules Predicting drugs References

Mechanism Absorption Elimination

Amiodaronec CYP2C9, 2D6, 3A Full First-order Retrograde Metoprolol, Simvastatin, Warfarin Chen et al.

(2015b)Inhibitor

Atorvastatinc CYP3A4,

OATP1B1

Full ADAM IVIVE and in vivo Cimetidine, Clarithromycin,

Itraconazole, Phenytoin,

Rifampicin

Zhang (2015)

Substrate

Atorvastatin CYP3A4,

OATP1B1, BCRP

Full ADAM IVIVE and

Retrograde

Cyclosporine A, Erythromycin,

Gemfibrozil, Itraconazole,

Rifampicin

Duan et al. (2017)

Substrate

Bosentan OATP1B1/3,

CYP3A

Full First-order IVIVE Itraconazole, Rifampicin Yoshikado et al.

(2017)

Substrate

Digoxin P-gp Full ADAM Retrograde Rifampicin, Verapamil Neuhoff et al.

(2013)Substrate

Diltiazemc CYP3A4 Minimal First-order IVIVE and in vivo Midazolam Zhang et al.

(2009)Inhibitor

Diltiazemc CYP3A4 Minimal First-order IVIVE and in vivo Triazolam Rowland-Yeo

et al. (2010)Inhibitor

Dronedarone CYP3A4 Minimal First-order In vivo Ketoconazole Mano et al. (2015)

Substrate

Eplerenone CYP3A4 Minimal First-order In vivo Erythromycin, Fluconazole,

Ketoconazole

Mano et al. (2015)

Substrate

Fluvastatin OATP1B1/3 Full First-order IVIVE and in vivo Cyclosporine A Yoshikado et al.

(2016)Substrate

Gemfibrozilc CYP2C8,

OATP1B1

Minimal First-order IVIVE Cerivastatin, Repaglinide,

Rosiglitazone, Pioglitazone

Varma et al.

(2015a, b)

Inhibitor

Macitentanc CYP3A4 Full First-order IVIVE and

Retrograde

Cyclosporine A, Ketoconazole,

Rifampicin, Sildenafil, Warfarin,

Carbamazepine*,

Clarithromycin*, Diltiazem*,

Erythromycin*, Itraconazole*,

Phenytoin*, Ritonavir*,

Saquinavir*, Verapamil*

de Kanter et al.

(2016)Substrate

Pitavastatin CYP2C8,

OATP1B1/3

Full ADAM IVIVE, in vivo and

Retrograde

Cyclosporine A, Gemfibrozil,

Rifampicin

Duan et al. (2017)

Substrate

Pitavastatin OATP 1B1/3 Full First-order IVIVE and in vivo Cyclosporine A Yoshikado et al.

(2016)Substrate

Pravastatin OATP1B1 Full First-order IVIVE and in vivo Cyclosporine A, Gemfibrozil,

Rifampicin

Varma et al.

(2012)Substrate

Quinidinec CYP2D6 Minimal First-order IVIVE and in vivo Dextromethorphan, Metoprolol,

Nifedipine

Marsousi et al.

(2017)Inhibitor

Rosuvastatin BCRP, NTCP,

OATP

Full ADAM IVIVE, in vivo and

Retrograde

Cyclosporine A Jamei et al.

(2014)

Substrate

Rosuvastatin BCRP, NTCP,

OAT3, OATP

Full ADAM IVIVE and

Retrograde

Cyclosporine A, Gemfibrozil,

Rifampicin

Wang et al.

(2017)

Substrate

Sacubitril/

Varsartan

OATP1B1 Minimal First-order In vivo Atorvastatin, Simvastatin Lin et al. (2017)

Inhibitor
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that recent articles have included the physiological condi-

tions of patients with cancer and this additional detailed

information is required for more reliable prediction (Ono

et al. 2017; Einolf et al. 2017a). Cardiovascular drugs had

the second highest proportion of agents investigated using

PBPK models (Table 2). It has been reported that patients

with cardiovascular diseases often present with a higher

incidence of DDI that those without these conditions do

(Mendel et al. 2011). This observation occurs possibly

because these conditions are mainly associated with old

age, multiple drug regimens, and the nature of the cardio-

vascular drug (Mendel et al. 2011). Among the cardio-

vascular drugs, statins were the most investigated, and

PBPK models of atorvastatin (Zhang et al. 2015; Duan

et al. 2017), fluvastatin (Yoshikado et al. 2016), pitavas-

tatin (Yoshikado et al. 2016; Duan et al. 2017), pravastatin

(Varma et al. 2012), rosuvastatin (Jamei et al. 2014; Wang

et al. 2017), and simvastatin (Fenneteau et al. 2010) have

been developed (Table 2). The statins were shown to be

substrates of CYP3A4 (simvastatin), organic anion-trans-

porting polypeptide 1/3 (OATP1B1/3; fluvastatin, pravas-

tatin, and rosuvastatin), or both CYP isoforms and

OATP1B1/3 (atorvastatin and pitavastatin). Furthermore,

the inhibitory effects of the statins were simulated using

PBPK modeling (Table 2).

Articles on PBPK modeling of DDI for specific

products

Of the 105 drugs included in our dataset, two herbal

products, silibinin, a semi-purified milk thistle seed extract,

and Wuzhi capsule, consisting of Schisandra sphenanthera

ethanol extract, were included. Recently, the PBPK models

of the individual constituents (silybin A and B) of silibinin

were developed (Brantley et al. 2014; Gufford et al. 2015;

Table 4). In humans, the inhibitory effects of silibinin on

intestinal glucuronidation of raloxifene and the substrates

of CYP2C9 (warfarin) and CYP3A4 (midazolam) were

accurately predicted using the PBPK modeling and simu-

lation approach (Brantley et al. 2014; Gufford et al. 2015).

The PBPK models of two main active components

(schisantherin A and schisandrin A) for Wuzhi capsule

were also established (Zhang et al. 2017; Table 4). The

developed PBPK models adequately predicted the PK of

tacrolimus-associated DDIs mediated by CYP3A4 inhibi-

tion (Zhang et al. 2017). These studies showed the feasi-

bility of using the PBPK modeling and simulation

approach to predict of herb–drug interaction potentials.

However, the limited human PK data available for herbal

constituents, combined with a lack of herbal product

standardization, continues to challenge the development of

PBPK models for the prediction of herb–drug interaction

potentials (Brantley et al. 2014; Gufford et al. 2015).

Table 2 continued

Mediator PBPK

models

Modules Predicting drugs References

Mechanism Absorption Elimination

Simvastatin CYP3A Full ACAT IVIVE Diltiazem, Itraconazole Fenneteau et al.

(2010)Substrate

S44121 OAT1, OCT1 Full First-order IVIVE Ciprofloxacin, Probenecid,

Tenofovir

Ball et al. (2017)

Substrate

Telmisartan BCRP, OATP1B1/3 Full First-order In vivo Rosuvastatin Bae et al. (2017)

Inhibitor

Tolvaptan CYP3A4 Minimal First-order In vivo Ketoconazole Mano et al. (2015)

Substrate

Vardenafil CYP3A4 Minimal First-order In vivo Erythromycin, Indinavir,

Ketoconazole

Mano et al. (2015)

Substrate

Verapamilc CYP3A Minimal ACAT IVIVE and in vivo Cyclosporine A, Midazolam,

Simvastatin

Wang et al.

(2013)Inhibitor

ACAT advanced compartmental absorption and transit, ADAM advanced dissolution, absorption, and metabolism, First-order first order

absorption model according to one compartment kinetics, IVIVE in vitro-in vivo extrapolation method, In vivo in vivo clearance, Retrograde

retrograde calculation from in vivo clearance parameter, BCRP breast cancer resistance protein, OATP organic anion-transporting polypeptide,

NTCP sodium-taurocholate co-transporting polypeptide, P-gp P-glycoprotein
cIntegrated PBPK models for both parent-metabolite(s)

* Prospective DDI prediction to simulate unstudied scenarios
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Table 3 List of drugs classified as anti-infectives for systemic use that used in DDI prediction by PBPK modeling

Mediator PBPK

models

Modules Predicting drugs References

Mechanism Absorption Elimination

Alisporivir CYP3A4 Minimal First-order Retrograde Ketoconazole, Rifampicin Xia et al.

(2014)Inhibitor,

Substrate

Atazanavir CYP1A2,

2C9,

2C19,

2D6, 3A4

Minimal First-order IVIVE Citalopram*, Fluoxetine*, Mirtazapine*, Sertraline*,

Venlafaxine*

Siccardi

et al.

(2013a)

Inducer,

Inhibitor

Ciprofloxacin CYP1A2 Full ACAT Parameter

estimation

Caffeine Park et al.

(2017)Inhibitor

Ciprofloxacin CYP1A2 Minimal First-order In vivo and

Retrograde

Caffeine, Theophylline Marsousi

et al.

(2017)
Inhibitor

Clarithromycin CYP3A Minimal First-order IVIVE,

in vivo

and

Retrograde

Midazolam, Triazolam, Repaglinide Marsousi

et al.

(2017)
Inhibitor

Clarithromycin CYP3A4 Full First-order IVIVE Itraconazole, Rifampicin Yoshikado

et al.

(2017)
Substrate

Clarithromycin CYP3A4,

P-gp

Full ND IVIVE and

in vivo

Digoxin, Midazolam Moj et al.

(2017)

Inhibitor

Darunavir CYP1A2,

2C9,

2C19,

2D6, 3A4

Minimal First-order IVIVE Citalopram*, Fluoxetine*, Mirtazapine*, Sertraline*,

Venlafaxine*

Siccardi

et al.

(2013a)

Inducer,

Inhibitor

Darunavir CYP3A4 Minimal First-order Retrograde Carbamazepine, Clarithromycin, Ketoconazole,

Omeprazole, Paroxetine, Ritonavir, Saquinavir

Wagner

et al.

(2017)
Substrate

Dasabuvir CYP2C8 ND ND IVIVE and

in vivo

Clopidogrel, Gemfibrozil, Ketoconazole, Ritonavir,

Trimethoprim

Shebley

et al.

(2017a)
Substrate

Dasabuvirc BCRP, P-gp Minimal First-order In vivo Digoxin, Ritonavir, Paritaprevir, Pravastatin,

Rosuvastatin

Shebly

et al.

(2017b)
Inhibitor

Efavirenz CYP1A2,

2C9,

2C19,

2D6, 3A4

Full First-order IVIVE Bupropion, Desipramine, Maraviroc, Midazolam,

Sildenafil, Tolbutamide, Citalopram*, Fluoxetine*,

Mirtazapine*, Sertraline*, Venlafaxine*

Siccardi

et al.

(2013a)

Inducer,

Inhibitor

Efavirenz CYP2B6,

CYP3A4

Full First-order IVIVE Rifampicin Rekić et al.

(2011)

Inducer

Efavirenz CYP2B6,

3A4

Minimal First-order Retrograde Alfentanil, Atazanavir, Bupropion, Clarithromycin,

Maraviroc

Ke et al.

(2016)

Inducer
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Table 3 continued

Mediator PBPK

models

Modules Predicting drugs References

Mechanism Absorption Elimination

Efavirenz CYP2C8,

3A4

Full CAT IVIVE Montelukast*, Paclitaxel*, Pioglitazone*, Repaglinide* Marzolini

et al.

(2017)Inducer,

Inhibitor

Fluconazole CYP2C9,

2C19

Minimal First-order In vivo and

Retrograde

Omeprazole, Phenytoin, Warfarin Marsousi

et al.

(2017)Inhibitor

Itraconazolec CYP3A4 Minimal First-order IVIVE and

in vivo

Alprazolam, Midazolam, Quinidine, Simvastatin,

Triazolam, Zolpidem

Marsousi

et al.

(2017)
Inhibitor

Itraconazolec CYP3A4 Minimal First-order Parameter

estimation

Midazolam Chen et al.

(2016)Inhibitor

Ketoconazole CYP3A Minimal First-order In vivo Midazolam Han et al.

(2013)Inhibitor

Ketoconazole CYP3A Minimal First-order IVIVE and

in vivo

Alprazolam, Midazolam, Simvastatin, Triazolam Marsousi

et al.

(2017)
Inhibitor

Lopinavir CYP3A Minimal First-order In vivo Ketoconazole, Omeprazole, Rifampicin, Ritonavir Wagner

et al.

(2017)
Substrate

Maraviroc CYP3A4 Minimal First-order IVIVE and

in vivo

Atazanavir, Ketoconazole, Ritonavir, Saquinavir Hyland

et al.

(2008)
Substrate

Paritaprevir BCRP,

OATP,

CYP2C9

Minimal First-order in vivo Dasabuvir, Digoxin, Pravastatin, Ritonavir, Rosuvastatin Shebly

et al.

(2017b)

Inhibitor

Rifampicin CYP3A4 Full ACAT IVIVE and

in vivo

Alfentanil, Midazolam, Nifedipine, Triazolam Baneyx

et al.

(2014)
Inducer

Rifampicin CYP3A4 Full ADAM In vivo Alprazolam, Itraconazole, Midazolam, Nifedipine,

Quinidine, Repaglinide, Simvastatin, Triazolam,

Zolpidem

Marsousi

et al.

(2017)
Inducer

Rifampicin CYP3A4 Minimal First-order Parameter

estimation

Alprazolam, Atorvastatin, Buspirone, Cyclosporine A,

Gefitinib, Imatinib, Mefloquine, Midazolam,

Nifedipine, Prednisolone, Simvastatin, Telithromycin,

Triazolam, Zolpidem, Zopiclone

Yamashita

et al.

(2013)
Inducer

Rifampicin CYP3A4 Minimal First-order In vivo Alfetanil, Alprazolam, Midazolam, Nifedipine,

Simvastatin, Triazolam, Zolpidem

Almond

et al.

(2016)
Inducer

Ritonavir CYP2B6,

2C9, 2D6,

3A4

Minimal First-order IVIVE Bupropion, Desipramine, Maraviroc, Midazolam,

Sildenafil, Tolbutamide, Citalopram*, Fluoxetine*,

Mirtazapine*, Sertraline*, Venlafaxine*

Siccardi

et al.

(2013a)

Inducer,

Inhibitor

Ritonavir CYP3A4 Minimal First-order In vivo Dasabuvir, Digoxin, Paritaprevir, Pravastatin,

Rosuvastatin

Shebly

et al.

(2017b)
Inducer

Simeprevir CYP3A4,

OATP1B1/

3

Full First-order IVIVE and

Retrograde

Azithromycin, Carbamazepine, Clarithromycin,

Cyclosporine A, Darunavir, Diltiazem, Efavirenz,

Eryrhromycin, Rifampicin, Ritonavir

Yoshikado

et al.

(2017)

Substrate
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PBPK models for cytokine-modulating protein drugs

such as blinatumomab and sirukumab have been reported

to quantitatively predict the potential clinical DDI between

the therapeutic protein and a small-molecule drug in dis-

ease states associated with significantly elevated levels of

the cytokine, interleukin (IL)-6 (Xu et al. 2015; Jiang et al.

2016; Table 1). The increased level of cytokines such as

IL-6, IL-1b, tumor necrosis factor-a, and interferon-a in

some inflammatory disease states can downregulate the

drug-metabolizing CYP enzymes, decreasing the clearance

of co-administered small-molecule drugs that are substrates

of the affected CYP enzymes (Xu et al. 2015; Jiang et al.

2016). Cytokine-modulating protein drugs could reverse

(or normalize) the suppression of CYP expression and a

subsequent increase in the clearance of concomitant small-

molecule drugs, referred to as disease-related protein DDIs

(Aitken et al. 2006; Xu et al. 2015; Jiang et al. 2016). The

alteration of IL-6 levels and its suppression of CYPs before

and after therapeutic protein drug treatment in patients

were investigated, and the developed PBPK models suc-

cessfully predicted the perpetuating role of IL-6 (Xu et al.

2015; Jiang et al. 2016).

In addition, a PBPK model of brentuximab vedotin, an

antibody–drug conjugate (ADC), has been reported, and

the DDI potentials were investigated (Chen et al. 2015c;

Table 1). ADCs are monoclonal antibodies attached to

cytotoxic small molecules by a chemical link and designed

as a targeted therapy to treat cancer. The conversion of the

antibody-conjugated cytotoxic small molecules to uncon-

jugated forms was described in the model, and the

predicted DDI potential between the unconjugated cyto-

toxic small molecule and other drugs was comparable to

that observed in previous data (Chen et al. 2015c).

PBPK modeling for predicting CYP- or transporter-

mediated DDIs or both

The mechanisms of the DDIs associated with the classified

drugs were further characterized. Most PBPK models of

the drugs were used to simulate CYP-mediated DDIs (74

drugs, 70.5%), whereas some focused on transporter-me-

diated DDIs (15 drugs, 14.3%), or a combination of CYP

and transporter-mediated DDIs (16 drugs, 15.2%).

Among the 74 drugs used to simulate CYP-mediated

DDIs, 85.1% (63 drugs) were CYP3A4-mediated

(Tables 1, 2, 3, 4, 5). CYP3A4 is the major enzyme

involved in drug metabolism, which explains the increased

susceptibility to CYP3A4-mediated DDIs (Lynch and Price

2007). The PBPK models for 18 drugs associated with

multiple CYP isoforms, which revealed substrates (3/74

drugs), inhibitors (6/74 drugs), and both inducers and

inhibitors (5/74 drugs), or both substrate and inducers (2/74

drugs) have been published (Tables 1, 2, 3, 4, 5). As

mentioned previously, the PBPK models for two thera-

peutic protein drugs (2/74 drugs), blinatumomab and sir-

ukumab, reasonably explored the reverse suppressions of

multiple IL-6-induced CYP isoform levels and predicted

their modulatory effects on the PK of small-molecule drugs

metabolized by the multiple CYP isoforms (Table 1).

Recently, the PBPK model of all-trans-retinoic acid, which

Table 3 continued

Mediator PBPK

models

Modules Predicting drugs References

Mechanism Absorption Elimination

Simeprevir CYP3A4,

OATP1B1/

3

Full First-order IVIVE Itraconazole, Rifampicin Snoeys

et al.

(2016)

Substrate

Telithromycin CYP3A4 Full ADAM In vivo and

Retrograde

Midazolam Vieira

et al.

(2012)
Inhibitor

Voriconazole CYP2C9,

2C19, 3A4

Full ACAT IVIVE Omeprazole*, Esomeprazole*, Lansoprazole*,

Rabeprazole*

Qi et al.

(2017)

Substrate

Voriconazole CYP2C19 Full First-order IVIVE Fluconazole Damle

et al.

(2011)
Substrate

ACAT advanced compartmental absorption and transit, ADAM advanced dissolution, absorption, and metabolism, CAT compartmental absorption

and transit, First-order first order absorption model according to one compartment kinetics, IVIVE in vitro-in vivo extrapolation method, In vivo

in vivo clearance, Parameter estimation estimation of in vitro intrinsic clearance parameter from observed pharmacokinetic profiles, Retrograde

retrograde calculation from in vivo clearance parameter, ND not determined, OATP organic anion-transporting polypeptide, P-gp P-glycoprotein
cIntegrated PBPK models for both parent-metabolite(s)

* Prospective DDI prediction to simulate unstudied scenarios
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Table 4 List of drugs classified as alimentary tract and metabolism, nervous system, and blood and blood-forming organs that used in DDI

prediction by PBPK modeling

Mediator PBPK

models

Modules Predicting drugs References

Mechanism Absorption Elimination

Alimentary tract and metabolism

Aprepitant CYP3A4 Minimal First-order In vivo Ketoconazole Mano et al.

(2015)Substrate

Canagliflozin CYP3A4 Full ADAM In vitro and

in vivo

Simvastatin, Warfarin, Bupropion*, Repaglinide* Mamidi et al.

(2017)Inhibitor

Domperidone CYP3A4 Full ADAM In vivo and

Retrograde

Erythromycin, Itraconazole, Ketoconazole Templeton

et al. (2016)Substrate

Glibenclamide CYP2C9,

2C19, 3A4

Minimal First-order IVIVE Clarithromycin, Rifampicin, Fluconazole* Greupink

et al. (2013)

Substrate

Glyburide CYP3A4,

OATP1B1

Full ADAM IVIVE Clarithromycin, Erythromycin, Rifampicin,

Verapamil

Varma et al.

(2014)

Substrate

Metformin MATE,

OCT2

Full First-order IVIVE and

Retrograde

Cimetidine Burt et al.

(2016)

Substrate

Milk thistled CYP2C9,

3A4

Full First-order Parameter

estimation

Midazolam, Warfarin Brantley et al.

(2014)

Inhibitor

Milk thistled UGT1A1,

1A8, 1A10

Full,

Minimal

First-order IVIVE Raloxifene Gufford et al.

(2015)

Inhibitor

Naloxegol CYP3A4,

P-gp

Full,

Minimal

First-order In vivo and

Retrograde

Dilitazem, Ketoconazole, Quinidine, Rifampicin,

Alprazolam*, Amlodipine*, Atorvastatin*,

Cimetidine*, Efavirenz*, Ciprofloxacin*,

Erythromycin*, Fluconazole*, Fluoxetine*,

Verapamil*

Zhou et al.

(2016)

Substrate

Repaglinide CYP2C8,

CYP3A4,

OATP1B1

Full ADAM IVIVE Cyclosporine A, Gemfibrozil, Itraconazole Varma et al.

(2013)

Substrate

Alimentary tract and metabolism

Repaglinide CYP2C8,

CYP3A4,

OATP1B1

Full Full IVIVE Cyclosporine A, Gemfibrozil Kim et al.

(2017)

Substrate

Repaglinide CYP3A,

OATP

Full First-order IVIVE Itraconazole, Rifampicin Yoshikado

et al. (2017)

Substrate

Repaglinide CYP2C8,

CYP3A4,

OATP1B1

Minimal First-order In vivo Gemfibrozil, Itraconazole Kudo et al.

(2013)

Substrate

Teneligliptin CYP3A4 Minimal ADAM IVIVE and

in vivo

Ketoconazole, Diltiazem*, Fluvoxamine* Nakamaru

et al. (2015)Substrate

Wuzhi

Capsuled
CYP3A4 Full First-order IVIVE Tacrolimus* Zhang et al.

(2017)Inhibitor

Nervous system

Alprazolam CYP3A Full ACAT IVIVE Ketoconazole Fenneteau

et al. (2010)Substrate
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Table 4 continued

Mediator PBPK

models

Modules Predicting drugs References

Mechanism Absorption Elimination

Atomoxetine CYP2D6,

3A4

Full First-order IVIVE and

in vivo

Desipramine, Fluoxetine, Midazolam, Paroxetine Huang et al.

(2017)

Inhibitor,

Substrate

AZD2066 CYP1A2,

2B6, 2C9,

2C19, 2D6,

3A4

Minimal First-order In vivo Bupropion, Caffeine, Metoprolol, Tolbutamide Nordmark

et al. (2014)

Inhibitor

AZD2327c CYP3A4 Full First-order Retrograde Midazolam Guo et al.

(2015)Inhibitor

Lanicemine CYP3A4 Minimal ND Parameter

estimation

Midazolam Bui et al.

(2015)Inhibitor

Midazolam CYP3A4 Full ND IVIVE Clarithromycin*, Fluconazole*, Rifampicin* Johnson and

Rostami-

Hodjegan

(2011)

Substrate

Nervous system

Midazolam CYP3A Full First-order IVIVE Itraconazole Yoshikado

et al. (2017)Substrate

Midazolam CYP3A Full First-order IVIVE and

in vivo

Azithromycin, Cimetidine, Clarithromycin,

Diltiazem, Estradiol, Fluconazole, Ketoconazole,

Pleconaril, Rifampicin

Cherkaoui-

Rbati et al.

(2017)
Substrate

Midazolam CYP3A Full ACAT IVIVE Itraconazole, Saquinavir Fenneteau

et al. (2010)Substrate

Midazolam CYP3A4 Full CAT IVIVE Ketoconazole, Verapamil Perdaems

et al. (2010)Substrate

Midazolam CYP3A4 Minimal CAT IVIVE SX (a phase I compound) Chenel et al.

(2008)Substrate

Midazolam CYP3A4 Minimal First-order IVIVE and

in vivo

Fluconazole, Fluvoxamine, Itraconazole,

Amiodarone*

Rougee et al.

(2017)Substrate

Modafinil CYP1A2,

2C9, 2C19,

2D6, 3A4

Minimal First-order Retrograde Caffeine*, Dextromethorphan*, Losartan*,

Midazolam*, Omeprazole*

Rowland

et al. (2016)

Inducer,

Inhibitor

Oxycodonec CYP2D6, 3A Minimal First-order Retrograde Clarithromycine, Itraconazole, Ketoconazole,

Paroxetine

Marsousi

et al. (2014)Substrate

Paroxetine CYP2D6 Minimal First-order IVIVE,

in vivo

and

Retrograde

Desipramine, Imipramine, Metoprolol Marsousi

et al. (2017)Inhibitor

Perampanel CYP3A Full ND Retrograde Itraconazole, Ketoconazole Gidal et al.

(2017)Substrate

Triazolam CYP3A Full ACAT IVIVE Ketoconazole Fenneteau

et al. (2010)Substrate

Blood and blood forming organs

Clopidogrelc CYP3A4 Full First-order IVIVE Dronedarone Djebli et al.

(2015)Substrate
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is both a substrate and inducer of CYP26A1, the main all-

trans-retinoic acid hydroxylase in human liver, has been

developed and published (Jing et al. 2017; Table 1). The

developed model was used to quantitatively predict the

interaction between all-trans-retinoic acid and liarozole, an

inhibitor of CYP26A1 (Jing et al. 2017; Table 1).

In contrast, only one drug, silibinin, was used for a non-

CYP-mediated DDI prediction, and the inhibitory effects of

silibinin on uridine diphosphate glucuronyltransferase 1A1

(UGT1A1) were evaluated (Gufford et al. 2015; Table 4).

Seven drugs were used to predict OATP1B1/3-mediated

DDIs, which accounted for most of the 15 drugs evaluated

for transporter-mediated DDI predictions (Tables 1, 2, 3, 4,

5). The OATP family is a well-characterized family of

uptake transporters, and, particularly, the subfamily of

OATP1B transporters has been reported to be involved in

clinically significant DDIs (Koenen et al. 2011). The

prediction of OATP1B1/3-mediated DDIs was 42.9 and

57.1% for the substrate and inhibitor, respectively.

Sixteen drugs were used to assess combined CYP- and

transporter-mediated DDIs (Tables 1, 2, 3, 4, 5). The

developed PBPK models could describe the DDI potentials

when the drugs acted as inhibitors or substrates of both

CYP isoforms and uptake (OATPs, OATs, OCTs, or

MATEs) or efflux (P-glycoprotein [P-gp] or breast cancer

resistance protein [BCRP]) transporters simultaneously in

the kidney and liver. In contrast to the PBPK model, the

simple static model considers the inhibitory or inductive

effects on enzymes or transporters separately (Einolf

2007). It has been reported that most drugs act simulta-

neously as substrates or inhibitors of a specific CYP

enzyme and transporter, and the PBPK modeling approach

is useful for revealing combinatorial effects of enzymes

and transporters (Shugarts and Benet 2008).

Table 4 continued

Mediator PBPK

models

Modules Predicting drugs References

Mechanism Absorption Elimination

Clopidogrel

acyl-b-D-

glucuronidec

CYP2C8,

3A4,

OATP1B1

Minimal First-order IVIVE and

Retrograde

Repaglinide Tornio et al.

(2014)

Inhibitor

Dabigatran

etexilatec
P-gp Full CAT IVIVE Amiodarone, Clarithromycin, Dronedarone,

Quinidine, Rifampicin, Verapamil, Captopril*,

Carvedilol*, Conivaptan*, Diltiazem*,

Felodipine*, Itraconazole*, Lopinavir/

Ritonavir*, Mibefradil*, Nifedipine*,

Ranolazine*, Ritonaivr*, Saquinavir/Ritonavir*,

Telaprevir*, Telmisartan*, Ticagrelor*,

Tipranavir/Ritonavir*

Zhao and Hu

(2014)Substrate

Rivaroxaban CYP3A4,

P-gp

Minimal First-order In vivo Erythromycin Grillo et al.

(2012)

Substrate

Sarpogrelatec CYP2D6 Full ADAM IVIVE and

Retrograde

Metoprolol, Desipramine*, Dextromethorphan*,

Imipramine*, Tolterodine*

Min et al.

(2016)Inhibitor

Warfarin CYP2C9 Minimal First-order IVIVE and

in vivo

Amiodarone, Fluconazole, Clozapine*,

Fluvoxamine*

Rougee et al.

(2017)Substrate

Ticagrelor CYP3A4 Minimal First-order In vivo Ketoconazole Mano et al.

(2015)Substrate

ACAT advanced compartmental absorption and transit, ADAM advanced dissolution, absorption, and metabolism, CAT compartmental absorption

and transit, First-order first order absorption model according to one compartment kinetics, IVIVE in vitro-in vivo extrapolation method, In vivo

in vivo clearance, Parameter estimation estimation of in vitro intrinsic clearance parameter from observed pharmacokinetic profiles, Retrograde

retrograde calculation from in vivo clearance parameter, ND not determined, MATE multidrug and toxin extrusion transporters, OATP organic

anion-transporting polypeptide, OCT organic cation transporters, P-gp P-glycoprotein, UGT uridine diphosphate glucuronyltransferase
cIntegrated PBPK models for both parent-metabolite(s)
dHerbal product

*Prospective DDI prediction to simulate unstudied scenarios
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PBPK modeling was used to predict DDIs between

inhibitory parent–metabolite pairs for 15 of the 105 drugs

(14.3%, Tables 1, 2, 3, 4, 5). This integrated PBPK

approach for both parent and metabolite(s) based on the

availability of in vitro and in vivo metabolite data may

increase the accuracy of predictions of all DDIs compared

with the predictions based on the parent compounds alone

(Chen et al. 2015b).

The limitation of the articles published to date is that the

investigations were restricted to a small number of well-

known drug metabolizing enzymes or transporters. This

may have resulted from the lack of information about the

Table 5 List of drugs classified as respiratory system, antiparasitic products, musculoskeletal system, systemic hormonal preparations, and

various that used in DDI prediction by PBPK modeling

Mediator PBPK

models

Modules Predicting drugs References

Mechanism Absorption Elimination

Respiratory system

Montelukast CYP2C8,

OATP1B1

Full ADAM IVIVE Clarithromycin, Fluconazole, Gemfibrozil,

Itraconazole, Cyclosporine A*, Rimfampicin*

Varma et al.

(2017)

Substrate

Theophylline CYP1A2 Full CAT IVIVE Caeffein*, Ciprofloxacin* Navid et al.

(2016)Substrate

Terfenadine CYP3A4 Full ADAM IVIVE Clarithromycin, Erythromycin, Fluconazole,

Fluoxeinte, Itraconazole, Ketoconazole,

Paroxetine

Wisniowska

and Polak

(2016)
Substrate

Antiparasitic products

Artemether CYP2B6,

3A4

Full CAT IVIVE Efavirenz Siccardi et al.

(2013b)

Substrate

Artemether CYP3A4 Full ADAM IVIVE Ketoconazole, Lumefantrine, Rifampicin Olafuyi et al.

(2017a)Substrate

Lumefantrine CYP3A4 Full ADAM Retrograde Artemether, Ketoconazole, Rifampicin Olafuyi et al.

(2017a)Substrate

Piperaquine CYP3A4 Full First-order Retrograde Efavirenz, Ritonavir Olafuyi et al.

(2017b)Substrate

Musculoskeletal system

Diclofenac CYP2C9 Minimal First-order IVIVE and

in vivo

Amiodarone*, Clozapine*, Fluconazole*,

Fluvoxamine*

Rougee et al.

(2017)Substrate

Probenecid Kidney

transporters

Full First-order IVIVE, in vivo

and

Retrograde

Cidofovir, Cefuroxime, Oseltamivir Hsu et al.

(2014)

Inhibitor

Systemic hormonal preparations

Prednisonec CYP3A4 Minimal First-order Retrograde Midazolam, Odanacatib Marcantonio

et al. (2014)Inducer

Various

Tc- Mebrofenin MRP2 Minimal

ND Parameter estimation Ritonavir*

Pfeifer et al.

(2013)

Substrate

ADAM advanced dissolution, absorption, and metabolism, CAT compartmental absorption and transit, First-order first order absorption model

according to one compartment kinetics, IVIVE in vitro-in vivo extrapolation method, In vivo in vivo clearance, Parameter estimation estimation

of in vitro intrinsic clearance parameter from observed pharmacokinetic profiles, Retrograde retrograde calculation from in vivo clearance

parameter, ND not determined, MRP multidrug resistance-associated protein, OATP organic anion-transporting polypeptide
cIntegrated PBPK models for both parent-metabolite(s)

* Prospective DDI prediction to simulate unstudied scenarios
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physiological properties of the body such as the absolute

abundance of non-CYP enzymes or transporters. This may

have consequently led to the unsuccessful use of the IVIVE

approaches (Varma et al. 2012). Thus, further investiga-

tions are needed to broaden the application scope of PBPK

modeling to studies of potential DDIs.

PBPK modeling strategies to predict DDI potentials

The full PBPK model was more commonly constructed (54

drugs, 51.4%) than the minimal PBPK model was (42

drugs, 40.0%), and the PBPK models of nine drugs (8.6%)

were constructed using both full and minimal models

(Tables 1, 2, 3, 4, 5). To describe the absorption process,

the first-order absorption model was predominantly selec-

ted (63 drugs, 64.3%), followed by the ADAM model (17

drugs, 17.3%), CAT (three drugs, 3.1%), and ACAT model

(5 drugs; 5.1%). The remaining 10.2% involve cases of

multiple absorption models in different articles. The

elimination process was mainly described using of multiple

strategies (41 of 105 drugs, 39.0%), followed by IVIVE (26

of 105 drugs, 24.8%), in vivo clearance parameters (19 of

105 drugs, 18.1%), and retrograde approaches (17 of 105

drugs, 16.2%). The remaining 1.9% were parameter esti-

mation (2/105 drugs). However, it was reported that the

in vitro inhibition potencies differed among various liter-

ature reports and, thus, the harmonization of in vitro

experimental designs is needed for the construction of

more precise PBPK model (Gertz et al. 2013). For the

clinical trial design, the oral dosing route was more pre-

dominant (94 drugs, 89.5%) than the intravenous admin-

istration was (seven drugs, 6.7%). Additionally, four drugs

Table 6 List of drugs that used

in PBPK modeling for the DDI

prediction associated with

genetic polymorphisms

Drugs Mediated CYPs Phenotypes References

Efavirenz CYP2B6 EM, PM Rekić et al. (2010)

Clopidogrel CYP2C19 EM, IM, PM, UM Djebli et al. (2015)

Voriconazole CYP2C19 EM, PM Damle et al. (2011)

Oxycodone CYP2D6 EM, PM Marsousi et al. (2014)

Veliparib CYP2D6 EM, PM, UM Li et al. (2014)

EM extensive metabolizer, IM intermediate metabolizer, PM poor metabolizer, UM ultrarapid metabolizer

Antineoplastic and 
immunomodulating agents

26.7% (28/105)

Cardiovascular 
system

20.0% (21/105)

Anti-infectives 
for systemic use
17.1% (18/105)

Alimentary 
tract and 

metabolism
10.5%

(11/105)

Nervous 
system
10.5%

(11/105)
Blood and blood-
forming organs

5.7% (6/105)
Respiratory system

2.9% (3/105)

Antiparasitic 
products

2.9% (3/105)

Musculoskeletal system
1.9% (2/105)

Systemic hormone 1.0%

Various 1.0%

Others
9.5% (10/105)

Fig. 2 Classification of 105 drugs selected in the DDI-related articles using PBPK modeling according to the first level of the Anatomical

Therapeutic Chemical (ATC) classification system, which groups drugs according to their main anatomical group, as developed by the World

Health Organization (http://www.whocc.no/atcddd/)
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(3.8%) were investigated using both oral and intravenous

administration routes. As mentioned earlier, several criteria

are used for the verification of successful PBPK models.

The most frequently used the criteria for evaluating the

predictive performance of PBPK, and the most commonly

used was values within a two-fold range of the ratio of the

predicted to the observed mean AUC or Cmax (49 of 105

drugs, 46.7%). In addition, other criteria determined were

values within a 1.25- or 1.5-fold range or 5th and 95th

percentiles. However, numerous PBPK models of some

drugs (38 of 105 drugs, 36.2%) did not use the specific

criteria for the predictive performance. Of the commer-

cially available software packages for PBPK modeling, the

most commonly used software to predict DDI potentials

was the Simcyp� (76 of 105 drugs, 72.4%).

PBPK modeling articles on effects of body

physiology on DDIs

Most of the PBPK modeling articles predicted DDI

potentials only in healthy adult populations, which is a

limitation of this approach because the magnitude of DDI

potentials can be altered by the different physiological

properties of various population groups or patients. How-

ever, some recent articles have included the effects of

physiological properties on the prediction of DDI poten-

tials and examples of these articles are discussed below.

Genetic polymorphisms

Among the 105 drugs on PBPK modeling of DDIs, five

(clopidogrel, efavirenz, oxycodone, veliparib, and

voriconazole) investigated the effect of genetic polymor-

phisms associated with DDIs (Table 6). It has been

reported that CYP2B6, CYP2C9, CYP2C19, and CYP2D6

polymorphisms account for the most frequent variations in

phase I metabolic enzymes, and the identified genetic

polymorphisms affect enzyme activities (Zhou et al. 2009).

Thus, additional considerations of the effect of gene

polymorphism would be required in the evaluation of

potential DDIs mediated by these CYPs. Information on

genetic polymorphisms of clinically important drug trans-

porters is scarce, in contrast to that on genetic polymor-

phisms of drug-metabolic CYPs, although several genetic

polymorphisms have been identified in efflux (P-gp) and

uptake (OATPs) transporters (Sissung et al. 2010). The

effects of CYP2B6, CYP2C19, or CYP2D6 polymorphism,

or a combination of any of these on the PK behaviors of

their substrates with or without inhibitors, were evaluated

using PBPK modeling, which captured both the inhibitory

potency of the perpetrator and the effect of genetic poly-

morphisms on the PK properties of the substrate drug

(Table 6).

Special populations

Physiological properties such as organ weight, blood flow,

plasma binding, and drug metabolic enzyme or transporter

activity are dependent on the species or population con-

sidered. For example, in the case of special populations

(e.g., children, pregnant women, or disease-specific popu-

lation), these physiological properties differ between the

special and the healthy adult population (Hartmanshenn

et al. 2016). Previous studies of the altered physiological

properties of special populations are insufficient and,

therefore, the use of PBPK modeling to predict DDI

potentials in special population is limited. However, 12

articles supporting such modeling were found in our

dataset (Tables 1, 2, 3, 4, 5); these included patients with

impaired renal or hepatic function (Emoto et al. 2013; Lu

et al. 2014; Nakamaru et al. 2015; Ono et al. 2017; Wagner

et al. 2017), patients who were immunocompromised or

had rheumatoid arthritis (Xu et al. 2015; Jiang et al. 2016),

patients with cancer (Einolf et al. 2017a; Jing et al. 2017;

Ono et al. 2017), pediatrics (Johnson and Rostami-Hodje-

gan 2011; Jing et al. 2017; Olafuyi et al. 2017a), and a

pregnant population (Olafuyi et al. 2017b). The simulated

results were comparable to clinical observations in special

populations, and further investigations of disease- or age-

related physiological properties in humans would be

helpful.

Conclusion

The importance of predicting DDI potential has been dis-

cussed in many review articles, and PBPK modeling has

been increasingly used for DDI predictions. This review

provides a brief overview of PBPK model development and

its application for DDI predictions. In addition, 107 PBPK

modeling articles on the prediction of DDI potentials were

identified, and the advantages of PBPK modeling, includ-

ing capturing time-variable changes and inter-individual

variability, have increased the number of articles published

yearly. Although the articles reasonably predicted the DDI

potentials in humans, investigation of DDI potentials using

PBPK modeling was restricted to a limited number of drug

metabolizing enzyme-mediated and transporter-mediated

DDIs. In addition, the simulations were performed mostly

in healthy adult populations. To widen the application

scope of PBPK modeling in DDI predictions, more infor-

mation on the physiological properties of the body and the

incorporation of pathophysiological conditions in disease

states are required. In addition, a harmonized in vitro

experimental design is required for proper PBPK model

building, and precise acceptance criteria should be set up

for the validation process. Nevertheless, the outstanding
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achievements and progress in life sciences and computer

technologies will soon solve these problems, and DDI

predictions will be improved by the incorporation of

in vitro data into PBPK models.
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