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Abstract The Gaussian-based 3D-QSAR studies for 58

selective COX-2 (cyclooxygenase-2) inhibitors belonging

to benzopyran chemical class were performed. Partial least

squares analysis produced statistically significant model

with (Rtraining
2 = 0.866) and predictability (Qtraining

2 = 0.66,

Qtest
2 = 0.846). The 3D-QSAR model includes steric,

electrostatic, hydrophobic, and hydrogen bond acceptor

field indicators, whereas the potential field contributions

indicate that the steric and hydrophobic features of the

molecules play an important role in governing their

biological activity. A molecular docking simulation and

protein–ligand interaction pattern analysis reveal the

importance of Tyr-361 and Ser-516 of the COX-2 active

site for X-ray crystal structures and this class of molecules.

Thus the combined approach of ligand-based and structure-

based models provided an improved understanding in the

interaction between benzopyran chemical class and COX-2

inhibition, which will guide the future identification of

more potent anti-inflammatory drugs.
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Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are the

most widely used drugs worldwide for the treatment of

pain and edema associated with arthritis and inflammation.

Through their anti-inflammatory, anti-pyretic and analgesic

activities, they represent the choice treatment in various

inflammatory diseases such as arthritis, rheumatism as well

as relieving the pains of everyday life. In ancient times, the

first NSAID with therapeutic benefits was aspirin, which

has been used in pure form for more than 100 years as a

NSAID (Fiorucci et al. 2001). NSAIDs are competitive

inhibitors of cyclooxygenase (COX), the enzyme which

mediates the bioconversion of arachidonic acid to inflam-

matory prostaglandins (PGs). COX was first identified as

the therapeutic target of NSAIDs when it was revealed that

these anti-inflammatory substances block the biosynthesis

of prostaglandins (PGs) that contribute to a variety of

physiological and pathophysiological functions (Vane

1971). There are two COX isoenzymes, referred to as

COX-1 and COX-2, which catalyze identical reactions

(Kujubu et al. 1991; O’Banion et al. 1992; Xie et al. 1991).

COX-1 is thought to produce prostaglandins (PGs)

important for homeostasis and certain physiological func-

tions and is expressed constitutively in most tissues and

cells (O’Neill and Ford-Hutchinson 1993) including the

gastrointestinal (GI) tract, kidney, lung, brain, and plate-

lets, where PGs produced by this enzyme play key roles in

the maintenance of various physiological functions (Otto

and Smith 1995). A second, inducible form of COX was

hypothesized to exist on the basis of the finding of a glu-

cocorticoid-regulated increase in COX activity observed

in vitro and in vivo in response to inflammatory stimuli (Fu

et al. 1990; Masferrer et al. 1992). COX-2 is expressed in

small amounts in most tissues (except in the brain, where it

is expressed constitutively), but is induced to high

expression in inflamed tissue by inflammatory mediators

including tumor necrosis factor (TNF) and interleukin-1

(IL-1) in cells such as macrophages and synoviocytes

(Crofford 1997; Seibert et al. 1994). COX-2 expression is

inhibited by glucocorticoids, and the catalytic activities of

both COX-1 and COX-2 are about equally inhibited by all

NSAIDs; thus, NSAIDs are mixed or non-selective inhi-

bitors of COX-1 and COX-2 (Masferrer et al. 1992). Many

traditional NSAIDs are effective in treating the pain and

edema associated with inflammation but their GI side

effects limit their widespread use. Selective inhibition of

COX-2 usually avoids the GI side effects, while retaining

its efficacy. The first approved selective COX-2 inhibitor

(Celecoxib) opened the area for the design and optimiza-

tion of several analogs with selective inhibition. In recent

years, a number of selective COX-2 inhibitors have been

designed, synthesized and evaluated for their activity. In

2010, Wang et al. reported the novel benzopyran class of

selective COX-2 inhibitors displayed good analgesic, anti-

inflammatory and oral bioavailability relative to diaryl

heterocyclic series of COX-2 inhibitors (Celecoxib) (Wang

et al. 2010b).

Modern approaches for finding new leads or optimizing

molecules for therapeutic targets emphasize the use of

computer-aided ligand/structure-based design to reduce the
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number of compounds that need to be synthesized and

tested. Predicting the binding mode of an inhibitor to the

binding pocket of its target and rationalizing the features

governing its activity through the use of 3D-QSAR

approaches like CoMFA and CoMSIA has been success-

fully used in many applications (Cramer et al. 1988). In the

present study, the pharmacological profiles of the ben-

zopyran class of selective COX-2 inhibitors were explored

using Gaussian-based 3D QSAR. The binding modes and

interaction pattern profiles of various inhibitors were

characterized by the application of molecular docking

simulations and protein–ligand interaction fingerprint

(PLIF) analysis (Deng et al. 2004; Kelly and Mancera

2004). Furthermore, the validity and reliability of the 3D-

QSAR model and molecular docking were further assessed

by statistical parameters and receiver operating character-

istics (ROC) curve.

Materials and methods

Dataset collection

The structure and biological activity of a set of 58 novel

benzopyran class of selective COX-2 inhibitors (Wang

et al. 2010a, b, c) was collected from the Binding Database

server (https://www.bindingdb.org). The bioactivities of

the inhibitors selected were reported in the form of IC50

values. The IC50 (nM) values were converted into their

negative logarithmic form (pIC50) (M) with the resulting

pIC50 values ranged from 3.523 to 8.523. The 3D coordi-

nates of the inhibitors were generated using the LigPrep

module in Maestro 10.2 (Schrödinger, USA) using the

following conditions: (i) the force field used was OPLS3

(Harder et al. 2016), (ii) all possible ionization states at pH

(7.0 ± 2.0) were derived using the Epik method (Shelley

et al. 2007) (iii) all possible tautomers and stereoisomers of

the compounds were generated based on the number of

chiral centers, and (iv) one low energy ring conformation

per ligand was generated (Brooks et al. 2008). The energy-

minimized molecules with chirality consistent with that

reported in the literature were selected and the resulting

dataset was divided into training (45) and test sets (13)

considering that both sets contain high, medium and low

active compounds with chemical diversity. The experi-

mental and predicted pIC50 values of all molecules in the

training and test sets are listed in Table 1.

Alignment based on template using Surflex-sim

The determination of the active conformation and align-

ment of molecules is the most important step for the gen-

eration of molecular field-based 3D-QSAR models. The

Table 1 Structure, experimental and predicted activity of benzopy-

ran analogs

Compound R Exp. act. Pred. act.

IC50(lM) PIC50(M) PIC50(M)

1* 6-Cl 0.32 6.495 7.063

5a 5,6-Di-Cl 0.003 8.523 7.568

5b* 6,7-Di-Cl 0.062 7.203 7.558

5c-S 6,8-Di-Cl 0.0098 8.009 7.430

5e 5,8-Di-Cl 0.1 7.000 7.275

5g 5,6,7-Di-Cl 0.006 8.222 8.040

5h 6,7,8-Di-Cl 0.043 7.367 7.886

Compound R Exp. act. Pred. act.

IC50(lM) PIC50(M) PIC50(M)

8a –HCCH2 0.018 7.745 6.939

8b –CCH 0.043 7.367 7.324

8c –Ph 0.11 6.959 6.646

8d –CCPh 0.14 6.854 6.987

8e –PhSO2NH2 0.76 6.119 6.011

8f –CCPhSO2NH2 18.6 4.730 5.175

Compound R Exp. act. Pred. act.

IC50(lM) PIC50(M) PIC50(M)

7 CH3 0.12 6.921 6.584

12 CH2CH3 28.8 4.541 6.161

13 NH2 1.48 5.83 6.069

17 PhO 0.53 6.276 6.058

18 PhS 0.34 6.469 6.429

19* Ph 4.64 5.333 5.925

20* MePh 1.98 5.703 5.671

Compound R Exp. act. Pred. act.

IC50(lM) PIC50(M) PIC50(M)

23b –CH2CH(C2H5)2 0.021 7.678 8.051

23c* –C(CH3)3 0.028 7.553 7.745

23d –CH2CH(CH3)2 0.028 7.553 7.401

23e –CH2 c-hexyl 0.034 7.469 7.482
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success of any 3D-QSAR method relies on the appropriate

relative positioning of ligands in a fixed lattice prior to the

generation of molecular field values. In this study, the

Surflex-Sim module of SYBYL-X was used to generate the

alignment of all the molecules. This method uses a surface-

based morphological similarity function to align molecules

and considers molecular shape, hydrogen bonding and

electrostatic properties (Jain 2000). The co-crystal bound

ligand (5c-S) in protein complex (PDB: 3LN0) was chosen

for the first phase of alignment. As the co-crystal ligand in

3LN0 is a representative molecule of dataset, the co-crystal

ligand was extracted (Wang et al. 2010b) and 29c_2

molecule of the dataset were aligned using the mutual

alignment mode. This generates multiple hypotheses and

ranks according to a similarity score value. The top simi-

larity score hypothesis was selected as template for align-

ing the rest of the molecules using a flexible superposition

approach. Figure 1 shows the alignment of all the inhibi-

tors from the dataset.

Table 1 continued

Compound R Exp. act. Pred.

act.

IC50(lM) PIC50(M) PIC50

(M)

26a –N(CH3)(C2H5) 21.3 4.672 5.025

26b –N(CH3)[CH(CH3)2] 100 4.000 3.808

26c 2,5-diMe pyrrolidine 96 4.018 3.824

26d –N[CH(CH3)2]2 100 4.000 4.054

26e* 2,6-diMe pyrrolidine 62.2 4.206 4.463

Compound R Exp. Act. Pred.

Act.

IC50(lM) PIC50(M) PIC50

(M)

29a_2 –CH(CH3)2 0.3 6.523 6.579

29b_2 –C(CH3)3 0.062 (S) 7.208 6.720

29c_2 –CH2CH2CH3 0.15 6.824 7.209

29d_2* –CH2CH(CH3)2 0.007 (R) 8.155 8.586

29e* –(CH2)2C(CH3)2 0.068(R) 7.167 8.111

32a –SCH2CH(CH3)2 0.008 (R) 8.097 8.024

32b –N(CH3)CH2CH(CH3)2 0.085 (R) 7.071 7.107

33 –OCH2CH(C2H5)2 0.046 7.337 7.120

Compound R Exp. act. Pred. act.

IC50(lM) PIC50(M) PIC50(M)

6c* CH3 0.25 6.602 6.407

6d CHO 0.73 6.137 6.558

6e OCF3 0.029 7.538 7.625

7_3 CCH 0.073 7.137 7.259

9 C2H5 0.33 6.481 6.115

11 CN 0.11 6.959 6.753

15* CF3 0.041 7.387 7.169

Compound R1, R2 Exp. act. Pred. act.

IC50(lM) PIC50(M) PIC50(M)

18a* R1=Cl, R2=Me 0.084 7.076 7.271

18b* R1=Me, R2=Cl 0.19 6.721 6.802

Table 1 continued

Compound R1, R2 Exp. act. Pred. act.

IC50(lM) PIC50(M) PIC50(M)

18c R1=Me, R2=Me 0.29 6.538 6.509

18d R1=OCH3, R
2=Cl 0.24 6.620 6.962

21 R1=Me, R2=OCH3 3.33 5.478 5.665

23_3* R1=CCH, R2=Cl 0.026 7.585 7.405

26 R1=C2H5, R
2=Me 0.27 6.569 6.122

29a R1=OCF3, R
2=Me 0.014 7.854 7.861

29b R1=OCF3, R
2=Et 0.06 7.222 7.739

29c R1=OCF3, R
2=Pr 0.042 7.377 7.616

29d R1=OCF3, R
2=iPr 0.68 6.167 6.525

Compound R1, R2 Exp. act. Pred. act.

IC50(lM) PIC50(M) PIC50(M)

34a 5-Me, 8-Me 0.21 6.678 6.781

34b 5-Me, 7-Me 0.046 7.337 6.765

34c 7-Me, 8-Me 0.03 7.523 7.150

Exp. act. experimental activity, pred. act. predicted activity,

S = S stereoisomer; R = R stereoisomer

* Test set compounds
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Molecular docking using GLIDE

Molecular docking was carried out using the extra-preci-

sion (XP) mode of Glide 6.7 (Schrödinger). Glide (Grid-

based Ligand Docking with Energetics) (Friesner et al.

2004) uses a hierarchical series of filters to search for

possible locations of the ligand in the active-site region of a

receptor. The shape and properties of the receptor are

represented on a grid by several different sets of molecular

fields that provide progressively more accurate scoring of

the ligand poses. The protein structure (PDB ID: 3LN0)

was prepared using the protein preparation wizard in

Maestro 10.2 (Schrödinger) using its standard protocol and

restrained protein minimization was performed using the

OPLS3 force field until the energy converges with a RMSD

of 0.3 Å. The prepared protein structure complex was then

used to generate a receptor grid using a grid box size of 64

Å 9 64 Å 9 64 Å with its centroid located on the bound

ligand (5c-S). The OPLS-AA force field (Siu et al. 2012)

was used for grid-based energy evaluation and refinement

of docking solutions including torsional and rigid-body

movements of ligands. A small number of docking solu-

tions were then subjected to Monte Carlo energy mini-

mization (Friesner et al. 2006). The final energy evaluation

was done with Glide score (GScore):

GScore ¼ 0:05 � vdWþ 0:15 � Coulþ Lipoþ Hbond

þMetalþ Rewards þ RotBþ Site

where vdW is the van der Waals energy, Coul is the

Coulomb energy, Lipo is the lipophilic contact energy,

Hbond is the hydrogen-bonding energy, Metal is the metal

binding energy, Rewards is the rewards and penalties for

buried polar groups, hydrophobic enclosures, correlated

hydrogen bonds, etc., RotB is the penalty for freezing

rotatable bonds, and Site is the polar interactions in the

active site. A single best pose was generated as the output

for each ligand and taken for further analysis.

Validation of docking protocol

Before docking the dataset of molecules, the use of Glide

was validated by both a redocking approach and an

enrichment study. In the redocking approach, the bound

ligand found in the X-ray crystal structure was extracted

and docked back into the binding pocket of the enzyme.

This was done to ensure that Glide could reproduce the

orientation and position of the inhibitors as observed in the

X-ray structure. In the enrichment study, the performance

of Glide was tested to determine whether it can discrimi-

nate active from inactive molecules. For this purpose,

Glide decoys (532) were mixed with the active molecules

(activity [7.167) of the benzopyran dataset and docked

into the binding pocket. A receiver operating characteristic

(ROC) curve and enrichment factor (EF) were calculated in

order to determine the performance of Glide. The perfor-

mance in a ROC curve can be measured as the area under

the curve (AUC), which should have values between 0 and

1. A value of AUC = 1 indicates complete discrimination

between active and inactive molecules. Similarly, EF is

defined as the fraction of active compounds found divided

by the fraction of the screened library (Kumar et al. Kumar

and Tiwari 2013; Poongavanam and Kongsted 2013).

Enrichment calculations were performed using the fol-

lowing equation as available in the program:

EF ¼ actives sampled=actives totalð Þ
� N total=N sampledð Þ

Gaussian-based 3D-QSAR model

Gaussian-based 3D-QSAR analysis was performed using the

molecular field-based QSAR tool in Maestro 10.2 (Schrö-

dinger) (Cappel et al. 2015). Generally, any 3D-QSAR

method constructs a model by correlating the activities and

the 3Dmolecular field values of a set of alignedmolecules. In

molecular field-based QSAR methods, two kinds of field

values are used. The first molecular field type is similar to

CoMFA, which consists of a steric field based on Lennard-

Jones and electrostatic potentials, with the latter having a

distance-dependent dielectric with a 1/r2 dependence. The

second molecular field type is based on Gaussian-based

potential similar to CoMSIA, consisting of steric, electro-

static, hydrophobic, H-bond acceptor, and H-bond donor

fields. The dataset of benzopyrans was divided into training

and test sets for the development of a 3D-QSAR model and

its validation, respectively. The Gaussian-based potential

function was selected to build the 3D-QSAR model using
Fig. 1 Template (5c-S) based alignment of dataset molecules using

Surflex-Sim
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Partial Least Squares (PLS) regression. During model

building, the following parameters were used: grid spacing:

1.0 Å; Extend grid by 3 Å beyond the training set limits;

Ignore force fields within 2.0 Å of any training set atom;

Truncate steric and electrostatic force fields at 30 kcal/mol;

Eliminate variables with SD\ 0.01; Eliminate variables

with |t-value|\2.0; Number of ligands to leave out for cross-

validation: 1 (leave-one-out).

The QSAR models developed for each PLS factor were

evaluated by internal and external validation parameters:

squared correlation coefficient (R2), cross-validated corre-

lation coefficient (Q2
training), R

2 scramble, Stability, Fisher

test (the variance ratio, which indicates the statistical sig-

nificance of model), P value (level of variance ratio, with

small P values usually indicating a greater degree of sig-

nificance), SD (standard deviation of the regression),

RMSEtest (root-mean-square error of the test set), Q2
test

(value for the predicted activities of the test set), and

Pearson-r (correlation coefficient between observed and

predicted activities for the test set).

Gaussian-based 3D-QSAR model generation

workflow

Successful generation of a 3D-QSAR model requires the

correct alignment in 3D of the optimized conformations of

all the molecules. As numerous bioactive conformations of

inhibitors of COX-2 are available, an alignment could be

done based on these bioactive conformations. For this pur-

pose, PDB structure 3LN0 containing bound ligand (5c-S),

one of the dataset inhibitors, was considered for alignment

using Surflex-Sim. The aligned dataset of molecules was

imported into Maestro 10.2 and Gaussian-based 3D-QSAR

models were generated using PLS statistics.

Protein–ligand interaction fingerprint analysis

A detailed understanding of protein–ligand interactions is

an important part of drug design. To aid the visualization of

protein–ligand complexes, the protein–ligand interaction

fingerprint (PLIF) approach available in MOE2009.10

(Molecular Operating Environment) was applied to better

understand the ligand–protein interactions. The PLIF

approach was applied to the 23 known X-ray crystal

structures of inhibitors of COX-2 enzyme obtained from

the Protein Data Bank to reveal the similarity and diversity

of their binding interactions. Since the structure 3LN0 was

chosen as the reference receptor, the protein–ligand inter-

action fingerprints of its cognate ligand and those of all

other ligands were generated from their docked poses

(Table S1; Figure S1 in the Supporting Information). The

protein–ligand interaction fingerprints of the cognate

ligand and the dataset molecules were compared and con-

trasted to investigate the similarity and diversity of

interactions.

Results and discussion

Molecular docking

The aim of the molecular docking simulations was to

predict the binding affinity and interactions of benzopyran

derivatives known to modulate the activity of human COX-

2 (Wang et al. 2010b). Validation of the docking program

Glide by predicting the binding interactions of inhibitor 5c-

S, as shown in Fig. 2, with the best binding pose exhibiting

a low RMSD of 0.1031 Å and revealing excellent agree-

ment between the predicted and experimental binding pose.

All the benzopyran analogs and the standard drug Cele-

coxib were then docked into the binding site of COX-2 to

predict their binding affinity and interactions (Table S2;

Figures S2, S3 in the Supporting Information). Docking of

Celecoxib resulted in a prediction of high binding affinity,

with a docking score of -11.241 and the formation of

strong H-bonds to important binding pocket polar amino

acid residues Tyr-371 and Ser-516. On the other hand,

docking of the benzopyran analogs predicted somewhat

lower binding affinities with docking scores between

-10.924 to -2.342, with all molecules forming between 1

and 2 H-bonds to the same polar amino acid residues Tyr-

371 and Ser-516, and occasionally a H-bond to Tyr 341. A

Fig. 2 Binding pose prediction of 5c-S (green) compared to that

found in its X-ray crystal structure (cyan), with a RMSD of 0.1031 Å
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common binding mode was observed for benzopyran

molecules and were predicted to be within a radius of 3 Å

with diverse properties of amino acid residues in the

binding site: hydrophobic, for example, Val-335, Leu-338,

Met-508, Val-509, Ala-513, Leu-517, and Gly-512; aro-

matic (hydrophobic), for example, Tyr-341, Tyr-371, Trp-

373, and Phe-504; polar uncharged, for example, Ser-339,

and Ser-516. It was further noted that, since benzopyran

molecules possess a stereocenter at C-2 position, they may

exist in two possible conformations. The molecular dock-

ing simulation reveal both conformations, where the tri-

fluoromethyl group at C-2 position is opposite in both cases

in the binding pocket comprised of Val-335, Leu-338, Met-

508 and Val-509 amino acid residues. Since the majority of

interactions between ligands and protein were hydrophobic

in nature, this suggests that strong hydrophobic interactions

with COX-2 play a key role in determining the binding

affinity and interactions of this class of molecules.

Enrichment study

Since the molecular docking scores for dataset molecules

poorly correlated with experimental activity (pIC50 (M)),

(data not shown here) thus it is worthwhile to perform

enrichment study in order to assess, whether, current

molecular docking protocol is able to discriminate the

actives from inactives/decoys. Thus in enrichment study, a

total 25 known active ligands and 532 decoys were docked

into the binding pocket of COX-2 (PDB structure 3LN0)

and the top ranked pose for each ligand (based on the Glide

score) was considered. As shown in Figure S4 (A), the

ROC curve shows that the Glide docking protocol followed

effectively discriminates between the active and inactive

molecules, with an AUC of 0.742. In Figure S4 (B), the

blue stepped line displays a standard enrichment curve of

the fraction of active molecules found against the fraction

of database screened. The count and percentage of active

molecules in the top N% of decoys were 1% (12 and 48%),

5% (17 and 68%) and 20% (19 and 76%). Similarly, the

enrichment factor in the top 1, 5 and 20% were 22, 14, and

3.8, respectively. The enrichment study clearly indicates

the docking program is able to decrease the number of false

positive and false negatives in virtual screening. The ROC

curve and screen results support the reliability of Glide for

further use in virtual screening for hit identification.

Gaussian-based 3D-QSAR analysis

The aligned dataset of molecules obtained from Surflex-Sim

was subjected to Gaussian-based 3D-QSAR modeling using

PLS statistics with different field contributions values. In

order to select the best field combinationmodel and avoid the

over-fitting problem, the stability statistic was considered.

As a rule of thumb, the optimum number of PLS factor for a

robust model should have higher stability and lower R2
Scramble

values (\0.5). Based on this criterion, two models with field

contribution of (Steric ? Hydrophobic ? Hydrogen bond

acceptor) and (Steric ? Electrostatic ? Hydrophobic ?

Hydrogen bond acceptor) have higher stability values of

0.873, 0.867 and lower R2
Scramble of 0.465 and 0.489 at PLS

factor 3, moreover their internal (Q2
training) validation param-

eters have values of 0.638 and 0.660 respectively. Compara-

tive statistical analysis afforded a robust model with

r2 = 0.866,Q2
training = 0.660,Q2

test = 0.846, andRMSEtest =

0.41, exhibiting good correlation with gaussian steric, elec-

trostatic, hydrophobic and hydrogen bond acceptor (HBA)

field values, along with their potential field contributions

being 0.34, 0.125, 0.327, 0.204, respectively. The statistical

summary of the model is listed in Table 2 and in supple-

mentary Table S3. The molecular field contribution values

indicate that the steric and hydrophobic features of the

molecules play an important role in governing the biological

activity, which further supports the molecular docking find-

ings, which revealed that the hydrophobic interaction is a

major contributor in modulating the binding affinity. More-

over, the contour maps were superimposed in the protein

binding pocket to further aid in rationalizing the structural

features responsible for activity. The contribution of different

molecular field intensities is given in Table 2.

Gaussian steric contour maps

In this work, the steric field is represented by green and

yellow contour maps, in which green coloured regions

indicate areas where increased bulk is associated with

enhanced activity and yellow regions suggest areas where

increased steric bulk is unfavourable to activity. Figure 3a

shows only two green contour areas. In order to aid the

visualization, the potent compound (5a) is overlaid on the

map of contours along with the protein binding pocket. A

large green contour is located over the region containing

C-2 substituents. It is noteworthy to mention here that C-2

is a chiral center and many molecules exist as either R or S

stereoisomers. The green contour suggests that the

R-stereoisomer of benzopyran molecules are better inhi-

bitors of COX-2 compared to their S-stereoisomer coun-

terparts. Moreover, a small green contour at a distance

from C-8 position suggests linear alkyl substituents like in

compounds 29c, 29d, 32a favours the activity.

Gaussian electrostatic contour maps

In this work, the electrostatic field is represented by blue

and red contour maps, where blue areas are the regions
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where electronegative substituents are unfavourable to

activity, while red areas are the regions where elec-

tronegative substituents are favourable to activity (Fig. 3b).

All benzopyran molecules have a carboxylic group at the

C-3 position and are supported by red contour map at that

position. Similarly, a red contour at C-6 position suggests

that electronegative substituents like (–Cl, –CCH, –OCF3)

are favourable for activity. The electrostatic contour map

also shows two blue regions around the C-5 and C-7

positions, which reflect substituents of compounds (7, 34a,

34b) and (23b, 23c, 23d, 23e, 29c_2, 29d, 29e, 32a, 32b),

respectively, and which are potent molecules in the dataset.

However, low activity compounds (19, 20) with -Ph and -

MePh substituents at the C-5 position suggests that

electropositive substituents are favourable for activity.

Moreover, a large red contour was observed over the C-7

position, suggest that substituents with electronegative

atom (–O–) as a linker is favourable for activity (com-

pounds 23b, 23c, 23d).

Gaussian hydrophobic contour maps

In this work, the hydrophobic fields are represented as yel-

low and white contour maps, where yellow regions are

favourable and white regions are unfavourable for activity,

respectively. In Fig. 4a, a large yellow contour region at the

C-5 and C-6 positions indicates that compounds 7, 7_2, 5a,

5 g, 34a, and 34b have hydrophobic groups that are well

Table 2 Statistics of Gaussian-based 3D-QSAR models (selected model from PLS factor is shown in bold) and contribution of field values (%)

Factors SD R2
training Q2

training
R2 scramble Stability F P RMSEðtestÞ Q2

test
Pearson-r

1 0.747 0.595 0.295 0.227 0.755 63.1 5.71E-10 0.76 0.451 0.745

2 0.500 0.823 0.638 0.387 0.822 97.3 1.71E-16 0.5 0.768 0.928

3 0.439 0.866 0.660 0.489 0.867 88.6 5.88E218 0.41 0.846 0.949

4 0.381 0.902 0.693 0.564 0.857 91.8 1.33E-19 0.37 0.872 0.951

5 0.355 0.917 0.686 0.621 0.842 86.2 5.25E-20 0.45 0.807 0.948

Contribution of potential field values (%)

PLS factor Steric Electrostatic Hydrophobic HBA

3 0.343 0.125 0.327 0.204

Fig. 3 Contour maps in protein binding pocket for Gaussian-based 3D-QSAR model. a Steric favored regions are shown in green and disfavored

regions are shown in yellow. (presented as 29d_2: ball-stick; 5a: tube; 29c_2: thin-tube). b Electrostatic favorable electropositive regions are

shown in blue and favorable electronegative regions are shown in red (presented as 29c_2: ball-stick; 19: tube; 23b: thin-tube)
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tolerated at that position. As discussed previously in relation

to steric contour maps, substituents at the C-2 position in the

R-stereoisomers of the molecules show good activity com-

pared to the S-stereoisomers. Similarly, S-stereoisomers of

the molecules exhibit a white contour region at the C-2

position (–CF3). Similarly, four white contour regions

occupying the space at certain distance for substituents at

C-5 and C-7 positions suggest that extended network of

linear or branched substituents are unfavourable for activity

as evidenced by compounds (12, 19, 20, 26a, 26b, 26c, 26d,

26e). It further suggests that careful selection of hydropho-

bic groups for substitutions is needed. Furthermore, a large

yellow contour map in between C-7 and C-8 further support

that, hydrophobic groups with not too much bulky sub-

stituent is favouring the activity (23b, 23c, 23d, 29c_2,

29d_2, 32a). It is worth mentioning here that many struc-

tural features of the hydrophobic contour map pattern follow

the steric contour map pattern, as expected.

Gaussian hydrogen bond acceptor contour maps

In this work, hydrogen-bond acceptor (HBA) fields are

represented as red and magenta contour maps, where red

regions correspond to favourable groups and magenta

regions correspond to unfavourable groups. In Fig. 4b, a

large red contour region near the C-7 position in compounds

23b, 23c, 23d, 23e, 32a and 33 suggests that the presence

of oxygen or sulphur as a HBA linker between terminal

substituents and the C-7 carbon enhance activity. In the

dataset, the majority of molecules (R-stereoisomers) contain

–CF3, substituent at the C-2 position. These groups are not

good hydrogen-bond acceptors, which is associated with the

presence of a magenta contour map at the neighbouring C-2

position. Similarly, a large magenta contour map is found at

a distance near the C-8 position. On mapping of compounds

8e and 8f, the magenta contour is found over the oxygen

functionality of –SO2NH2 group and comparing the activity,

it revealed that the extension of substituents at C-8 position

(8f) is unfavourable for activity.

The structural requirements in terms of contour maps

corroborate with the protein binding amino acid residues

and further supports the field based 3D-QSAR hypothesis.

Protein–ligand interaction fingerprint analysis

The PLIF analysis is used to study the interaction between

the residues in the protein and the ligands on a superim-

posed structure of complexes. The derived fingerprint bits

are used to investigate the common residues that interact

with the ligand. In this study, protein–ligand interaction

fingerprints (PLIF) was used to analyze the similarity and

diversity of interactions with COX-2 between inhibitors

taken from known X-ray crystal structures and the dataset

molecules. The fingerprint bits created from the PLIF

analysis for the known X-ray crystal structures and the

dataset molecules are displayed in Table S4, S5 and Fig-

ure S5. The fingerprint bits in Table S4 and S5, showed that

the ligand in both kind of complexes (X-ray crystal struc-

tures and dataset molecules) have interaction commonly

with amino acids such as Arg-106, Leu-338, Ser-339, Tyr-

341, Tyr-371, Arg-499, Phe-504 and Ser-516 amino acid

residues through side chain H-bond acceptor, donor, and

Fig. 4 Contour maps in protein binding pocket for Gaussian-based 3D-QSAR model. a Hydrophobic favorable regions are shown in yellow and

unfavorable regions are shown in grey (presented as 29c_2: ball-stick; 5a: tube; 26d_2: thin-tube). b Hydrogen bond acceptor favorable groups

are shown in red and unfavorable groups are shown in magenta (presented as 8e: ball-stick; 23b: tube; 33: thin-tube)
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Ionic interaction. The dataset molecules additionally,

showed backbone H-bond acceptor interaction with Gln-

178, Met-508 amino acid residues. Such interactions are

uncommon in known inhibitors, however, these residues

are in vicinity of the binding pocket, further revealed the

structural diversity of dataset molecules, and capable of

making additional interaction, which stabilizing the inhi-

bitors in COX-2 binding pocket. Figure S5 shows a his-

togram of the frequencies of the different interaction made

by the known inhibitors and dataset molecules respectively.

The interaction matrices for known inhibitors and dataset

molecules revealed the similarity of the binding interaction

profiles for both sets of molecules and suggest the exis-

tence of a common binding mode and interaction pattern.

Validation of Gaussian-based 3D-QSAR models

Experimental versus predicted activities for both the

training and test set inhibitors are shown in Fig. 5, which

represents the above described Gaussian-based 3D-QSAR

model. The correlation coefficients for the selected model

at PLS factor 3 for the training and test sets are 0.866 and

0.949 respectively. The statistical validation parameters as

recommended by Tropsha et al. (Golbraikh and Tropsha

2002) were calculated to determine the robustness and

reliability of the model. The predictive power of the model

was further accessed by calculating additional validation

parameters such as the modified r2 term (r2m), and R2
p as

reported by Pratim Roy et al. (2009). The values of all of

these parameters are shown in Table 3, which suggest a

good level of robustness and reliability of the selected

model.

The Gaussian-based 3D-QSAR model shows strong

predictive power and provides detailed information

regarding the structural features of the molecules that

govern their inhibitory activity. Figure 6 summarises the

positive and negative COX-2 inhibition activity coeffi-

cients for the core benzopyran structure: (i) an elec-

tronegative group (pink color) at position C-6 of the

benzopyran ring favours activity, (ii) an electropositive

group (blue colour) at the C-7 position favours activity, iii)

a hydrophobic and bulky group at the C-6 position (yellow

and green colour) favours activity, and (iii) HBA (magenta)

in C-6 substituents favours activity.

Conclusions

A molecular modelling study was carried out to gain insight

into the structural basis of the inhibitory properties of the

novel benzopyran class of COX-2 inhibitors. A Gaussian-

Fig. 5 Scatter plot of the experimental vs predicted COX-2

inhibitory activity values of training set and test set molecules using

the Gaussian-based 3D-QSAR model

Table 3 Statistical external validation parameters for PLS Model 3

PLS

model
r2ðtrainingÞ
(r2[ 0.6)

Q2
ðtrainingÞ

(Q2[ 0.5)

r2 � r020 ðtestÞ
(\0.3)

r2 � r20=r
2
ðtestÞ

(\0.1)

K

(0.85 B kB1.15)
r2m ðtestÞ
([0.5)

R2
p

([0.5)

3 0.866 0.660 0.00 0.02 0.974 0.866 0.532

Fig. 6 Structural interaction requirements of benzopyran derivatives

for COX-2 inhibitory activity derived from Gaussian-based contour

maps. The plus (?) sign indicates favorable substituents for COX-2

inhibitory activity
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based 3D-QSAR model was developed which not only

exhibited good predictive powers in both the internal and

external validations, but also identified critical structural

features influencing the inhibitory activity. The statistically

robust QSAR model showed R2
training = 0.866, Q2

training =

0.66, RMSEtest = 0.41, Q2
test = 0.846 and r2m = 0.866, based

on steric, electrostatic, hydrophobic, and HBA, respectively.

The analysis of contour field maps revealed the suitable size

and shape of substituents at the C-5, C-6 and C-7 positions

enhance activity. The stereochemistry at the C-2 position also

modulates activity, such that R-stereoisomers are favourable

for activity. Similarly, electronegative and electropositive

groups at the C-6 and C-7 positions, respectively, modulate

activity. Molecular docking simulations predicted the bind-

ing modes of these molecules and their key interaction fea-

tures. The carboxylic group at the C-3 position appears to be

responsible for establishing strong hydrogen bonds with Tyr-

371 and Ser-516 in the binding site. Analysis of protein–

ligand interaction fingerprints further revealed the existence

of a common set of residues (Arg-106, Ser-339, Tyr-341,

Tyr-371 and Ser-516) that interact with all known inhibitors

as well as the benzopyran molecules. These findings provide

useful insights into the binding mechanism between COX-2

and inhibitors that may be of value for the future design of

novel potent COX-2 inhibitors.
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