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Abstract Infective endocarditis is caused by Streptococ-

cus sanguinis present in dental plaque, which can induce

inflammatory responses in the endocardium. The present

study depicts research on the properties of apigenin in

embryonic mouse heart cells (H9c2) treated with lipotei-

choic acid (LTA) obtained from S. sanguinis. Interleukin-

1b and cyclooxygenase (COX)-2 expression were detected

by reverse transcriptase polymerase chain reaction. In

addition, western blot assays and immuno-fluorescence

staining were used to assess translocation of nuclear factor

kappa beta (NF-jB), degradation of IjB, as well as activity
of the mitogen activated protein kinases: extracellular

signal-regulated kinase (ERK)1/2, p38, and c-Jun N-ter-

minal kinase (JNK). Effect of apigenin on cell viability was

equally assessed in other experimental series. Our results

showed that apigenin blocked activation of ERK, JNK, and

p38 in cardiomyocytes treated with LTA in a dose-de-

pendent fashion. Moreover, apigenin showed no cytotoxic

effects; it blocked NF-jB translocation and IjB degrada-

tion. Our findings suggested that apigenin possessed

potential value in the treatment of infectious endocarditis.
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Introduction

The most prevalent oral diseases are periodontitis and

caries; these diseases are caused by microorganisms

existing in dental biofilm (Haffajee et al. 2008; Hodgson

et al. 2001; Olsson et al. 1992; Shu et al. 2000; Stenudd

et al. 2001). Caries development is associated to microor-

ganisms such as Streptococcus mutans and Streptococcus

sanguinis (Ge et al. 2008a, b; Nishikawara et al. 2006;

Zijnge et al. 2010). The virulence and molecular mecha-

nisms of viridians streptococci in the pathogenesis of

bacterial infective endocarditis has not yet been fully

clarified (De Moor et al. 1972; Mayo et al. 1995; Ge et al.

2008a, b; Zhu et al. 2011). Nevertheless, S. mutans and

S. sanguinis are believed to enter the bloodstream as a

result of trauma or oral hygiene manipulations (Kinane

et al. 2005; Strom et al. 2000). This bacteremia may infect

sites of underlying pathological changes of heart valves

causing infective endocarditis (IE), which is a rare and

severe infectious disease that has been extensively descri-

bed in North America (Lockhart et al. 2009). IE is char-

acterized by a high rate of microorganisms, which lead to

cardiac complications and embolic events. Current thera-

pies with antibiotic coverage, and vasopressors as well as

early surgery have become a mainstay in the treatment of

IE, nevertheless, more effective and specific treatment of

sepsis is still lacking and mortality remains high (Hirsch-

man 1987; Lockhart and Schmidtke 1994; Lockhart et al.

2004, 2009; van der Meer et al. 1992); therefore, a better

understanding of the molecular pathogenesis of sepsis is

clearly needed in order to develop novel and more effective

therapeutic strategies.

Nevertheless local innate immune responses are crucial

in order to limit establishment of an infectious focus and

reducing disease severity. Microbial sensing by the innate
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immune system is mediated by pattern recognition recep-

tors such as Toll-like receptors (TLR). TLRs are evolution-

preserved innate receptors with specificity to microbial

determinants; they are expressed in different immune and

non-immune cells. TLR’s main function is recognition of

pathogen-associated molecular patterns (PAMPs) of

invading microbes. After binding, TLRs induce down-

stream activation of protein kinases and cytokine produc-

tion in a MyD88-dependent pathway (Michelsen et al.

2001; Zhang et al. 1999).

Lipoteichoic acid (LTA), a major component of Gram-

positive bacteria cell membrane, is a well-characterized

inducer of inflammatory responses. TLR2 recognizes and

responds to the Gram-positive bacterial cell wall compo-

nent, LTA [22]. LTA is a diacylated, glycerophosphate

polymer, which is recognized by a TLR2/6 heterodimer

complex (Gutiérrez-Venegas and Cardoso-Jiménez 2011;

Kang et al. 2009). Activation of cardiomyocytes by LTA

leads to a increased secretion of a large set of pro-inflam-

matory cytokines such as tumor necrosis factor (TNF) a-
alpha, interleukin-(IL)-1b, IL-6, nitric oxide (Gutiérrez-

Venegas et al. 2013) and cyclooxygenase (COX)-2, all

aforementioned molecules were induced through phos-

phorylation of nuclear factor-jB (NF-jB) and mitogen-

activated protein kinases (MAPK) (Gutiérrez-Venegas and

Bando-Campos 2010; Kao et al. 2005). Over-production of

these inflammatory mediators were involved in myo-

cardium damage and in permeability increase, resulting

thus in many inflammation- associated disorders.

Flavonoids are a family of polyphenolic compounds that

are widely distributed in the plant kingdom, and are con-

sumed in significant amounts as part of the human diet.

Different studies have shown that flavonoids in a healthy

diet exert potentially beneficial effects in regulation of

inflammatory responses. Apigenin (40,5,7-trihydrox-
yflavone) is a non-toxic dietary flavonoid present in fruits

and vegetables such as oranges, onions, chamomille and

grapefruits (Smolinski and Pestka 2003).

Some reports have targeted to demonstrate that apigenin

exerts certain effect on nitric oxide regulation (Liang et al.

1999; Raso et al. 2001; Smolinski and Pestka 2003; Shukla

and Gupta 2004) but, to this date no research has been

conducted to assess the inhibitory effect of apigenin on

LTA-induced inflammatory response in cardiomyocytes. In

a previous work we found that apigenin regulated nitric

oxide synthase expression and nitric oxide production

(Gutiérrez-Venegas et al. 2013), for this reason the purpose

of the present study was to examine the possible role of

apigenin in LTA-induced inflammatory response in car-

diomyocytes as well as to characterize molecular events

involved in its anti-inflammatory response, particularly in

IL-1 and COX-2 expression.

Methods

Materials Apigenin (purity[ 98 %), Dulbecoo’s modified

Eagle medium, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium (MTT), were obtained from Sigma-Aldrich (St.

Louis, USA). Antibodies were purchased from Santa Cruz

(Santa Cruz, CA).

Cell culture and treatment

H9c2 cardiomyocytes cells (ATCC, Cat # CRL-1446) were

cultured in Dulbecco’s modified Eagle medium supple-

mented with 10 % FBS, 100 U/ml penicillin and 100 lg/
ml streptomycin at 37 �C with 5 % CO2. Apigenin was

dissolved in dimethylsulfoxide (DMSO), the concentra-

tions of apigenin used in this research were 2, 5, 10 and

15 lM. For each result, three independent experiments

were performed.

Cell viability by MTT assay

Cell viability was measured by the quantitative colori-

metric assay using MTT, as described in literature (Car-

michael et al. 1987). After treatment, in a time and dose

dependent fashion, media were removed, and fresh media

containing MTT (0.5 mg/mL) were added to each well,

followed by incubation for 4 h at 37 �C. MTT solution was

later removed and cells were lysed with DMSO. The

absorbance at 595 nm was measured using a microplate

reader. Control cells were treated in the same way and the

value was calculated as % of cell viability. All experiments

were conducted three times in a sixfold sequence.

IL-1b and PGE2 expression

H9c2 culture supernatants were recovered; IL-1b expres-

sion was quantified with a Quantitative ELISA kit for PGE2

(Titer Zyme ELISA Kit Assay Designs) (n = 3, threefold).

Immunocytochemistry

Cells were grown on glass cover-slips and fixed for 30 min

with 2 % formaldehyde in PBS at 4 �C. After this, cells

were permeabilized during 5 min with Triton 0.1 % in PBS

and washed five times with PBS. For protein-kinase visu-

alization, cells were treated for 1 h with primary antibod-

ies, diluted 1:100 in PBS, and then washed five times with

PBS. Cells were incubated 45 min with goat anti-mouse

IgG-conjugated rhodamine, bovine anti-goat-conjugated

rhodamine and goat anti-rabbit-conjugated fluorescein-5-

isothiocyanate (FITC) (all from Santa Cruz Biotechnology)

diluted 1:100 in PBS. Samples were mounted on resin and
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examined with a confocal photomicroscope. Secondary

antibodies were used as a control. All experiments were

repeated at least three times.

RT-PCR analysis

RNA isolation was prepared using TRIzol� reagent (In-

vitrogen, Carlsbad, CA, USA) according to protocol. One

microgram of RNA was used along with One Step kit

(Invitrogen). PCR was performed using oligonucleotides

50-TTCAAATGAGATTGTGGGAAAATTGCT-30 (coding
sense) and 50-AGATCATCTCTGCCTGAGTATCTT-30

(anticoding sense) derived from COX-2 gene (O’Neill and

Ford-Hutchinson 1993); or IL-1b 50-GGCTGCAGTT
CAGTGATCGTACAGG-30 and 50-AGA TCT AGA GTA

CCT GAG CTC GCC AGT GAA-30 (Gutiérrez-Venegas
et al. 2013), and 50-AGATCCACAACGGATACATT-30

(anticoding sense) derived from glyceraldehyde-3-phos-

phate dehydrogenase (GADPH) gene (Fort et al. 1985).

PCR amplification conditions included denaturing at 94 �C
for 1 min, annealing at 55 �C for 1 min, and extension at

72 �C for 1.5 min; PCR was carried out for 35 cycles.

GAPDH was used as internal control. Electrophoresis was

carried out using agarose gel electrophoresis; ethidium

bromide was used for staining. Stained gels were analyzed

using LabsWorks 4.0 (Upland, CA, USA) commercial

software. Each densitometric value was expressed as

mean ± SD. All experiments were repeated at least three

times.

Western blot analysis

H9c2 cells (1 9 106/well) were grown in 6-well plates

(Corning, NY, USA). Cells were treated with apigenin for

30 min prior to treatment with LTA (15 lg/ml). There-

after, the medium was aspirated, washed twice with

phosphate-buffered saline (PBS), and PBS was replaced

with 50 ll of cold lysis buffer (0.05 m Tris–HCl, pH 7.4,

0.15 M NaCl, 1 % Nonidet P-40, 0.5 mM phenylmethyl-

sulfonyl fluoride [PMSF]), 10 lg/ml leupeptin, 0.4 mM

sodium orthovanadate, 10 mM sodium fluoride, and

10 mM sodium pyrophosphate (all obtained from Sigma

Chemical Co, St. Louis, MO, USA). Cells were scraped

off, and the lysate was transferred to a microcentrifuge

tube, to be then pulse-sonicated (1 s 9 30) on ice. Western

analysis was performed on 50 lg of proteins mixed 1:1

with 2 9 sample buffer (20 % glycerol, 4 % SDS, 10 %

2-mercaptoethanol, 0.05 % bromophenol blue, and 1.25 M

Tris–HCl pH 6.8, all from Sigma Chemical Co to be then

loaded onto a 10 % SDS-polyacrylamide gel elec-

trophoresis (SDS-PAGE) gel, and run at 40 V for 2 h. Cell

proteins were transferred to polyvinylidene fluoride

(PVDF) membranes (Invitrogene) 30 min at 10 V. Equal

Fig. 1 Effect of apigenin on LTA-cell viability. H9c2 cells were seeded in 96-well plates (1 9 104 cells/well) and a treated with different

concentrations of LTA, b treated with different doses of apigenin, c pre-incubated with apigenin for 30 min and then treated with LTA for 24, 48

and 72 h, followed by MTT assay as described in Experimental Section. Each bar represents mean ± SD calculated from three independent

experiments. * p\ 0.05, which is significantly different from the basal value
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loading of protein groups on the blot was assessed using

Ponceau (Sigma Chemicals Co.). Membranes were blocked

with Tris-buffered saline (TBS) and 5 % bovine serum

albumin for 1 h, washed, and then incubated overnight at

4 �C with primary antibody p-ERK � mouse monoclonal

IgG (1:1,000), p-JNK, p-p38 (1:1000), or p-Akt (1:1000),

or Ijb (1:1000). Blots were washed three times with TBS

and incubated for 1 h with horseradish peroxidase (HPR)-

conjugated anti-IgGAb (1:1,000) (Santa Cruz Biotechnol-

ogy, Inc., USA). Immuno-reactive bands were developed

using a chemiluminescent substrate (Santa Cruz Biotech-

nology, Inc., USA). Autoradiographs were obtained with a

10-min exposure. Three different experiments were carried

out for each figure. Equal loading of blots was demon-

strated by stripping blots and re-probing with antibodies for

total ERK �, p38, AKT, and c-tubulin.

Statistical analysis

All data were presented as mean ± SEM. Statistical signifi-

cance of differences between treated and untreated groups were

determined by a One-Way ANOVA test using the PRISMA

software. A value of p\0.05 was considered significant.

Results

Effect of apigenin on cell viability

We first evaluated the effect of apigenin on H9c2 cells at

cell viability; (a) H9c2 cells were incubated with serial

concentrations of LTA (1–15 lg/ml) for 24, 48 and 72 h.

Whereupon treatment of H9c2 cells with apigenin was

Fig. 2 Effect of apigenin on LTA-induced phosphorylation of ERK �, p38 and JNK in H9c2 cells. Cells were incubated with apigenin (2, 5, 10

and 15 lM) for 30 min, followed by treatment with LTA (15 lg/ml) for 15 min. a Phospho-ERK �; b phospho-p38; c phospho-JNK. Cell

lysates were separated in sodium dodecyl-sulfate polyacrylamide (SDS-PAGE gels), transferred to HybondTM membranes and incubated with

phospho-ERK �, phospho-p38 and phospho-JNK. Membranes were stripped and incubated with total ERK �, p38 and JNK. Results are

representative of three separate experiments. Densitometric analysis revealed mean of three separate experiments as well as standard error of the

mean (SEM). *Significantly different from LTA alone p\ 0.05
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found to exert no significant change in cell viability in

presence of LTA (Fig. 1a). In order to examine the sensi-

tizing effect of apigenin on viability, cells were treated

with apigenin in the range of 1 9 10-6–1 9 10-4 M, since

this range of apigenin, when used as sole treatment, did not

influence viability of H9c2 (Fig. 1b). Nevertheless, treat-

ment of LTA (15 lg/ml) with apigenin (1 9 10-6–

1 9 10-4 M) for 24, 48 and 72 h, resulted in a significant

increase of cell viability in a 72 h (Fig. 1c).

Effect of apigenin on LTA-induced MAPK

phosphorylation

To determine flavonoid action on LTA-induced ERK �
phosphorylation, cells were pre-incubated with apigenin

30 min at dosages of 2, 5, 10 and 15 lMand treatedwith LTA.

Our results showed that apigenin blockedLTA-inducedMAPK

activation (15 lg/ml) from doses of 2 lM onwards (Fig. 2a).

Assessment of apigenin effect on p38phosphorylation revealed

blocked p38 phosphorylation induced by LTA in a dose-de-

pendent fashion (Fig. 2b). Similar results were obtained with

JNK phosphorylation (Fig. 2c). It was found that apigenin

promoted a significant effect from 2 lM doses onwards.

Effect of apigenin on LTA-induced AKT activation

We next determined the effect of apigenin on LTA-induced

AKT activation. Our results showed that apigenin blocked

LTA-induced AKT phosphorylation (Fig. 3).

Effect of apigenin on LTA-induced NFkB activation

To further elucidate the effect of apigenin on LTA-induced

NFjB translocation and IjB degradation, we proceeded to

observe the effect under immunocytochemistry. We found

that LTA (15 lg/ml) induced IjB degradation and NFjB
translocation, and that the process was inhibited by apigenin.

We equally observed maximal effect at 15 lM (Fig. 4).

Effect of apigenin on IL-1b expression

LTA treatment increased the levels of IL-1b (Fig. 4a, b) in

H9c2 cells. This response was attenuated by apigenin in a

concentration-dependent manner, we found that LTA

administration induced IL-1b expression, furthermore

apigenin significantly decreased IL-1b level in a concen-

tration-dependent manner (Fig. 5a, b). Our experimental

data indicated that apigenin pre-treatment reduced LTA-

induced expression of IL-1b by inhibiting MAPK and

NFjb activation in H9c2 cells treated with LTA.

Effect of apigenin on COX-2 transcription

and translation

Incubation of H9c2 cells with LTA significantly increased

COX-2 transcription and translation. Apigenin treatment,

markedly attenuated COX-2 transcription induced by LTA

(Fig. 6a). We next evaluated the effect of apigenin on PGE2

synthesis in H9c2 cells, we found that LTA administration

induced PGE2 expression, furthermore apigenin significantly

decreased PGE2 level in a dose-dependent fashion (Fig. 6b).

Likewise, as shown in Fig. 6c and d, LTA stimulated

COX-2 expression up to 2.3 times over basal level. This

figure additionally shows that apigenin significantly atten-

uated LTA-mediated COX-2 expression. We next assessed

COX-2 expression, regulated by different kinase inhibitors.

H9c2 cells were pretreated with ERK � inhibitor PD98059

(10 lM), p38 MAPK inhibitor SB203580 (20 lM), JNK

inhibitor SP600125 (10 lM), PKC inhibitor Calphostin C

(1 lM) and C) with Phospholipase C inhibitor U73122

(1 lM), LY294002 (1 lM), H89 (1 lM) and Curcumin

(1 lM) for 30 min, then exposed to LTA (15 lM) for 6 h.

LTA-stimulated H9c2 cells COX-2 expression was sig-

nificantly attenuated (*p\ 0.05) after treatment with all

different inhibitors, we found that JNK inhibitor did not

inhibit COX-2 expression.

Discussion

The main purpose of the present research was to evaluate

cellular mechanisms underlying anti-inflammatory effect

of apigenin induced by LTA in cardiomyocytes. The

Fig. 3 Effect of apigenin on phosphorylation of AKT. Cells were

incubated with apigenin (2, 5, 10 and 15 lM) for 30 min followed by

treatment with LTA (15 lg/ml) for 15 min. Cell lysates were

separated in sodium dodecyl sulfate polyacrylamide (SDS-PAGE)

gels and transferred to Hybond membranes and incubated with

phospho-AKT antibodies. Membranes were stripped and treated with

total AKT. The results are representative of three separate experi-

ments. By densitometry we obtained standard error of the mean

(SEM).* Significantly different from LTA alone p\ 0.05
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present study revealed that apigenin inhibited LTA-in-

duced inflammatory response, by decreasing ERK �, p38,

JNK and AKT phosphorylation in a dose-dependent fash-

ion; thus reducing NFjb translocation and modulation of

COX-2 and IL-1b transcription and translation in H9c2

cardiomyocytes. Cardiomyocytes are the main cardiac cells

involved in inflammatory response and can produce

numerous pro-inflammatory cytokines (Damås et al. 2001;

Schilling et al. 2011; Wang et al. 2004). Chronic inflam-

matory response will result in severe organ damage and

infective endocarditis, thus, reduction of chronic inflam-

mation is an effective strategy to prevent pathological

progression (Cognasse et al. 2014; Weinstock et al. 2014).

In recent years, new approaches on the use of herbal

products for the treatment of inflammatory diseases are

being practiced in traditional medicine. Our study focuses

on the action mechanism of flavonoid apigenin which is

used in alleviating inflammatory diseases by inhibiting

cytokines and TNFa expression (Kang et al. 2011;

Kowalski et al. 2005). Several studies showed that apigenin

inhibited NO production induced by lipopolysaccharide

(LPS) in macrophages and cytokine synthesis in monocytes

as well as LPS treated macrophages (Hougee et al. 2005;

Nicholas et al. 2007).

In the present study, we demonstrated that apigenin

showed no effect on the reduction in cell viability as

measured by MTT assay; our data suggest that flavonoids

do not exhibit cytotoxic effect on cardiomyocytes, similar

Fig. 4 Apigenin inhibits NFjB
translocation and IjB
degradation in LTA-stimulated

H9c2 cells. Cells were pre-

treated with or without apigenin

(10 lM) and stimulated with

LTA (15 lg/ml) for 1 h. Cells

were fixed in 2 % formaldehyde

in PBS, stained with DAPI, and

anti-NFjB p65 (FITC) and IjB
(Rhodamine). Immunostained

cells were then mounted with

medium containing DAPI and

visualized under a Bio-Rad

confocal microscope
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results were reported on macrophages and A459 cells

(Hougee et al. 2005; Nicholas et al. 2007; Patil et al. 2015).

However on lung cells, apigenin decreased the percentage

of viable cells (Liu et al. 2005; Lu et al. 2010).

COX-2 enzyme is involved in the synthesis of pros-

taglandin E2; its chronic activation may lead to various

inflammatory diseases. Hence, the decreased expression of

inducible COX-2 is considsered a therapeutic target for

inflammation. In our study H9c2 cells treated with LTA

promoted COX-2 expression, treatment with apigenin

induced by LTA suppressed COX-2 expression in a dose-

dependent fashion. These data suggest presence of apigenin

anti-inflammatory activity as reported by other authors in

monocytes and macrophages (Seo et al. 2014).

In many studies the production of interleukin 1-beta

participates in the immune response to many inflammatory

stimuli; overproduction of these mediators is detected in

several inflammatory disorders. Our results showed that

within 4 h of treatment of H9c2 cells with LTA expression

of IL-1b was induced. A 30 min pre-treatment of H9c2

cells with apigenin significantly inhibited the LTA induced

expression of mRNA levels of IL-1b.
A certain variety of mechanisms have been proposed in

order to determine the effect of flavonoids as neuropro-

tector, chemo-preventive and cardio-protector agents (Tang

et al. 2014; Sloley et al. 2000; Wang et al. 2001). It has

been reported that apigenin plays an important role as anti-

inflammatory activity agent.

Previous studies reported that apigenin significantly

decreases mRNA levels of TNFa, IL 6 and IL-1b in mice

macrophages. Nevertheless, apigenin-induced molecular

mechanisms in regulation of LTA-stimulated inflamma-

tory response have not yet been characterized. In the

present study, we found that apigenin blocks ERK �,

p38, JNK and AKT phosphorylation in a dose-dependent

manner. We additionally found that these kinases are

involved in COX-2 expression. These results would sug-

gest the fact that apigenin not only inhibits LTA actions,

but would rather tend to carry on its effects without

eliciting cytotoxic effects. Additionally apigenin inhibits

NFjb translocation; due to the aforementioned reasons it

could be suggested that apigenin regulates expression of

other inflammatory molecules associated to NFjb
response.

LTA used in the present study was extracted from car-

ies-associated S. sanguinis bacteria. The surface of

inflamed and ulcerated gingival crevicular tissue sur-

rounding teeth could be considered an access for strepto-

cocci bacteria’s entry to blood, which would then cause IE.

It would be worth mentioning that dental procedures foster

IE-associated bacteremia. LTA from these bacteria would

be associated to the inflammatory response exhibited by

many different cells.

In conclusion, several studies point out that plants are an

important providing source of medicinal products. For

thousands of years, use of plants to protect health has been

duly documented. Advances experienced in the under-

standing of human diseases have allowed the development

of plant-derived drugs. In the present study we were able to

show that apigenin inhibited LTA-induced inflammatory

Fig. 5 Apigenin inhibit the effects of LTA on IL-1b expression and Synthesis. a H9c2 cells were treated with apigenin at the doses indicated in

this figure for 30 min and subsequently treated with LTA (15 lg/ml) for 4 h. Total RNA was extracted and COX-2 mRNA expression was

determined by RT-PCR, GAPDH was used as a control. Densitometric analyses represent the means and SEM of three separate experiments.

b IL-1b synthesis was measured by ELISA in the presence of LTA. H9c2 cells were gown in a 6-well plate then were incubated with apigenin for

30 min, followed by stimulation with LTA (15 lg/ml) for 24 h, then the supernatants were collected and assayed for IL-1b ELISA. The graph

represents mean and SEM of three separate experiments. * Significantly different from LTA alone p\ 0.05
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responses in cardiomyocytes, therefore, in inflammatory

diseases, it could be used as a therapeutic agent.
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