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Abstract Chimeric antigen receptor-modified T cells

(CAR-T) have emerged as a new modality for cancer

immunotherapy due to their potent efficacy against termi-

nal cancers. CAR-Ts are reported to exert higher efficacy

than monoclonal antibodies and antibody–drug conjugates,

and act via mechanisms distinct from T cell receptor-

engineered T cells. These cells are constructed by trans-

ducing genes encoding fusion proteins of cancer antigen-

recognizing single-chain Fv linked to intracellular signal-

ing domains of T cell receptors. CAR-Ts are classified as

first-, second- and third-generation, depending on the

intracellular signaling domain number of T cell receptors.

This review covers the current status of CAR-T research,

including basic proof-of-concept investigations at the cell

and animal levels. Currently ongoing clinical trials of

CAR-T worldwide are additionally discussed. Owing to the

lack of existing approved products, several unresolved

concerns remain with regard to safety, efficacy and man-

ufacturing of CAR-T, as well as quality control issues. In

particular, the cytokine release syndrome is the major side-

effect impeding the successful development of CAR-T in

clinical trials. Here, we have addressed the challenges and

regulatory perspectives of CAR-T therapy.
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Introduction

In recent years, immunotherapy has attracted considerable

research attention as a new modality of cancer treatment.

Among the newly developed cancer immunotherapy tech-

nologies, those using chimeric antigen receptor-modified T

cells (CAR-T) have been of particular interest. Substantial

progress has been made in the CAR-T-based cancer

immunotherapy field following the initial generation of

CAR-T in 1989 (Kershaw et al. 2013; 2014; Wang and

Riviere 2015). Currently, dozens of CAR-T clinical trials are

ongoingworldwide (Fig. 1). To construct CAR-T, T cells are

transduced with genes encoding fusion proteins for cancer

antigen-recognizing single chain Fv (scFv) linked to the

intracellular signaling domain of T cell receptors.

CAR-Ts are classified as first-, second- and third-gen-

eration, depending on the intracellular signaling domain

numbers of T cell receptors (Fig. 2). First-generation CAR-

T cells were designed to express scFv in the extracellular

region and the signaling sequence of the T cell receptor

intracellular domain with no co-stimulatory molecules.

However, first-generation CAR-Ts were limited in their

tumor cell-killing efficacy after specific recognition of

tumor cells by antigens. To overcome these limitations,

second- and third-generation CAR-Ts were designed to

express co-stimulatory molecules in the intracellular

domain (Fig. 2, Casucci and Bondanza 2011; Maus et al.

2014). Chimeric antigen receptor (CAR) gene cassettes for

second-generation CAR-Ts encompass one co-stimulatory

molecule, such as CD28 or 4-1BB. Third-generation CAR-
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Ts have been further developed to include two co-stimu-

latory molecules among CD27, CD28, 4-1BBand OX40.

Manufacture and administration of CAR-T

CAR-Ts are manufactured using three consecutive steps

(Lee et al. 2012; Wang and Rivière 2015; Levine 2015).

The first step is to generate genetic constructs of CAR to

encode tumor antigen-specific Fv linked to signaling

sequences of T cell receptors. Next, T cells are transduced

with CAR using viral, nonviral or physical methods.

Retroviral or lentiviral vectors have been successfully

employed as viral vectors for transduction of T cells with

CAR. In other studies, T cells have been transduced with

plasmid DNA (Huang et al. 2012; Kumaresan et al. 2014;

Wang et al. 2014a, b) or RNA (Zhao et al. 2010) encoding

CAR via electroporation. The third step is cultivation of

CAR-T cells.

Several protocols have attempted to activate T cells for

transduction, one of which is to use anti-CD3-antibodies

and cytokines, such as interleukin-2. Various other T cell

activation methods are currently under investigation

(Fig. 3). Antigen-presenting cells expressing 4-1BBL and

Fc receptor have additionally been employed to activate T

cells. Another procedure involves the use of beads modi-

fied with anti-CD3 and anti-CD28 antibodies for T cell

activation. The resulting CAR-T cells are derived from

CD4 or CD8 T cells, expanded using cytokines, and

administered to patients via intravenous infusion (Lee et al.

2012).

Advantages of CAR-T over existing cancer

immunotherapy

CAR-Ts have attracted considerable research attention due

to their potent efficacy against terminal cancers, relative to

monoclonal antibodies and antibody–drug conjugates.

Moreover, CAR-Ts act through different mechanisms from

T cell receptor-engineered T cells (TCR-T). In TCR-T,

TCRs recognize complexes of tumor antigens that are

processed in APC cells and presented on APC cell surfaces

with MHC class molecules. Unlike TCR-T, CAR-Ts do not

require processing and presentation of tumor antigen-

USA 

N=63 

Asia 

N=12 

Europe 
N=4 

Australia 
N=1 

Fig. 1 Clinical trials of CAR-T worldwide

Fig. 2 Construction of CAR in each CAR-T generation

Fig. 3 Activation of T cells and expansion of CAR-T
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recognizing moieties with MHC molecules (Kershaw et al.

2014; Fig. 4). The differences between CAR-T and TCR-T

are summarized in Table 1 (Gill and June 2015). Notably,

the lack of MHC restrictions means that eligible patient

groups for CAR-T are wider compared to those for TCR-T

that requires the identification of patient MHC types.

Current status of CAR-T studies

The utility of CAR-T for treatment of lymphoma and solid

tumors has been examined in several studies, grouped as

cell-level (Table 2; Fig. 5), animal-level (Table 2; Fig. 5),

preclinical (Table 3; Fig. 5), and clinical trials (Table 4;

Fig. 6). Current status summary of CAR-T under basic

investigational stages shows that retroviral vectors are most

actively used for introducing CAR genes into T cells.

Although the use of viral vectors are dominating, nonviral

approaches using cationic polymers or electroporations

have been attempted (Fig. 5a). Hematological cancers such

as lymphoma have been the major target of CAR-T in basic

research stage (Fig. 5b). Second-generation CAR-Ts have

been most widely investigated in basic cell-level and ani-

mal studies, with focus on hematological cancers and solid

tumors (Fig. 5c). The application of CAR-T has been

extended from cancer immunotherapy to treatment of

autoimmune diseases, such as multiple sclerosis in Europe

(Fransson et al. 2012). Another recent study reported on the

effectiveness of CAR-T in treating fungal infection, sug-

gesting a new field of CAR-T application (Kumaresan et al.

2014). Similar to the investigational stage research, pre-

clinical trial studies used retroviral vectors and second

generation CAR constructions in higher frequency than

other viral vectors (Fig. 5d), and generations, respectively

(Fig. 5f). Notably, the number of preclinical trials for

hematological tumors were lower than brain cancers

(Fig. 5e).

For introduction of CAR-T genes into T cells, viral

vectors have been predominantly used. The duration of

CAR-T survival in vivo is reported to be longer than sev-

eral months. Since month-long sustainable expression of

CAR can evoke undesirable side-effects, the optimal length

of expression time requires further investigation. To

shorten the duration of CAR expression and minimize

safety concerns, physical electroporation studies are

underway. Introduction of plasmid DNA encoding CAR

directly into the cytoplasm of T cells via electroporation

may lead to an expected duration of CAR of several days,

while avoiding side-effects of delivery vectors.

Currently, more than 80 CAR-T cases are in clinical

trials worldwide (www.clinicaltrials.gov). No clinical trials

are in phase 3 as yet, but the potential is high, given the

number in phase 2 (Table 4). The majority of CAR-T

clinical trials is being held in USA, and has also been

initiated in Asia, China and Japan (Fig. 1). CD19, widely

studied as a tumor antigen target of CAR-T, is overex-

pressed on the surfaces of leukemia cells of acute lym-

phocytic leukemia (ALL) patients. CD19 CAR-T therapy is

reported to be effective in children with recurrent ALL

after bone marrow transplantation (Lee et al. 2015).

Among the products in clinical trials, CTL019 (Novartis,

USA), CD19-targeted CAR-T (CD19-CAR-T) against

ALL has been recognized as a ‘‘breakthrough therapy’’ by

the Food and Drug Administration of USA and is in phase

2 development. Several other global pharmaceutical com-

panies are developing CAR-T products in the pipeline. In

clinical trials, CD19 has been most extensively used as

target tumor antigens of hematological cancers (Fig. 6a).

Other antigens in clinical trials include carcinoembryonic

antigen (CEA), human epidermal growth factor receptor 2

(HER2), GD2, CD30, and CD20 (Fig. 6a). Hematological

cancers have been predominantly studied in clinical phase

(Fig. 6b). Until now, phase 2 trial are the most advanced

stage for CAR-Ts (Fig. 6c).

Challenges

Limitations of each generation of CAR-T

Although CAR-T takes advantage of the immune response

of T cell killing abnormal cells, tumor cell-killing effects

Fig. 4 Different cell surface

structures between CAR-T and

TCR-T
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are decreased in solid tumors. This reduced antitumor

activity is attributable to the immunosuppressive

microenvironment of tumor tissues, resulting in low pen-

etration efficiencies of CAR-T into solid tumor tissues.

Moreover, leukocytes in tumor tissues are known to secrete

factors that lower T cell activity.

Second-generation CAR-Ts containing a co-stimulatory

signaling domain can induce the expression of immuno-

suppressive receptors, such as T cell membrane protein-3,

cytotoxic T lymphocyte associated antigen 4 (CTLA-4),

and programmed death-1 (PD-1). To overcome suppression

of CAR-T activity by PD-1, the effects of co-administra-

tion of anti-PD-1 antibody with CAR-T were recently

examined (John et al. 2013). An ongoing clinical trial

(NCT00586391) is exploring the effects of co-administra-

tion of CAR-T and ipilimumab, an anti-CTLA-4 antibody

(Maher 2014).

Third-generation CAR-Ts with two co-stimulatory

molecules, such as OX40 and 4-1BB, display enhanced

activity in vivo. However, excessive stimulation of T cell

activity by two co-stimulatory molecules may induce an

abrupt increase in cytokine secretion, known as ‘cytokine

release syndrome’ (CRS). The onset of this severe side-

effects one of the biggest safety concerns that require

addressing for further successful development of CAR-T.

Side-effects

The biggest hurdle in CAR-T clinical trials is severe side-

effects, the most acute being CRS. The mortality list of

patients undergoing clinical trials of CAR-T highlights the

need for design of improved clinical protocols and regu-

latory decisions of investigational new drug development

applications. Symptoms of CRS include high fever, joint

pain, muscle pain, low blood pressure, and dyspnea, with

death in a few cases. In 2014, clinical trials were tem-

porarily held in Memorial Sloan Kettering Cancer Center

after deaths of two patients within two weeks after infusion

with CD19-CAR-T from Juno Therapeutics (USA). CRS

has been determined as the main cause of death of patients

in clinical trials to date.

Although CRS is the most common side-effect related to

CAR-T therapy, the development of CRS has been con-

sidered to be correlated to the response to therapy. In

previous studies, it has been observed that CAR-T

responsive patients developed CRS, whereas non-respon-

sive patients did not develop CRS (Maude et al. 2015). The

severity of CRS has been reported to be rather correlated

with tumor burden at injection time of CAR-T. Given the

importance of CRS in clinical monitoring, the markers

which can predict the severity of CRS need to be identified.

Peak levels of cytokines such as interferon-c have been

found to be more elevated in severe CRS than mild CRS

(Davila et al. 2014). Other studies proposed C-reactive

protein as an indicator of severe CRS (Maude et al. 2014).

However, the decisive biomarkers for CRS still remains to

be studied.

To minimize these side-effects, it is crucial to select the

appropriate group among enrolled patients and optimize

the CAR-T dose in clinical protocol design. Currently, anti-

interleukin 6-antibody or steroid drugs are co-administered

with CAR-T to reduce CRS (Davila et al. 2014), although

further studies are required in this respect. In addition,

safety studies assessing whether CAR-T can induce

autoimmunity or graft-versus-host disease are warranted.

Several studies have examined the efficacy of co-admin-

istration of cytokine inhibitors with CAR-T or a suicide

gene, with the aim of reducing CRS. A recent study (Grupp

et al. 2013) reported that the co-administration of CAR-T

with tocilizumab, an anti-interleukin-6 antibody, alleviates

CRS.

The majority of CAR-Ts for clinical trials have been

constructed using viral vectors for CAR gene transfection.

Although these vectors are designed to be non-replicating,

a long-term study (over a number of years) should be

performed to monitor potential replicative ability. Profiling

and standardization of cytokines after CAR-T administra-

tion is necessary. The deaths of two patients in 2014 have

highlighted CRS as the most severe limitation in clinical

Table 1 Differences between CAR-T and TCR-T

CAR-T TCR-T

Structure of tumor antigen

recognition receptor

Expressing tumor antigen-recognizing scFv Expressing alpha and beta subunits of TCR

recognizing MHC-tumor antigen complexes

MHC dependence of tumor

antigen recognition

MHC independent MHC type dependent

Locations of candidate

tumor antigens

Antigens on tumor cell surfaces are eligible Antigens on cell surfaces or inside cells are all eligible

as far as they form MHC complexes

Amplification in vivo The insertion of co-stimulatory molecule in CAR allows

the amplification of CAR-T in the body

To promote amplification, additional stimuli using

antigen presenting cells are needed
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trials of CAR-T. This excessive increase in cytokine

secretion results from amplification of CAR-T cells in vivo

and may be sufficiently fatal to cause death. To monitor

and control CRS, identification of the specific roles of

individual cytokines and types of relevant cytokines is

required to predict the risk of CRS in clinical trials.

Moreover, profiling of cytokines and CRS marker cytoki-

nes during clinical trials should be standardized.

In the case of CD19-CAR-T, anticancer effects are

accompanied by a certain level of side effects. The

possibility of segregating efficacy from side-effects of

CAR-T products should be explored, with the aim of

establishing an optimal regimen with minimization of CRS.

Autoimmunity of CAR-T is another potential concern. Low

doses of CAR-T and serial tumor cell-killing effects of

single CAR-T cells may lower the possibility of autoim-

munity. However, the artificial nature of CAR-T may

increase the risk of autoimmunity. Thus, to guarantee

safety, regulatory concerns regarding the autoimmunity

issue should not be overlooked.

Table 2 In vitro and in vivo CAR-T studies

Generation Disease Antigen Delivery Co-stimulatory

molecules

In vitro, or

in vivo

Ref.

3 Lymphoma TRAIL-

receptor1

Retro CD28, 4-1BB In vitro Kobayashi et al.

(2014)

3 Lymphoma CD19 Lenti – In vitro Wang et al. 2012)

2 B-cell lymphoma CD20 Retro CD28 In vitro Watanabe et al. 2015)

2 Osteosarcoma HER2 Lenti CD28 In vitro Mata et al. 2014)

2 Leukemia CD19 Lenti CD28 In vitro Saito et al. 2014)

2 Leukemia HA-1 H/HLA-

A2

Retro CD28 In vitro Inaguma et al. 2014)

2 Breast cancer ERBB2 Retro CD28 In vitro Hu et al. 2012)

2 Glioblastoma EGFRvIII Retro CD28 In vitro Morgan et al. 2012)

2 B-cell lymphoma CD19 Electro-

poration

CD28 In vitro Torikai et al. (2012)

1 Multiple myeloma CD138 Lenti – In vitro Jiang et al. 2014)

3 Neuroblastoma GD2 Retro CD28, 4-1BB In vivo Heczey et al. 2014)

2 B-cell lymphoma CD19 Retro CD28 In vivo Tsukahara et al.

2015)

2 Breast cancer ERB2 Electro-

poration

CD28 In vivo Wang et al. 2014a, b)

2 Aspergillus infection Dectin1 Electro-

poration

CD28 In vivo Kumaresan et al.

(2014)

2 Breast cancer HER2 Lenti CD28 In vivo Sun et al. (2014)

2 Colorectal cancer CEA JetPEI CD28 In vivo Blat et al. (2014)

2 Melanoma, breast

carcinoma

CSPG4 Retro CD28 In vivo Geldres et al. (2014)

2 Prostate cancer PSMA Retro CD28 In vivo Ma et al. (2014)

2 Multiple myeloma CS1 Retro CD28 In vivo Chu et al. (2014)

2 Glioblastoma EphA2 Retro CD28 In vivo Chow et al. (2012)

2 Multiple myeloma NY-

ESO-1

Retro CD28 In vivo Schuberth et al.

(2013)

2 Multiple sclerosis MOG Lenti CD28 In vivo Fransson et al. (2012)

2 Melanoma B7 Retro CD28 In vivo Shin et al. (2012)

2 Head/neck cancer ERBB

receptors

Retro CD28 In vivo Davies et al. (2012)

2 Osteosarcoma HER2 Retro CD28 In vivo Rainusso et al. (2012)

2 Ovarian cancer Mesothelin Lenti CD28 In vivo Lanitis et al. (2012)

2 Osteosarcoma IL-11Ra Electro-

poration

CD28 In vivo Huang et al. (2012)

CEA carcinoembryonic antigen, PSCA prostate stem cell antigen, CD138 syndecan-1, CSPG-4 chondroitin sulfate proteoglycan-4, PSMA

prostate specific membrane antigen, MOG myelin oligodendrocyte glycoprotein
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In addition to CRS, another concern is ‘‘on-target/off-

tumor’’ side effects. The side effect is due to that majority

of target antigens for CAR-Ts are existing on both tumor

and normal tissues, showing overexpression on tumor cells

(Kakarla and Gottschalk 2014). To minimize the ‘‘on-tar-

get/off-tumor’’ side effects, the discovery of new target

molecule exclusively expressing on tumor tissues would be

necessary. Another approach is to remove inappropriately

activated CAR-Ts. A recent study reported that small

molecule drug AP1903 could induce caspase 9 and apop-

tosis in transduced cells, killing only activated cells

expressing high levels of CAR (Gargett and Brown 2014).

Regulatory perspective

CTL019, a CD19-CAR-T designed by Novartis (USA), is

the first known compound in the CAR-T class that has

entered phase 2 clinical trials. From the regulatory per-

spective, manufacturing and clinical trials are major con-

cerns (Puri 2014). Production issues include consistency of

CAR-T products, patient-dependent variations in T cell

transfection efficiency, optimal T cell types for CAR

transfection, and labeling of CAR-T. The major clinical

trial concerns include potency and safety.

Pharmacokinetics and biodistribution of CAR-T

Pharmacokinetics and biodistribution experiments provide

essential information for predicting the possible side-ef-

fects of CAR-T. A recent study reported that CAR-T is

distributed to the bone marrow after intravenous adminis-

tration and circulates in the blood up to 10 months post-

injection (Ritchie et al. 2013). Further quantitative analyses

of pharmacokinetics, tissue distribution and retention in the

body are essential. The tumor antigen, HER-2, has been

shown to be expressed in brain tissues and the mammary

gland (Wang et al. 2010). Carcinoembryonic antigen,
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(n=1) 

(n=15) (n=7) 
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Fig. 5 Current status of CAR-T therapeutics under investigational

stages and preclinical trials. CAR-T therapeutics under investigational

stages were analyzed by delivery vectors (a), target diseases (b), and
generations (c). CAR-T therapeutics in preclinical trials were

analyzed by delivery vectors (d), target diseases (e), and generations

(f)

Table 3 CAR-T in preclinical trials

Generation Disease Antigen Delivery Co-stimulatory molecule Ref.

3 Neuroblastoma GD2 Retro CD28,OX40 Nishio et al. 2014)

3 Various cancers FITC Retro CD28, 4-1BB Tamada et al. 2012)

3 B-cell NHL CD20 Retro CD28, 4-1BB Budde et al. (2013)

2 Glioblastoma IL13Ra2 Lenti CD28 Krebs et al. 2014)

2 Glioma IL13R Retro CD28 Kong et al. 2012)

2 Various cancers HER-2, CD19 Retro CD28 Grada et al. 2013)

2 Ovarian cancer Mesothelin. a-folate receptor (FRa) Lenti CD28 Lanitis et al. 2013)

2 Various cancers ROR-1 Lenti 4-1BB Hudecek et al. (2013)

2 Leukemia CD19 Retro CD28 Barrett et al. (2013)
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another tumor antigen, has been identified in colon or

normal tissues (Schölzel et al. 2000).The nonexclusive

expression patterns of tumor antigens in normal tissues

increase the possibility of normal tissue damage upon

administration of CAR-T targeting these tumor antigens.

From this viewpoint, regulatory considerations associated

with the distribution and pharmacokinetics of CAR-T

should be addressed.

Efficacy of CAR-T

One concern with regard to the efficacy of CAR-T is the

consideration of optimal T cell subsets. The majority of

CAR-Ts in clinical trials introduce CAR genes after iso-

lation of total T cells from patients. The issue of whether

the T cell subtype affects the transfection efficiency and

potency of CAR-Ts should be examined.

Efficacy evaluation methods for CAR-T should be fur-

ther explored. Currently, tumor cell lysis induction and

cytokine secretion capabilities of CAR-Ts are under

examination. Establishment of a relevant method reflecting

the efficacy of CAR-T may facilitate standardized evalu-

ation of CAR-T products. Moreover, owing to in vivo

amplification, it is necessary to assess the relationships

among the ratio of CAR-T within total administered T

cells, CAR copy numbers and efficacy.

Unlike chemical or protein drugs, CAR-T is a living

drug that amplifies in the body after administration. This

in vivo amplification property leads to an increase in the

actual effective dose of CAR-T. The severity of symptoms

and ages of patients may serve as factors affecting the

in vivo amplification efficiency of CAR-T. The discrep-

ancy between administration and working doses is a unique

feature of CAR-T. Further analysis of the relationships

between administered and working doses and therapeutic

effects is warranted.

The specific T cell subtypes contributing to anticancer

activity need to be identified. Currently, CAR-T is

administered as mixtures of various T cell subsets. A recent

study reported that increasing the frequency of CD8(?)

CD45RA(?)CCR7(?) CAR-T cells, a subset closest to T

cell memory stem cells, within total CAR-T enhances

anticancer activity in an animal model (Xu et al. 2014).

Clinical trials of CAR-T

Several issues require clarification with regard to the

optimal dose of CAR-T. As a result of in vivo amplification

of intravenously infused CAR-T, the initial doses infused

are not the same as the actual working cell number.

Moreover, adjustment criteria of doses should be fixed

between the weight and body surface of patients. Consid-

ering the amplification of CAR-Ts in bone marrow after

infusion, we need to ascertain whether measurement of

CAR-T numbers in the blood reflects the amplification

extent in bone marrow.

Manufacture and quality control of CAR-T

products

To validate consistency in CAR-T quality among batches,

regulatory studies on chemistry, manufacturing and control

(CMC) are essential. Analysis of quality control for each

step of CAR-T production is important (Fig. 7). Quality

control should be performed to maintain transfection effi-

ciency of CAR among different batches, with parameters

including the acceptable ranges of gene-modified CAR-T

ratios among total T cells and quantification of copy

A 

B 

C 

CD19 
(n=38) 

CEA 
(n=6) 

HER2 
(n=5) CD30 

(n=4) 

GD2 
(n=5) 

CD20 
(n=3) 

Others 
(n=19) 

Hematological cancers 
(n=54) 

Brain cancers 
(n=10) 

Others 
(n=16) 

Phase I 
(n=54) 

Phase I,II 
(n=22) 

Phase II 
(n=4) 

Fig. 6 Current status of CAR-T therapeutics in clinical trials. CAR-T

therapeutics in preclinical stages were analyzed by tumor antigens (a),
target diseases (b), and generations (c)
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numbers of the CAR gene per cell. For consistent pro-

duction of CAR-T among batches, standardization of the

stock of viral vectors is required to provide constant mul-

tiplicity of infection. Moreover, effects of patient age and

medical treatment history on transfection of T cells with

CAR-encoding vectors should be assessed.

Viral vectors, such as retroviral or lentiviral vectors, are fre-

quently used for introduction of CAR into T cells (Wang and

Riviere 2015). Quality control of viral vectors for CAR gene

delivery should be performed in terms of purity, safety, T cell

transfection efficiency, and physicochemical characterization.

Moreover, for quality control, validation of CAR-T

sterility is essential. Since CAR-T is manufactured ex vivo

by isolation of T cells, introduction of CAR genes,

amplification, microbial assays and the scope of microor-

ganisms for CAR-T need to be established.

Production and distribution of CAR-T need to be stan-

dardized. After conceptual design and proof-of-concept

studies, production techniques have mostly been trans-

ferred from the laboratory benches of academia to industry.

The manufacturing processes of CAR-carrying viral vec-

tors and CAR-T are complex and differ among developers.

CAR-T products under clinical trials are generated and

distributed to patients using different protocols. The pro-

duction and distribution processes of gene-modified cells

are sufficiently crucial to affect quality. Quality control and

standardization of manufacturing and distribution pro-

cesses should thus be performed under good practice

principles.

Labeling of CAR-T products should be carefully

assessed. Given the autologous nature of CAR-T in which

patient T cells are transfected with CAR genes and infused

back into the same patient, it is important to clarify labeling

of CAR-T to minimize the fatal risk of potential adminis-

tration to the wrong patients.

Conclusions

CAR-Ts have attracted considerable research attention as a

novel and potent modality of cancer immunotherapy.

Global pharmaceutical companies have started investing in

CAR-Ts, with several products in the pipeline for approval.

However, substantial regulatory issues for CAR-T need to

be addressed. The living nature of CAR-T necessitates

careful assessment of safety and efficacy issues. The

ex vivo manufacturing process of CAR-T highlights the

significance of validating sterility and extensive product

quality control. Further focus on regulatory studies and

establishment of regulatory science-based guidelines may

expedite the development of effective CAR-T products for

patient use.

Apheresis product 
from patient Select T cells Active T cells with 

CD3/CD28 beads Transduce 

Gene  transfer  
vector 

Transduce Culture (days) 

Fresh  
medium IL-2/IL-15 

Expanded gene 
modified T cells 

Additional tests 
during manufacture 
• Viability 
• Cell count 
• Phenotype 
• Sterility 

Bead removal Harvest Cryopreserve 

Flow cytometry 

Residual bead count 

Potency 

Vector copy number 

Mycoplasma 
Replication-competent 
 vector  

Final wash and 
formulation Infuse to patient 

Viability/ 
Cell count Sterility 

Endotoxin 

Gene  transfer  
vector 

Fig. 7 Quality control flow

chart for production of CAR-T
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