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Abstract Histone deacetylase (HDAC) inhibitors are

emerging as promising anticancer drugs. Because aberrant

activity and expression of HDACs have been implicated in

various cancer types, a wide range of HDAC inhibitors are

being investigated as anticancer agents. Furthermore, due

to the demonstrable anticancer activity in both in vitro and

in vivo studies, numerous HDAC inhibitors have under-

gone a rapid phase of clinical development in various

cancer types, either as a monotherapy or in combination

with other anticancer agents. Although preclinical trials

show that HDAC inhibitors have a variety of biological

effects across multiple pathways, including regulation of

gene expression, inducing apoptosis and cell cycle arrest,

inhibiting angiogenesis, and regulation of DNA damage

and repair, the mechanism by which the clinical activity is

mediated remains unclear. Understanding the mechanisms

of anticancer activity of HDAC inhibitors is essential not

only for rational drug design for targeted therapies, but for

the design of optimized clinical protocols. This paper

describes the links between HDACs and cancer, and the

underlying mechanisms of action of HDAC inhibitors

against hematological malignancies and solid tumors.

Further, this review presents the clinical outcomes of

vorinostat, romidepsin, and belinostat, which are approved

by the United States Food and Drug Administration for the

treatment of lymphomas.

Keywords Histone deacetylase inhibitors � Cancer �
Apoptosis � Cell cycle arrest � Angiogenesis � DNA damage

and repair

Introduction

Histone deacetylase (HDAC) inhibitors are a class of

compounds that regulate acetylation states of histone pro-

teins and other non-histone proteins by inhibiting the

activity of HDAC. Because of the demonstrable antitumor

activity in both in vitro and in vivo studies, HDAC inhib-

itors have undergone a rapid phase of clinical development

in a wide range of cancer types, either as a monotherapy or

in combination with other anticancer agents (Younes et al.

2014; Seo 2012; El-Khoury et al. 2014; Ogura et al. 2014).

To date, three HDAC inhibitors are approved by the

United States Food and Drug Administration (U.S. FDA)

based on the good clinical activity and favorable toxicity

profile: vorinostat, also called suberoylanilide hydroxamic

acid (Zolinza�, Merck and Co., Inc.) for treating cutaneous

T cell lymphoma (CTCL) in October 2006; romidepsin,

also known as depsipeptide and FK228 (Istodax�,

Gloucester Pharmaceuticals—a subsidiary of Celgene

Corp) for the treatment of CTCL in November 2009 and

for peripheral T-cell lymphoma (PTCL) in May 2011;

belinostat, also called PXD101 (Beleodaq�, Spectrum

Pharms, Inc.) for the treatment of patients with relapsed or

refractory PTCL in July 2014 (Drugs@FDA).

HDACs play a critical role towards the transcription

regulation, removing the acetyl group from the e-amino

groups of the lysine residues on histones. While acetylation

correlates with nucleosome remodeling and is generally

associated with elevated gene transcription, deacetylation

of histone tails induces transcriptional repression through

chromatin condensation. This may be explained by the fact

that acetylation neutralizes the positive charge of lysine

residues and leads to relaxation of the chromatin structure,

facilitating the accessibility of a variety of transcription

factors to DNA (Norton et al. 1989; Grunstein 1997;
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Ropero and Esteller 2007). Besides regulating histone

modification, HDACs also regulate the post-translational

acetylation status of many non-histone proteins. HDAC-

mediated deacetylation alters the transcriptional activity of

nuclear transcription factors, E2F1, GATA1, GATA2,

MyoD, nuclear factor jB (NF-jB), p53, runt-related tran-

scription factor 3 (RUNX3), and Ying Yang 1 (YY1). In

addition, proteins that regulate cellular cytoskeleton and

protein stabilization are also being regulated by HDAC.

HDAC6 deacetylates a-tubulin and aids in the remodeling

of the synapse, which regulates the organization of adhe-

sion and signaling molecules. Moreover, HDAC6 has been

shown to regulate acetylation of Hsp90 that plays a major

role in the proper wrapping and stabilization of several

oncoproteins. It has also been shown that HDAC6 interacts

with short heterodimer partner (SHP) and contributes to the

intrinsic transrepressive activity of SHP (Table 1). These

findings imply that antitumor activity of HDAC inhibitors

includes effects on non-histone proteins as well as effects

on chromatin modification. Through hyperacetylation of

histone and non-histone targets, HDAC inhibitors can

induce diverse biological effects, including regulation of

gene expression, inducing apoptosis and cell cycle arrest,

inhibiting angiogenesis, and regulation of DNA damage

and repair pathway (Richon et al. 2000; Kim et al. 2014;

Konstantinopoulos et al. 2014; Zhou et al. 2014). There-

fore, HDAC inhibitors have great potential as anticancer

drugs.

The present review describes the underlying mecha-

nisms of anticancer activity of HDAC inhibitors, focusing

on the agents that could have implications for the future use

in cancer treatment.

The classification of HDACs

In humans, 18 HDAC enzymes have been identified and

classified into four classes according to their homology to

yeast HDACs (yHdas), their subcellular location, their tissue

specificity and their enzymatic activity. Among them, the 11

enzymes, which require Zn2? as a cofactor for their deace-

tylase activity, belong to classes I, II, and IV whereas the

sirtuins (SIRT1-7) belong to class III HDACs and they are

Zn2?-independent (de Ruijter et al. 2003; Gregoretti et al.

2004). The class III HDACswill not be discussed in this paper

due to two reasons. Firstly, the role of some sirtuins in

Table 1 Functional consequences of deacetylation of non-histone proteins and HDACs implicated

HDAC Proteins Categories Consequence of deacetylation References

HDAC1 AR Steroid receptor Repressed the activity of AR Gaughan et al. (2002)

HDAC1 E2F1 Transcription factor Repressed the activity of E2F1 Martı́nez-Balbás et al.

(2000)

HDAC1 ERa Steroid receptor Reduced the protein levels of ERa and increased cell

proliferation

Kawai et al. (2003)

HDAC3, 4, 5 GATA1 Transcription factor Repressed the activity of GATA1 Watamoto et al. (2003)

HDAC3, 5 GATA2 Transcription factor Repressed the activity of GATA2 Ozawa et al. (2001)

HDAC6 Hsp90 Chaperone protein Repressed Hsp90 function Bali et al. (2005) and

Kovacs et al. (2005)

HDAC1 MyoD Transcription factor Inhibition of MyoD deacetylation of MyoD repressed

myoblast proliferation

Mal et al. (2001) and

Mal and Harter (2003)

HDAC3 NF-KB Transcription factor Termination of the NF-KB transcriptional response.

Contribution to the replenishment of latent NF-KB-IKBO

Chen et al. (2001)

HDAC1 p53 Transcription factor Reduced the level of apoptosis Luo et al. (2000)

HDAC7 PLAG1, PLAGL2 Adenoma gene Repressed activity of PLAG1 and PLAGL2 Zheng and Yang (2005)

HDAC4, 5 RUNX3 Transcription factor Degradation of RUNX3 Jin et al. (2004)

HDAC1, 3, 6 SHP Nuclear receptor Repressed transcription activity of SHP Gobinet et al. (2005)

HDAC8 SMC3 Cohesion complex

component gene

Increased cohesion Decroos et al. (2014)

HDAC1, 2, 3 STAT3 Signaling mediator Inhibited transcription of STAT3 target genes Yuan et al. (2005)

HDAC6 a-Tubulin Structural protein Translocation of the microtubule-organizing center.

Impaired IL-2 production

Serrador et al. (2004)

HDAC1, 2, 3 YY1 Transcription factor Repressed transcription Yang et al. (1997)

AR, androgen receptor; ERa, estrogen receptor a; NF-KB, nuclear factor-kB; PLAG1, pleomorphic adenoma gene 1; PLAGL2, PLAG-like 2;

RUNX3, runt-related transcription factor 3; SHP, short heterodimer partner; SMC3, structural maintenance of chromosomes 3; STAT3, signal

transducer and activator of transcription 3; YY1, Ying Yang 1
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tumorigenesis is still controversial. For example, SIRT1 is

expressed at a higher level in cancerous cells and promotes

oncogenesis through deacetylation of lysine 382 in Burkitt

lymphoma cells (Heltweg et al. 2006). However, in a colon

cancer mouse model, increased SIRT1 expression suppressed

cell proliferation and tumor formation (Firestein et al. 2008).

The second reason is that a wide range of structures have been

identified to be able to inhibit the activity of classes I, II, and

IV HDACs, but not the NAD?-dependent class III enzymes

(Marks et al. 2001; Johnstone 2002).

The class I HDACs are homologous to yeast (Saccharo-

myces cerevisiae) transcriptional regulator RPD3 and

include HDAC1, -2, -3, and -8. They are usually located in

the nucleus and ubiquitously expressed in various human

tissues (Bertrand 2010). The class II HDACs have homology

to yeast HDAC 1 (yHda1), and are further subdivided into

two subclasses, IIa and IIb, based on sequence homology and

domain organization. The class IIa HDACs, HDAC4, -5, -7,

and -9, contain a highly conserved C-terminal deacetylase

catalytic domain (*420 amino acids) homologous to yHda1

and share an N-terminal domain (*450–600 amino acids)

with no similarity toHDACs in other classes. TheN-terminal

domains mediate interactions with myocyte enhancer factor

2 family of transcription factors, transcriptional corepressor

C-terminal binding protein, and others. The class IIa HDACs

are shuttled between the cytoplasm and the nucleus, and their

expression is tissue-specific. The class IIb HDACs, HDAC6

and -10, are characterized by the presence of two catalytic

HDAC domains arranged in tandem. The class IIb HDACs

are mainly located in cytoplasm and are expressed in a

restricted number of cell types (Bertos et al. 2001; Fischle

et al. 2001; Verdin et al. 2003). HDAC11 is the sole member

of class IV and resides in the nucleus; however, in activity

assays, HDAC11 co-precipitates with the cytoplasmically

localized HDAC6 (Bertos et al. 2001; Gao et al. 2002).

HDACs and cancer

HDACs regulate expression and activity of numerous

proteins involved in both cancer initiation and cancer

progression. Recruitment of HDACs to promoters causes a

closed chromatin conformation that is inaccessible to

transcription machinery or its mediators, resulting in tran-

scriptional repression. Alterations in histone acetylation

status have been involved in the development of cancer. In

particular, a global loss of monoacetylation of lysine 16

and trimethylation of lysine 20 on histone H4 (H4K16ac

and H4K20me3) has been found to be a common hallmark

of human cancer (Fraga et al. 2005).

Aberrant expression and mutation of HDACs have been

implicated in a variety of tumor types, making them

attractive targets for anticancer drugs and therapies

(Table 2). Overexpression of individual HDACs has been

found to be significantly associated with poor disease-free,

event-free, and overall survival (Weichert et al. 2008c;

Oehme et al. 2009; Milde et al. 2010; Moreno et al. 2010;

Minamiya et al. 2011; Quint et al. 2011). Furthermore,

overexpressed HDACs have been correlated with aggres-

siveness, invasion and migration of cancer and have been

found to be a poor prognosis indicator that is independent

from other factors such as tumor type, age, sex, or

comorbid condition (Song et al. 2005; Weichert et al.

2008a, b; Hayashi et al. 2010; Park et al. 2011; Wang et al.

2011; Müller et al. 2013; Li et al. 2014).

However, overexpression of HDACs is not always a

poor prognostic marker. Interestingly, overexpressed

HDAC1 and -6 have been associated with favorable out-

come in Hodgkin’s lymphoma and in chronic lymphocytic

leukemia, respectively (Marquard et al. 2008; Adams et al.

2010). What’s more, in non-small cell lung cancer, lower

level of gene expression has been related with poorer

prognosis (Osada et al. 2004). On top of that, overexpres-

sion of HDACs can serve as a molecular biomarker: up-

regulation of HDAC2 involves in early events of colorectal

carcinogenesis (Stypula-Cyrus et al. 2013) while high

HDAC7 expression has been able to discriminate pancre-

atic adenocarcinomas from other pancreatic tumors

(Ouaı̈ssi et al. 2008). Overexpression of HDAC1 and -2 has

been observed in many cancer types and in some cases it is

significantly related to tumor cell growth with corre-

sponding decrease in p21 expression (Halkidou et al. 2004;

Xie et al. 2012; Jung et al. 2012). Indeed, the cyclin-

dependent kinase (CDK) inhibitor p21 is a crucial target for

HDAC inhibitors. In many cancer cell lines, HDAC

inhibitors causes the transcriptional upregulation of this

antiproliferative gene p21 and subsequently block the

cyclin/CDK complexes, leading to cell G1 cycle arrest

(Sandor et al. 2000). Moreover, in non-small cell lung

cancer, HDAC2 inactivation resulted in regression of

tumor cell growth via inductions of p53 and Bax expres-

sion and simultaneously suppressed Bcl-2 expression (Jung

et al. 2012). Mutations of HDACs also contribute to

tumorigenesis: the presence of the HDAC2 frame shift

mutation renders cancer cells resistant to the anti-prolif-

erative and proapoptotic effects of HDAC inhibitors in

patients with hereditary nonpolyposis colorectal cancer

(Ropero et al. 2006). Recently, overexpression of HDAC5

has been demonstrated in human hepatocellular carcinoma

cell lines, which promotes tumor cell proliferation through

up-regulation of Six1 (Feng et al. 2014).

In addition to altered expression of HDACs, the aberrant

recruitment of HDACs to certain target genes through

binding to oncogenic fusion proteins has been proposed as

an important mechanism of tumorigenesis. For example,

promyelocytic leukemia–retinoic acid receptor a (PML–

HDAC inhibitors in cancer therapy 935

123



RARa) and PML zinc finger (PLZF)–RARa, mutant forms

of RARa produced by chromosomal translocations with

either PML gene or PLZF gene, gain corepressor activity

upon aberrant recruitment of HDAC complexes containing

nuclear receptor corepressor (NCoR), and obtain sub-

sequent leukemogenic potential upon aberrant recruitment

of mSin3a and silencing mediator for retinoid and thyroid

receptors (Hörlein et al. 1995; Lin et al. 1998; Kouzarides

1999). Similar phenomena have been described for acute

myeloid leukemia 1-eight twenty-one (AML1–ETO), a

fusion of the AML1 and ETO proteins (Gelmetti et al.

1998). Atsumi et al. (2006) have demonstrated that, in

acute PML cells, HDAC3 is recruited to target promoters

by PML–RARa, a component of the NCoR repressor

complex, to repress transcription whereas Amann et al.

(2001) have shown that the AML1–ETO fusion protein

recruits HDAC1, -2, and -3 via ETO to repress transcrip-

tion of leukemic cells.

Table 2 Clinical or preclinical effects of HDAC dysregulation in cancer

Cancer types Implicated HDAC and

expression

Clinical/preclinical effects References

ALL : HDAC2, 3, 6, 7, 8 Overexpression of HDAC3, -7, and -9 was associated with poor EFS Moreno et al. (2010)

CLL : HDAC1, 3, 6, 7, 9, 10 Higher expression levels were associated with higher levels of

prognostic factors

Wang et al. (2011)

Gastric : HDAC2 Overexpression of HDAC2 was associated with tumor aggressiveness Song et al. (2005)

: HDAC1, 2 Overexpression of HDAC1 and -2 was independent prognosis

indicator

Weichert et al.

(2008a)

Breast : HDAC1, 2, 3 Overexpression of HDAC2 and -3 was associated with cancer

progression

Müller et al. (2013)

: HDAC4, 6, 8 Overexpression of HDAC6 and -8 increased invasion Park et al. (2011)

: HDAC11 Depletion of HDAC11 inhibited metabolic activity of cancer cell Deubzer et al. (2013)

Colon Truncating mutation in

HDAC2

Cells became more resistant to antiproliferative/proapoptotic effects of

HDAC inhibitor

Ropero et al. (2006)

: HDAC1, 2, 3 Overexpression of HDAC2 was an independent prognosis indicator Weichert et al.

(2008b)

: HDAC1, 2, 3, 5, 7 Overexpression of HDAC2 may serve as a biomarker of colorectal

carcinogenesis

Stypula-Cyrus et al.

(2013)

Liver : HDAC1 Sustained suppression of HDAC1 regressed tumor cell growth Xie et al. (2012)

: HDAC1, 2, 3 (HCC) Overexpression of HDAC2 was associated with poor survival Quint et al. (2011)

: HDAC5 (HCC) Overexpression of HDAC5 promoted cell proliferation by up-

regulation of Six1

Feng et al. (2014)

Medulloblastoma : HDAC5, 9 Overexpression of HDAC5 and -9 were associated with poor OS Milde et al. (2010)

NSCLC : HDAC1 Overexpression of HDAC1 was associated with poor DFS Minamiya et al.

(2011)

: HDAC2 Sustained suppression of HDAC2 regressed tumor cell growth Jung et al. (2012)

; HDAC5, 7 Lower level of gene expression was associated with poorer prognosis Osada et al. (2004)

Lymphoma : HDAC1, 2, 6 (CTCL) Overexpression of HDAC6 was associated with favorable outcome Marquard et al.

(2008)

: HDAC1, 2, 3 (HL) Overexpression of HDAC1 woo associated with favorable outcome Adams et al. (2010)

Neuroblastoma : HDAC8 Overexpression of HDAC8 was associated with poor EFS Oehme et al. (2009)

Ovarian : HDAC1, 2, 3 Overexpression of HDAC1 was associated with a poor outcome Hayashi et al. (2010)

Pancreatic : HDAC6 HDAC6 stimulated the migration of pancreatic cancer cells Li et al. (2014)

: HDAC7 (PA) Overexpression of HDAC7 discriminated PA from other pancreatic

tumors

Ouaı̈ssi et al. (2008)

Prostate : HDAC1 Overexpression of HDAC1 enhanced cell proliferation Halkidou et al. (2004)

: HDAC1, 2, 3 Overexpression of HDAC2 was associated with poor PSA-relapse-FS Weichert et al.

(2008c)

Renal : HDAC1, 2 None of the HDACs was significantly associated with the patient

survival time

Fritzsche et al. (2008)

:, Overexpression; ;, underexpression; DFS, disease-free survival; EFS, event-free survival; OS overall survival; ALL, acute lymphoblastic

leukemia; CLL, chronic lymphocytic leukemia; HCC, hepatocellular carcinoma; HL, Hodgkin’s lymphoma; NSLC, non-small cell lung cancer;

PA, pancreatic adenocarcinomas; PSA, prostate specific antigen
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Mechanisms of action of HDAC inhibitors

A large number of structurally diverseHDAC inhibitors have

been identified from natural sources and developed syn-

thetically, and many of them are undergoing clinical trials

(Fig. 1). Numerous studies have shown that certain HDAC

inhibitors selectively inhibit different HDACs (Table 3).

Furthermore, the finding that normal cells are relatively

resistant to HDAC inhibitor-induced cell death compared to

tumor cells (Ungerstedt et al. 2005) is fundamental to the

success in clinical application of HDAC inhibitors.

By inducing acetylation of histones and non-histone

proteins, HDAC inhibitors are able to elicit a wide range of

biological effects (Fig. 2).

Selective alterations of gene expression

There is accumulating evidence that anticancer activity of

HDAC inhibitors is linked to their ability to regulate the

expression of specific proliferative and/or apoptotic genes.

After treatment with SAHA, in bladder carcinoma cells, a

significant increase in p21 mRNA and concurrent

accumulation of acetylated histones H3 and H4 were

observed independently of p53. In addition, SAHA caused

a marked decrease in HDAC1 in the protein complex

bound to the p21 promoter in multiple myeloma (MM)

cells. However, the expression of p27 gene that is actively

expressed in MM cells was not altered (Richon et al. 2000;

Gui et al. 2004). Further evidence of the effects of HDAC

inhibitors on gene expression has been demonstrated. In

breast cancer cells, FK228 caused downregulation of cyclin

D1 and upregulation of CDK inhibitor p21, resulting in

dephosphorylation of the tumor suppressor retinoblastoma

(Rb) and growth arrest in the early G1 phase (Sandor et al.

2000). Moreover, by SAHA and FK228, multiple genes

within the Myc, transforming growth factor-b1, cyclin/

CDK, tumor-necrosis factor (TNF), Bcl-2, and caspase

pathways were up- or down-regulated, inducing apoptosis

and inhibiting cellular proliferation. Although, a substantial

number of genes were regulated in common by both SAHA

and FK228, some genes, including apoptosis-regulatory

BNip family members BNip1 and BNip3L, and NF-jB-
pathway genes IjB were differentially regulated (Peart

et al. 2005).

Fig. 1 Four main chemical structures of HDAC inhibitors currently undergoing clinical trials
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The findings described above explain, at least in part,

the selective effect of HDAC inhibitors in altering gene

expression.

HDAC inhibitor-induced antitumor pathways

Activation of apoptotic pathways

The apoptotic process is accompanied by major changes in

chromatin structure and gene expression. HDAC inhibitors

induce apoptosis via both transcription-dependent and

transcription-independent mechanisms in solid and hema-

tological malignancies (Bolden et al. 2006). There are

numerous studies reporting HDAC inhibitor-induced

apoptosis via both the extrinsic and intrinsic pathways.

The extrinsic pathway of apoptosis is initiated upon

binding of death ligands, the TNF superfamily receptors,

including TNF-related apoptosis-inducing ligand (TRAIL),

TNF-a, and Fas ligand (FasL), to their cognate death

receptors, resulting in activation of caspase-8 and -10. The

activated caspase-8 and -10 subsequently activate proteases

caspase-3, -6, and -7, leading to apoptotic cell death

(Ashkenazi 2002; Bolden et al. 2006).

By valproic acid, the TNF family ligands and receptors,

including TRAIL, DR5, Fas and FasL, are transcriptionally

activated, leading to initiation of the extrinsic apoptosis

pathways in leukemic cells, but not in normal cells. That

effect correlates with activation of caspase-8 and -3 (In-

singa et al. 2005). Treatment of leukemia cells with FK228

also caused upregulation of TNF-a via hyperacetylation of

histones H3 and H4 in its promoter region and induced

activation of caspase-8 and -10, resulting in apoptotic cell

death (Sutheesophon et al. 2005).

On the other hand, the intrinsic pathway, involving the

mitochondria, is activated in response to lethal stimuli from

inside the cell, such as DNA damage, oxidative stress,

hypoxia, or chemotherapeutic drugs. Activation of mito-

chondrial apoptotic pathway causes release of pro-apop-

totic proteins, including cytochrome c, from the inter-

membrane space into the cytosol. Cytochrome c can then

Fig. 2 The molecular targets of HDACs and the biological effects of

HDAC inhibition. HDAC inhibitors induce acetylation of histones

and non-histone proteins, leading to a wide range of biological

effects, including regulation of gene expression, including apoptosis

and cell cycle arrest, inhibiting angiogenesis, and regulation of DNA

damage and repair pathway. AR, androgen receptor; ERa, estrogen

receptor a; NF-KB, nuclear factor-KB; PLAG1, pleomorphic adenoma

gene 1; PLAGL2, PLAG-like 2; RUNX3, runt-related transcription

factor 3; SHP, short heterodimer partner; SMC3, structural mainte-

nance of chromosomes 3; STAT3, signal transducer and activator of

transcription 3; YY1, Ying Yang 1
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bind Apaf-1 forming the apoptosome and activating cas-

pase-9. Once activated, caspase-9 cleaves and activates the

same set of caspases that are activated through the extrinsic

pathway by caspase-8 and -10 (Ashkenazi 2002; Burz et al.

2009). In response to suberoyl bis-hydroxamic acid, the

expression of pro-apoptotic proteins including Bim, Bak,

Bax, and caspase-3 increased while the expression of anti-

apoptotic proteins including Bcl-2, Bcl-XL, Mcl-1, and

X-linked inhibitor of apoptosis decreased in melanoma

cells (Zhang et al. 2004).

Recently, we have demonstrated that MHY218, a hy-

droxamic acid derivative, induces apoptosis in colon cancer

cells. By MHY218, Bax was markedly upregulated while

Bcl-2 was downregulated, leading to a significant increase

in Bax/Bcl-2 ratio in a concentration-dependent manner. In

addition, the activity of caspase-3, -8 and -9 was signifi-

cantly increased, suggesting MHY218 induces apoptosis

via both the internal and external pathway in colon cancer

cells (Kim et al. 2014).

Further evidence demonstrates that HDAC inhibitors

alter the factors that mediate or regulate the intrinsic

apoptosis pathway. SAHA caused apoptosis by promoting

recruitment of E2F1 to the Bim promoter and inducing

upregulation of Bim in colon cancer cells lacking p53

(Zhao et al. 2005). In addition, by SAHA, mitochondrial

disruption was achieved by the cleavage of the BH3-only

pro-apoptotic Bcl-2 family member Bid in leukemia cells,

which was not blocked by caspase inhibitors or the over-

expression of Bcl-2 (Ruefli et al. 2001). Moreover, SAHA

treatment increased levels of Noxa and Puma in leukemia

cells (Pérez-Perarnau et al. 2011).

In addition to SAHA, FK228 induced Bmf expression,

concomitant with hyperacetylation of histones H3 and H4

at Bmf promoter region in squamous carcinoma cells

(Zhang et al. 2006) while sodium butyrate increased the

expression of the Bad protein in glioma cells with no

changes in the levels of Bcl-2, Bcl-XL, Bax, and Fas (Sawa

et al. 2001).

HDAC inhibitor-mediated apoptosis can be cell-type-

dependent. Furthermore, it seems that different effects of

HDAC inhibitors in the same cell type may be attributed to

the structural features of diverse HDAC inhibitors.

Induction of cell cycle arrest

HDAC inhibitors have been found to induce cell cycle

arrest at G1 via upregulation of the CDK inhibitor p21

(Richon et al. 1996; Qiu et al. 2000). In addition, HDAC

inhibitors reduce CDK activity through downregulation of

cyclins, causing dephosphorylation of Rb and subsequently

inhibiting E2F activities in the transcription of genes for

G1 progression and G1/S transition (Rosato and Grant

2005; Zhao et al. 2005). In our study, MHY218, a

hydroxamic acid derivative, induced G2/M phase arrest by

p53-independent upregulation of p21 in colon cancer cells

(Kim et al. 2014). SAHA caused predominantly G1 arrest

at low concentration while at higher concentrations, both

G1 and G2/M arrests were induced (Richon et al. 2000).

The cytostatic activity of HDAC inhibitors at low doses is

not restricted to tumour cells, since G1 arrest is also

observed in normal cells. At higher doses, HDAC inhibi-

tors are selectively cytotoxic, killing a wide range of cancer

cells and transformed cells but not normal cells (Qiu et al.

2000; Burgess et al. 2004).

Although, HDAC inhibitor-induced arrest is largely

associated with induction of p21, several reports have

suggested the existence of a p21-independent pathway of

growth arrest by HDAC inhibitors. Trichostatin A (TSA)

activates the p15Ink4b gene, a member of INK4 family

proteins, and induces cell growth inhibition of colon cancer

cells lacking p21 (Hitomi et al. 2003). Recently it has been

demonstrated that HDAC inhibitors can interfere with the

interaction between HDACs and Aurora kinases involved

in alteration of the G2–M cell cycle transition. In renal

cancer cells, LBH589-mediated down-regulation of Aurora

A and B induced G2/M cell cycle arrest through inhibition

of HDAC3 and -6 (Cha et al. 2009). In the case of TSA, it

increased levels of acetylated histones H3 and H4 in hep-

atoma cells, leading to G0/G1 phase arrest (Yamashita

et al. 2003). What’s more, TSA increased levels of p21

gene and reduced levels of CyclinB1, Plk1, and Survivin,

resulting in delay at the G2/M transition (Noh et al. 2009).

Collectively, HDAC inhibitors can affect cell cycle by

interacting with cell cycle regulators, resulting in cell cycle

arrest at certain phases.

Inhibition of angiogenesis

There is growing evidence that HDAC inhibitors can target

tumor angiogenesis. The anti-angiogenic effect of HDAC

inhibitors is associated with suppression of pro-angiogenic

factors, including vascular endothelial growth factor

(VEGF), basic fibroblast growth factor, hypoxia-inducible

factor-1a (HIF-1a), chemokine (C-X-C motif) receptor 4

(CXCR4), angiopoietin, tunica intima endothelial kinase 2,

and endothelial nitric oxide synthase (eNOS).

HIF-1a plays a key role in the cellular adaptations to

hypoxic microenvironment, which is critical for survival of

tumor cells. Repression of HIF-1a activity by HDAC

inhibitors has been reported by various mechanisms. The

observation that TSA inhibits hypoxia-induced angiogen-

esis through upregulation of p53 and von Hippel–Lindau,

and concurrent suppression of HIF-1a and VEGF suggests

that HDAC modulation can be closely involved in hypoxia-

induced angiogenesis (Kim et al. 2001). In addition, anti-

angiogenic activity of FK228 has been demonstrated in
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Lewis lung carcinoma model. FK228 effectively inhibited

the DNA binding activity of HIF-1a and the expression of

VEGF mRNA under hypoxia (Lee et al. 2003). The

reduced HIF-1a DNA-binding activity and decreased level

of VEGF protein were also observed with butyrate. In

colon cancer cells, HIF-1a nuclear sequestration was

repressed through inhibition of nuclear translocation,

which could be responsible for decreased VEGF expression

and anti-angiogenic effects (Zgouras et al. 2003).

Furthermore, the activity of HIF-1a is regulated upon

binding to the transcriptional co-activator cAMP-response

element-binding protein-binding protein (CBP)/p300. HIF-

1aCAD, the carboxyl-terminal transactivation domain of

HIF-1a, provides the major transactivation activity. TSA

induced hyperacetylation of p300 and repressed the HIF-

1ap300 complex independently of direct acetylation of

HIF-a (Fath et al. 2006).

Besides, HDAC inhibitors induce hyperacetylation of

chaperone protein Hsp90 via inhibition of HDAC6, leading

to increased affinity to HIF-1a. As a result, HIF-1a disrupts

Hsp90 chaperone function and exposes HIF-1a to prote-

asomal degradation by Hsp70 (Kong et al. 2006).

Many studies have shown that the classes I and II

HDACs are associated with HIF-1a activity, which are

inhibited by different HDAC inhibitors: inhibition of

HDAC1 and -3 by butyrate and valproic acid; inhibition of

HDAC4 and -6 by LBH589 and valproic acid; inhibition of

HDAC9 by SAHA (Qian et al. 2006; Kim et al. 2007; Hutt

et al. 2014). HDAC inhibitors that inhibit HDAC7 may

also contribute to anti-angiogenesis. Under hypoxic con-

ditions, HDAC7 moves into the nucleus and increases

transcriptional activity of HIF-1a through the formation of

a complex with HIF-1a, HDAC7, and p300. HDAC

inhibitors reduce the HIF-1a activity by inhibiting HDAC7

(Kato et al. 2004).

Taken together, HDAC inhibitors repress neovasculari-

zation by inhibiting positive factors of angiogenesis or

altering angiogenesis signaling pathway.

Induction of DNA damage and inhibition of DNA repair

Changes in chromatin structure induced by HDAC inhibi-

tors directly activate the DNA-damage pathway despite the

fact that HDAC inhibitors alone do not induce double-

strand breaks (DSBs; Bakkenist and Kastan 2003).

It has been well established that HDAC inhibitors can

synergize with ionizing radiation (IR) and DNA-damaging

agents to cause delay in tumor growth. The number of

studies reporting the additive effect has grown exponen-

tially. The combination of radiation and LBH589, SAHA,

and butyrate increased the duration of c-H2AX foci in

irradiated cells (Geng et al. 2006; Munshi et al. 2005;

Koprinarova et al. 2011). This finding suggests that HDAC

inhibitors suppress DSB repair and/or render DNA more

susceptible to IR-induced damage.

In addition to their action on chromatin structure during

DSB repair, HDAC inhibitors have been shown to affect

the expression of DNA repair proteins. Treatments with

SAHA and MS-275 led to hyperacetylation of Ku70, a key

non-homologous end joining component, concomitant with

reduced DNA-binding affinity (Chen et al. 2007). HDAC

inhibitors can also affect the expression of genes encoding

homologous recombination (HR) components. SAHA

induced the coordinated down-regulation of HR pathway

genes, including RAD51 and BRCA1 in ovarian cancer

cells (Konstantinopoulos et al. 2014).

A number of studies have reported that after treatment

with HDAC inhibitors, reactive oxygen species (ROS) are

accumulated, leading to DNA damage and oxidative stress.

HDAC inhibition by SAHA and MS-275 caused accumu-

lation of ROS and increased sensitivity to cell death

induced by those agents in transformed but not normal cells

(Ungerstedt et al. 2005).

HDAC inhibitors and clinical outcomes

HDAC inhibitors are undergoing extensive clinical evalu-

ation as single agent or in combination with other agents.

Among them, vorinostat, romidepsin, and belinostat have

received approval from the U.S. FDA for the treatment of

lymphoma.

Vorinostat

Vorinostat, also known as SAHA, has received approval

from the U.S. FDA for the treatment of CTCL in patients

with progressive, persistent, or recurrent disease on or

following two systemic therapies. The major trial sup-

porting approval was a phase II trial that recruited 74

patients with at least stage IB CTCL (61 had stage IIB or

higher) who had failed two systemic therapies. The patients

received 400 mg of oral vorinostat once daily as a single

agent. The objective response rate (ORR) was 29.7 and

32 % of patients had pruritus relief. The common drug-

related adverse events were diarrhea (49 %), fatigue

(46 %), nausea (43 %), and anorexia (26 %) and most were

grade 2 or lower. The 400 mg dose of vorinostat was

generally well-tolerated (Olsen et al. 2007; Mann et al.

2007).

Vorinostat has also been investigated for other hema-

tological malignancies and solid tumors. Recently, two

phase II studies have reported favorable responses in

relapsed/refractory indolent follicular lymphoma with

acceptable safety profiles (Kirschbaum et al. 2011; Ogura

et al. 2014). Despite the demonstrated effect in lymphomas,
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unfortunately, only a moderate effect was observed in solid

tumors: squamous cell carcinoma of the head and neck

(Blumenschein Jr et al. 2008), breast, colorectal, and non-

small-cell lung cancer (Luu et al. 2008; Vansteenkiste et al.

2008; Traynor et al. 2009), ovarian and peritoneal

(Modesitt et al. 2008), and prostate (Bradley et al. 2009).

Although in the study by Bradley et al. (2009), 41 % of the

patients discontinued therapy because of grade 2/3 toxicity

including fatigue, nausea, and anorexia, oral vorinostat was

generally well-tolerated at a dose of 400 mg daily.

Romidepsin

Romidepsin, also known as FK228 and depsipeptide,

serves as a prodrug. Upon reduction of its disulfide bond,

one of the sulfhydryl groups interacts with the zinc in the

active site of the HDACs, preventing access of substrate.

Romidepsin possesses stronger activity against HDAC1

and -2 than against HDAC4 and -6 (Furumai et al. 2002).

In 2009, the U.S. FDA has granted approval to romidepsin

for treating CTCL patients who have failed at least one

prior systemic therapy based on the efficacy and safety

evaluated in two phase II trials (U.S. FDA Drugs. Romi-

depsin; Piekarz et al. 2009; Whittaker et al. 2010). In those

two studies, 71 and 96 patients with CTCL were included

and treated with intravenous romidepsin at a dose of

14 mg/m2/day on days 1, 8, and 15 of a 28-day cycle. The

ORRs were 35 and 34 % in each study and the complete

response (CR) rate was 6 % in both studies. The most

common drug related adverse events were nausea and

fatigue being grade 2 or 3 in both studies. The serious

adverse events reported in[2 % of the patients were leu-

kopenia, lymphopenia, and granulocytopenia in the study

by Piekarz et al. (2009), and nausea, asthenic conditions

including fatigue, and anemia in the study by Whittaker

et al. (2010).

Romidepsin was also approved by the U.S. FDA in 2011

for the treatment of relapsed or refractory PTCL. The

approval was based on the results of a multinational phase

II trial conducted in 130 patients who were refractory to at

least one prior systemic therapy or for whom at least one

prior systemic therapy failed. The patients received intra-

venous romidepsin at a dose of 14 mg/m2/day on days 1, 8,

and 15 of a 28-day cycle. The ORR was 25 %, including

15 % with CR. The most common grade C3 drug-related

adverse events were thrombocytopenia (23 %), neutrope-

nia (18 %), and infections (6 %, Coiffier et al. 2012).

A series of phase II trials of romidepsin have also been

conducted in patients with solid tumors, however, the

single agent activity of romidepsin is disappointingly very

low: renal cancer (Stadler et al. 2006), colorectal cancer

(Whitehead et al. 2009), castration-resistant prostate cancer

(Molife et al. 2010), small-cell lung cancer (Otterson et al.

2010), anaplastic glioma and glioblastoma multiforme

(Iwamoto et al. 2011), and squamous cell carcinoma of the

head and neck (Haigentz Jr et al. 2012). When romidepsin

was administered at the dose of 14 mg/m2/day, the most

common adverse events were GI disturbances, hematologic

abnormalities, asthenic conditions, and infections.

Belinostat

Belinostat, also known as PXD101, is a hydroxamate pan-

HDAC inhibitor that was approved by the U.S. FDA for the

treatment of patients with relapsed or refractory PTCL. The

approval was based on the result of the phase II trial con-

ducted in 120 patients with PTCL that was refractory or had

relapsed after prior treatment, including PTCL patients with

baseline platelets\100,000/ml. Belinostat was administered

by intravenous infusion at a dose of 1,000 mg/m2 once daily

on days 1–5 of a 21-day cycle. The ORR was 25.8 % and

median progression-free survival was 1.6 months. The most

common grade C3 adverse events were thrombocytopenia

(15 %), neutropenia (13 %), leukopenia (13 %), and anemia

(12 %, ClinicalTrials.gov. BELIEF study; U.S. FDA Drugs.

Belinostat).

Belinostat has also been investigated for other hemato-

logical malignancies and solid tumors. Recently, a phase II

trial has reported favorable responses in recurrent/refrac-

tory PTCL and CTCL with acceptable safety profiles (Foss

et al. 2014). Despite the demonstrated effect in lymphomas,

unfortunately, only a moderate effect was observed in solid

tumors: malignant pleural mesothelioma (Ramalingam

et al. 2009), ovarian cancer (Mackay et al. 2010), and

thymoma and thymic carcinoma (Giaccone et al. 2011).

The most common adverse events were anemia, nausea,

QTc prolongation, and thrombocytopenia. Most of the

toxicities were grades 2–3. In general, belinostat was well-

tolerated at a dose of 1,000 mg/m2/day.

Safety issues with the use of HDAC inhibitors

Although toxicities are favorable and largely manageable,

in some instances cardiotoxicities as well as hematologic

and gastrointestinal adverse effects can be dose limiting.

The most common dose-limiting toxicities related with

vorinostat, romidepsin, and belinostat were constitutional

and gastrointestinal effects, including anorexia, asthenia,

diarrhea, fatigue, nausea, and vomiting, and hematologic

effects, such as anemia, leucopenia, lymphopenia, neutro-

penia, and thrombocytopenia (Duvic et al. 2006; Garcia-

Manero et al. 2008; Vansteenkiste et al. 2008; Steele et al.

2008; Lassen et al. 2010; Mwakwari et al. 2010).

As various HDAC inhibitors are being studied in clinical

trials against cancers, accumulating evidence shows that

use of HDAC inhibitors is associated with cardiotoxicity
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such as T-wave flattening, ST segment depression and

QTc-prolongation (Piekarz et al. 2006). QT interval pro-

longation has been to date the most severe cardiac event in

patients treated with HDAC inhibitors due to the risks for

potentially life-threatening arrhythmia (Wolbrette 2004;

Straus et al. 2006). HDAC inhibitors have been variably

associated with QT prolongation. Romidepsin, previously

called as FK228 and depsipeptide, has been associated with

relatively frequent electrocardiogram (ECG) changes and

QT prolongation, and rare sudden cardiac death (Bates

et al. 2006; Shah et al. 2006; Mwakwari et al. 2010). The

use of belinostat (PXD101) was also associated with QTc

prolongation in patients treated with it (Lassen et al. 2010;

Cashen et al. 2012). In case of vorinostat (SAHA), no QTc

prolongation was reported in clinical trials (Kelly et al.

2005; Duvic et al. 2006; Bradley et al. 2009). However,

recently, one case of torsade de pointes has been reported,

drawing attention to the need for periodic monitoring of

ECGs in patients using vorinostat (Lynch Jr et al. 2012).

Interference on human ether-a-go–go-related gene

potassium ion (HERG K?) channels seems to be a common

mechanism for these drugs (Strevel et al. 2007; Bagnes et al.

2010). The plausible hypothesis is that these HDAC inhibi-

tors uniquely interact with HERG K? channel, resulting in

QTc prolongation. The activation of the HERG K? channel

leads to ventricular repolarization, thus blocking of this

channel may result in QTc prolongation (Curran et al. 1995).

In addition, mutations of HERG are presumed to be linked to

QTc prolongation. In fact, increasing evidence suggests that

QTc prolongation associated with HDAC inhibitors may be

the result of altered gene expression and probably inhibition

of specific HDAC isoforms (Montgomery et al. 2007).

Therefore, changes in HERG expression or those of the

coregulators of HERG activity may serve as another mech-

anism of QTc prolongation.

Collectively, although ECG abnormalities observed with

the administration of HDAC inhibitors have not been

associated with myocardial damage or altered left ven-

tricular ejection fraction, the potential effect of heart rate-

corrected QT interval prolongation remains under study.

Conclusion

HDAC inhibitors have shown good anticancer activity both

in preclinical and clinical trials, with relatively little effect

on normal tissues and favorable toxicity profile. Although

preclinical trials show that HDAC inhibitors have a variety

of biological effects across multiple pathways, the mech-

anism by which the clinical activity is mediated remains

unclear. Accumulating evidence demonstrates the selective

effect of HDAC inhibitors in altering gene expression and

apoptosis, however, it has not yet been determined which

inhibitor will be more therapeutically-effective against

specific cancer types. What’s worse, comparing the anti-

cancer activity and toxicity profile of pan-HDAC inhibi-

tors, such as vorinostat and belinostat, and class I-selective

HDAC inhibitors such as romidepsin, there are no signifi-

cant differences between them in terms of inhibitory

potency and adverse events. Nevertheless, certain bio-

markers may indicate the potential for greater effect of

HDAC inhibitors. Like other cancer therapies, a targeted

therapy may be successful. The therapeutic response of

HDAC inhibitors could be greater in those patients who

strongly express HDACs in their cancer cells.

Positive therapeutic responses with someHDAC inhibitors

have been shown consistently in hematologic malignancies,

but the clinical outcomes in solid tumors are disappointing

when used as single agents. Many clinical trials have exam-

ined combination therapies of HDAC inhibitors with che-

motherapeutic and biotherapeutic agents in both solid and

hematologic cancers. Even though none of these combina-

tions is yet approved by the U.S. FDA to treat cancer, com-

bination therapy with other medicines will yield improved

clinical outcomes over those seen with single agents.

To conclude, understanding mechanisms of action of

HDAC inhibitors is essential not only for intelligent drug

design for targeted therapies in cancer, but for finding of

predictive biomarkers in cancer initiation and progression,

and further for the design of optimized clinical protocols.
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of patterns of class I histone deacetylase expression with patient

prognosis in gastric cancer: A retrospective analysis. Lancet

Oncology 9: 139–148.

Weichert, W., A. Roske, S. Niesporek, A. Noske, A.C. Buckendahl,

M. Dietel, V. Gekeler, M. Boehm, T. Beckers, and C. Denkert.

2008b. Class I histone deacetylase expression has independent

prognostic impact in human colorectal cancer: Specific role of

class I histone deacetylases in vitro and in vivo. Clinical Cancer

Research 14: 1669–1677.

Weichert, W., A. Röske, V. Gekeler, T. Beckers, C. Stephan, K. Jung,

F.R. Fritzsche, S. Niesporek, C. Denkert, M. Dietel, and G.

Kristiansen. 2008c. Histone deacetylases 1, 2 and 3 are highly

expressed in prostate cancer and HDAC2 expression is associ-

ated with shorter PSA relapse time after radical prostatectomy.

British Journal of Cancer 98: 604–610.

Whitehead, R.P., C. Rankin, P.M. Hoff, P.J. Gold, K.G. Billingsley,

R.A. Chapman, L. Wong, J.H. Ward, J.L. Abbruzzese, and C.D.

Blanke. 2009. Phase II trial of romidepsin (NSC-630176) in

previously treated colorectal cancer patients with advanced

disease: A Southwest Oncology Group study (S0336). Investi-

gational New Drugs 27: 469–475.

948 P. Chun

123



Whittaker, S.J., M.F. Demierre, E.J. Kim, A.H. Rook, A. Lerner, M.

Duvic, J. Scarisbrick, S. Reddy, T. Robak, J.C. Becker, A.

Samtsov, W. McCulloch, and Y.H. Kim. 2010. Final results from

a multicenter, international, pivotal study of romidepsin in

refractory cutaneous T-cell lymphoma. Journal of Clinical

Oncology 28: 4485–4491.

Wolbrette, D. 2004. Drugs that cause torsades de pointes and increase

the risk of sudden cardiac death. Current Cardiology Reports 6:

379–384.

Xie, H.J., J.H. Noh, J.K. Kim, K.H. Jung, J.W. Eun, H.J. Bae, M.G.

Kim, Y.G. Chang, J.Y. Lee, H. Park, and S.W. Nam. 2012.

HDAC1 inactivation induces mitotic defect and caspase inde-

pendent autophagic cell death in liver cancer. PLoS ONE 7:

e34265.

Yang, W.M., Y.L. Yao, J.M. Sun, J.R. Davie, and E. Seto. 1997.

Isolation and characterization of cDNAs corresponding to an

additional member of the human histone deacetylase gene

family. Journal of Biological Chemistry 272: 28001–28007.

Yamashita, Y., M. Shimada, N. Harimoto, T. Rikimaru, K. Shirabe, S.

Tanaka, and K. Sugimachi. 2003. Histone deacetylase inhibitor

trichostatin A induces cell-cycle arrest/apoptosis and hepatocyte

differentiation in human hepatoma cells. International Journal of

Cancer 103: 572–576.

Younes, A., Y. Oki, R.G. Bociek, J. Kuruvilla, M. Fanale, S. Neelapu,

A. Copeland, H. Zhou, S. Jiang, J. Chen, and S.B. Su. 2014.

Suberoylanilide hydroxamic acid suppresses inflammation-

induced neovascularization. Canadian Journal of Physiology

and Pharmacology 92: 879–885.

Yuan, Z.L., Y.J. Guan, D. Chatterjee, and Y.E. Chin. 2005. STAT3

dimerization regulated by reversible acetylation of a single

lysine residue. Science 307: 269–273.
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