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Abstract The concept of epigenetics is now providing

the mechanisms by which cells transfer their new envir-

onmental-change-induced phenotypes to their daughter

cells. However, how extracellular or cytoplasmic environ-

mental cues are connected to the nuclear epigenome

remains incompletely understood. Recently emerging evi-

dence suggests that epigenetic changes are correlated with

metabolic changes via chromatin remodeling. As many

human complex diseases including cancer harbor both

epigenetic changes and metabolic dysregulation, under-

standing the molecular processes linking them has huge

implications for disease pathogenesis and therapeutic

intervention. In this review, the impacts of metabolic

changes on cancer epigenetics are discussed, along with the

current knowledge on cancer metabolism and epigenetics.
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Introduction

Metabolism changes drastically in cancer cells and this

change possibly constitutes the very origin of cancer

(Galluzzi et al. 2013; Wu and Zhao 2013). This ‘‘metabolic

theory of cancer’’ was first proposed by Nobel prize-win-

ning German biochemist Otto Warburg in 1924 (Koppenol

et al. 2011). However, changes in metabolites themselves

are not inherited by daughter cells and how deranged

metabolism is maintained in various cancer-cell microen-

vironments has not been elucidated. Given that cancer cells

harbor mutations, copy-number changes, and DNA meth-

ylation changes, it is possible that all metabolic changes

originate from existing heritable genetic and/or epigenetic

changes (Vander Heiden 2013). Nevertheless, metabolic

changes might be the driving force for cancer progression

by facilitating heritable epigenetic changes that transmit

the metabolic signatures of cancer. In fact, emerging evi-

dence supports this theory. In the following review, the

metabolic and epigenetic changes in cancer and the pos-

sibility of a metabolic impetus for heritable epigenetic

changes in cancer cells are discussed. The goal is to ‘‘fill

the gap’’ in the metabolic theory of cancer.

Metabolic changes in cancer

The connection between metabolism and cancer-cell growth

or survival is an area of growing interest. Nutrient utilization

changes drastically to meet the large biosynthetic demands

associated with cell growth and division when cancer cells

receive proliferative signals. These changes include

increased ATP production and synthesis of raw biomateri-

als, including lipids, proteins, and nucleic acids, through

reorganization of intracellular metabolism from catabolic

mitochondrial oxidative phosphorylation (OXPHOS) to

glycolysis and other anabolic pathways (Marelli-Berg et al.

2012). Altered glucose metabolism from OXPHOS to lac-

tate production due to increased biomass demands (Warburg

Effect) is a metabolic hallmark of cancer cells (Jang et al.

2013). The significant role of the Warburg effect driving cell

proliferation is suggested by: (1) the high rate of glycolysis

and the glucose turnover to lactic acid for ATP production,

and (2) increased lipid and nucleic acid biosynthesis via
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several biosynthetic pathways stimulated by accumulating

glycolytic intermediates, including citrate (Ganapathy-

Kanniappan and Geschwind 2013). Citrate is a substrate for

three enzymes, including ATP citrate lyase, acetyl-CoA

carboxylase, and fatty acid synthase (Table 1), and the rates

of these enzyme reactions increase in cancer. Moreover,

these enzymes are highly expressed and serve oncogenic

functions in many human cancers.

In addition to the altered balance between glucose fer-

mentation and OXPHOS, mutations or expression-level

changes in metabolic enzymes, such as succinate dehy-

drogenase (SDH), fumarate hydratase, pyruvate kinase, and

isocitrate dehydrogenase-1/2 (IDH1 and IDH2), are linked

to certain types of tumorigenesis (Wu and Zhao 2013).

Additionally, key oncogenes or tumor-suppressor genes

including c-myc and TP53 are important metabolic regu-

lators, and mutations or expression-level changes in these

regulators alters metabolism in cancer cells (Wu and Zhao

2013; Marelli-Berg et al. 2012) (Table 1).

Epigenetic changes in cancer

Epigenetic modifications, such as DNA methylation, post-

translational histone modifications, nucleosome position-

ing, and non-coding RNA expression (Cho et al. 2007),

have tremendous impacts on local and global gene activi-

ties and are essential for maintenance of chromatin struc-

ture and genomic stability (Sadikovic et al. 2008).

Microenvironment-mediated epigenetic perturbations can

lead to altered gene function and play important roles in

tumorigenes is through inappropriate gene silencing and/or

activation (Shankar et al. 2013; Herceg and Hainaut 2007).

Among epigenetic modifications, DNA methylation,

particularly promoter CpG island methylation, has been

studied extensively in cancer. Cancer cells show charac-

teristic global DNA hypomethylation of oncogenes (Wilson

et al. 2007; Feinberg and Vogelstein 1983; Ehrlich 2009)

and promoter CpG island hypermethylation in tumor sup-

pressors genes (Esteller 2002; Kloten et al. 2013; Radpour

et al. 2011; Ehrlich et al. 2002). Promoter CpG island

methylation-affected genes in cancer are involved in several

important cellular pathways such as DNA repair (hMLH1,

MGMT, WRN, and BRCA1), vitamin response (RARB2 and

CRBP1), Ras signaling (RASSFIA and NOREIA), cell-cycle

control (p16INK4a, p15INK4b, and RB), the p53 network

(p14ARF, TP73, and HIC-1), and apoptosis (TMS1, DAPK1,

WIF-1, and SFRP1) (Lahtz and Pfeifer 2011; Jin and Rob-

ertson 2013; Esteller 2007). Global hypomethylation occurs

in various malignancies, including breast, lung, bladder, and

liver cancers (Di et al. 2011; Portela and Esteller 2010;

Aporntewan et al. 2011) and hypermethylation of CpG

islands has been identified in the HOXA2 (Li et al. 2013b),

GATA2 (Li et al. 2013a), TGFB1 (Khin et al. 2011) and

PAX5 (Liu et al. 2011) genes and affects their expression.

Hypermethylation of miRNA promoters is another impor-

tant epigenetic change in cancer, leading to overall miRNA

downregulation in cancer cells (Suzuki et al. 2012, 2013). In

particular, silencing of miR-148, miR-34b/c, or miR-9 by

promoter hypermethylation occurs in cancer cells (Lujam-

bio et al. 2008; Suzuki et al. 2013). Thus the changes in

DNA methylation in specific genes or miRNA are major

changes in cancer and contribute significantly to carcino-

genesis or cancer progression.

Changes in modifications of the core histones H2A,

H2B, H3, and H4 have also been reported in various cancer

types (Podlaha et al. 2014). A plethora of reversible histone

covalent post-translational modifications, including acety-

lation, methylation, phosphorylation, ubiquitination, su-

moylation, proline isomerization, and ADP ribosylation has

been reported in various cancers (Strahl and Allis 2000;

Keum et al. 2013; Cohen et al. 2011). Additionally,

translocation, mutation, and deletion in histone acetyl-

transferases (HATs) or HAT-related genes contribute to the

global imbalance of histone acetylation in several cancer

types (colon, uterus, and lung) by either activating or

inactivating their transcription (Portela and Esteller 2010).

Aberrant histone modifications found in cancer can affect

transcription (Consortium et al. 2007; Koch et al. 2007),

recombination (Miao and Natarajan 2005), DNA repair and

replication (Consortium et al. 2007, Groth et al. 2007), as

well as chromosomal organization (Jenuwein and Allis

2001; Luger et al. 1997), thereby potentially contributing to

carcinogenesis, along with aberrant DNA methylation.

In addition to DNA methylation and histone modifica-

tions, epigenetic components, such as nucleosomal posi-

tioning, long non-coding RNAs, and RNA interference

pathways, change in cancer (Beckedorff et al. 2013; Kor-

nienko et al. 2013). A detailed description of these changes

in cancer is beyond the scope of this review, but the

importance of these epigenetic changes has aided the

development of new diagnostic and therapeutic modalities

as well as understating the cancer biology. However,

questions, such as: (1) what will cause epigenetic changes

in cancer cells, (2) can epigenetic changes induce cancer

progression, and (3) can modifications of epigenetic

changes cure patients with cancer, remain to be answered.

Metabolic regulation of epigenetics in cancer

Epigenetic modifications of DNA and histones by various

epigenetic enzymes, such as DNA methyltransferases

(DNMTs) and histone methyltransferases (HMTs) require

metabolites as co-factors or substrates (Lu and Thompson

2012). It has long been suspected that elevations or
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depletions of these metabolite levels beyond the normal

range can influence epigenetic regulation and chromatin

structure, thereby altering gene expression. In addition,

analyses of cancers harboring SDH and IDH mutants have

found abnormal metabolites including 2-hydroxyglutarate

(2-HG) (Ward et al. 2010; Dang et al. 2010). Redundant

2-HG inhibits the TET family of dioxygenases, which is

involved in DNA demethylation by oxidizing 5-methylcyt-

osine (5mC) to 5-hydroxymethylcytosine, resulting in

increased 5mC in SDH mutant cancers (Yang et al. 2013).

This finding clearly demonstrates a close connection

between metabolic rewiring and epigenetic alterations.

Considering this close association and recent suggestions of

epigenetic-change-based facilitation of genomic perturba-

tion, epigenetic changes may be an important driver of

tumor progression or initiation. In the following section we

focus on the mechanism by which various metabolite

alterations lead to epigenetic changes that may be associated

with cancer development (Table 2).

S-adenosyl-L-methionine (SAM) and methylation

reactions

SAM, produced by methionine adenosyltransferase (MAT

or SAM synthetase) using ATP and methionine as sub-

strates, is an important co-factor involved in methyl group

transfer reactions (Markham and Pajares 2009). Addition-

ally, it is involved in reactions related to epigenetic regu-

lation such as methylation of DNA, RNA, and selective

arginine or lysine residues of histones and non-histone

transcriptional regulators including tumor-suppressor p53

and transcriptional factor TAF10 (Huang and Berger

2008). DNMTs and HMTs are the major enzymes involved

in this process. After SAM donates its methyl group, it is

transformed into S-adenosyl-homocysteine (SAH), which

is a potent inhibitor of DNMTs and HMTs and the key

metabolic determinant of methyltransferase reactions (Lu

and Thompson 2012). The transformed SAH is converted

to homocysteine and then to methionine or cysteine by

Table 1 Metabolic pathways, enzymes, and associated cancer gene

Metabolic actions Enzymes/regulators Associated cancer genes References

Glycolysis Glucokinase/hexokinase (GK/HK) Akt, hypoxia-inducible factors-1 Dang et al. (1997), Robey and Hay

(2009), Vousden and Ryan (2009),

Tamada et al. (2012), Dang and

Semenza (1999), Mazurek (2011)

Phosphofructokinase-1 (PFK-1) Akt

Phosphoglycerate mutase (PGM) P53 defect

Pyruvate kinase M2 (PkM2) Receptor tyrosine kinases

Kreb cycle Succinate dehydrogenase (SDH) Hypoxia-inducible factors-1 Soga (2013), Majmundar et al. (2010),

Tormos and Chandel (2010), Shay and

Celeste Simon (2012)
Pyruvate kinase (PK) Enhanced Ca uptake

Isocitrate dehydrogenase 1 (IDH1) Hypoxia-inducible factors-1

Fumarate hydratase (FH) Hypoxia-inducible factors-1

Reduced oxidative

phosphorylation

Pyruvate dehydrogenase kinase (PDK) c-Myc Smolkova et al. (2011), Ma et al. (2007),

Wanka et al. (2012)Synthesis of cytochrome-c oxidase

(SCO2)

P53 defect

Fatty acid synthesis ATP-citrate lyase (ACL) mTOR Shor et al. (2009), Laplante and Sabatini

(2009), Yoon et al. (2007), Chajes et al.

(2006)
Fatty-acid synthase (FASN) mTOR

Acetyl-CoA carboxylase Akt/PI3k, ROS

b-Oxidation Carnitine palmitoyltransferase I

(CPT1A)

mTOR, Akt/PI3k Deberardinis (2006), Venkatesh et al.

(2012), Chua et al. (2009)

Choline kinase (ChoK) mTOR, Akt/PI3k

Lactate synthesis Lactate dehydrogenase A (LDHA) Hypoxia-inducible factors-1 Koukourakis et al. (2003), Mimeault and

Batra (2013), Hui et al. (2002), Kaluz

et al. (2009), Lv et al. (2012a), Yang

et al. (2010)

Monocarboxylate transporter (MCT) Hypoxia-inducible factors-1

Carbonic anhydrase 9/12 (CA9/12) Hypoxia-inducible factors-1

Na?/H? exchanger Hypoxia-inducible factors-1

Glucose transport Glucose transporter 1 (GLUT1) Akt, hypoxia-inducible factors-1 Behrooz and Ismail-Beigi (1997), Kohn

et al. (1996), Kihira et al. (2011)Glucose transporter 4 (GLUT4) Akt

Proline metabolic

pathway

Proline dehydrogenase (PRODH) mTOR Phang et al. (2008), Liu et al. (2012), Liu

and Phang (2012)Proline oxidase (POX) ROS, hypoxia-inducible factors-1

Metheonine cycle Methionine adenosyltransferase 1A

(MAT1A)

TGF-b, ERK Ding et al. (2009), Ramani et al. (2011)
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accepting methyl groups from 5-methyl tetrahydrofolate

and vitamin B12.

Changes in intracellular energy or multiple metabolic

inputs can change SAM and SAH levels; thus, affecting

DNA and histone methylation. A diet deficient in choline-

methionine, which limits SAM availability, can produce

liver cancer in rats (Ghoshal and Farber 1984) and defi-

ciency of a methyl donor such as folate in humans can lead

to global DNA hypomethylation, and affect the epigenome

leading to tumorigenesis (Duthie 1999). These results

suggest that changes in the intracellular levels of methyl

donors, including SAM, can promote or initiate tumori-

genesis via their effect on DNA methylation.

Acetyl coenzyme A (acetyl CoA)

Acetyl-CoA is the acetyl-group donor for acetylation

reactions in histones and non-histone proteins. Acetyl-CoA

is synthesized via two routes: (1) condensation of acetate

and coenzyme A into acetyl-CoA by acetyl-CoA synthe-

tase (ACS), or (2) generation of acetyl-CoA from pyruvate

by the pyruvate dehydrogenase complex (PDH) in the tri-

carboxylic acid (TCA) cycle. Citrate, which is produced in

the TCA cycle and exported from mitochondria, is the

major source of nuclear and cytosolic acetyl-CoA, and its

conversion from acetyl-CoA is facilitated by ATP-citrate

lyase (ACL) in the cytoplasm or nucleus. In yeast cells,

acetyl-CoA is synthesized mainly from condensation of

acetate and coenzyme A by ACS1 or ACS2. Inactivation of

the two ACS enzymes in yeast reduces histone acetylation

and global transcription defects (Takahashi et al. 2006),

whereas glucose supplementation during quiescent status

increases the histone acetylation level dramatically (Friis

et al. 2009). The acetyl-CoA level oscillates dynamically,

with 10-fold variations, according to the growth phases and

is correlated with H3K9 acetylation levels in genes dif-

ferentially expressed during various growth phases (Cai

et al. 2011; Lu and Thompson 2012). These findings sug-

gest an intriguing role for acetyl-CoA as a link between cell

metabolism and gene expression by modulating histone

acetylation.

Excess acetyl-CoA production in the mitochondria of

proliferating or tumor cells allows for an increased level in

the cytoplasm and nucleus via export in the form of citrate

into the cytosol, where it is converted back to acetyl-CoA

by ACL (Munoz-Pinedo et al. 2012). An increased cyto-

solic or nuclear level of acetyl-CoA can affect histone

acetylation reactions. Interestingly, ACL serves as a

molecular link between cell metabolism and histone acet-

ylation; histone acetylation increases in response to stim-

ulation by growth factors and increased expression of

genes, such as GLUT4, HK2, PFK1, and LDH, that regulate

glucose metabolism (Wellen et al. 2009; Govardhan et al.

2011). A profound decrease in histone acetylation and in

the expression of a selective subset of genes occurs when

ACL activity is knocked down (Wellen et al. 2009). These

results indicate that global and gene-specific control of

transcription can be intertwined with the metabolic status

of cells via acetyl-CoA.

The importance of histone acetylation in cancer has

been recognized since the first observation that sodium

butyrate, a histone deacetylase (HDAC) inhibitor, reverses

the morphology of transformed cancer cells (Singh et al.

2011; Glozak and Seto 2007). HDAC inhibitors, such as

vorinostat and romidepsin, have been approved for treating

cutaneous T cell lymphoma, and many other new inhibitors

are in clinical trials (Mack 2010). The exact mechanism of

action of the HDAC inhibitors is not clear, although epi-

genetic pathways via modulation of histone acetylation

have been proposed (Glozak and Seto 2007). Cyclin-

Table 2 Metabolic and epigenetic functions of metabolites

Metabolites Metabolic function Epigenetic function References

S-adenosyl-L-

methionine

(SAM)

Involved in transmethylation,

transsulfuration and aminopropylation

An important co-factor involved in methyl group

transfer reaction

Pascale et al. (2002),

Ragsdale (2008)

Acetyl coenzyme

A (acetyl-CoA)

Important TCA cycle intermediate also

referred to as the ‘‘Hub of Metabolism’’

Acetyl-CoA is the acetyl-group donor for the

acetylation reactions

Cai et al. (2011), Stadtman

et al. (1951), Berg (2002)

Nicotinamide

adenine

dinucleotide

(NAD)

Involved in redox reaction, electron carier

and oxidizing reagent

Co-factor for sirtuins and poly (ADP-ribose)

polymerase (PARP)

Ying (2008), Houtkooper

and Auwerx (2012) Canto

et al. (2013)

Flavin adenine

dinucleotide

(FAD)

A redox co-enzyme, involved in electron

carier, derived from the vitamin

riboflavin (vitamin B2)

Co-factor for lysine specific demethylase 1

(LSD1)

Hustad et al. (2002), Hino

et al. (2012)

a-Ketoglutarate

(a-KG)

Important TCA cycle intermediate and

anaplerotic carbon source under hyposia

condition

Electron donor for histone demethylases (HDM)

and co-factor for ten-eleven translocation

protein (TET) proteins

Wise et al. (2011) Lukey

et al. (2013), Gerhäuser

(2012)
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dependent kinase inhibitor p21, a regulator of p53 tumor-

suppressor activity, is one of the best studied targets of

HDAC inhibitor-mediated de-repression. HDAC inhibitors

induce p21 expression, which coincides with hyperacety-

lation of histones H3 and H4 in the promoter region

(Sambucetti et al. 1999). Many non-histone HDAC targets

and their potential applications in cancer have been

reported (Choudhary et al. 2014). Therefore, it is plausible

that deregulated acetyl-CoA levels affect derangement in

histone and/or non-histone acetylation during tumorigene-

sis and tumor progression.

Nicotinamide adenine dinucleotide (NAD?)

NAD? is as a coenzyme that captures electrons during

glycolysis and the TCA cycle, and is critical for several

reactions that directly or indirectly modulate chromatin

dynamics, DNA repair, and transcription. NAD? also acts

as an enzyme cofactor, such as sirtuins [NAD?-dependent

class III as histone deacetylases (HDACs)] and poly (ADP-

ribose) polymerase (Ying 2008), which have important

roles in the DNA damage response, epigenetic regulation

of chromatin structure, and gene expression.

NAD? is hydrolyzed to nicotinamide and O-acetyl-

ribose during sirtuin-mediated deacetylation reactions. The

former is a potent inhibitor of sirtuin HDAC activity,

whereas the latter is a novel signaling molecule related to

calcium homeostasis and other pathways (Sauve et al.

2006). Changes in the NAD?/NADH ratio due to metabolic

stress affects sirtuin activities (Sauve et al. 2006). SIRT1,

the most well-studied sirtuin, represses glycolysis by de-

acetylating histones at the promoters of several genes, such

as forkhead box class O, CRTC2, STAT3, TP53, and per-

oxisome proliferator-activated receptor gamma coactiva-

tor-1a (Saunders and Verdin 2007). The role of sirtuins in

cancer is complex and multifaceted, because sirtuins act as

both oncogenes and tumor suppressors. NAD? molecules

are reduced to NADH during each glycolysis and TCA

cycle round, which decreases the NAD?/NADH ratio, and

downregulates overall sirtuin activity. Reduced sirtuin

activity in cancer cells is correlated with histone hyper-

acetylation and chromatin decondensation, which stimu-

lates the expression of genes related to cell proliferation

(Hitchler and Domann 2009). Thus, metabolism and

availability of NAD? can affect the genome and cellular

physiology in multiple ways, including global and local

histone modifications.

Flavin adenine dinucleotide (FAD)

FAD is a redox coenzyme derived from the vitamin ribo-

flavin (vitamin B2) and an electron acceptor in mitochon-

drial respiratory chain complex II. FAD exists in two

different redox forms of oxidized FAD and reduced

FADH2 (Teperino et al. 2010). Furthermore, FAD is an

important cofactor in histone demethylation reactions with

the histone demethylase LSD1. Covalent methyl groups in

DNA or histones are relatively stable, but they can be

removed by demethylases (Shi and Whetstine 2007). LSD1

is the first identified histone demethylase that uses FAD

and releases formaldehyde as a byproduct. Histone

demethylation by LSD1 modifies chromatin structure and

gene transcription and contributes to proliferation and

metastasis of lung and colon cancers through epigenetic

modifications (Lv et al. 2012b; Ding et al. 2013). Corre-

spondingly, FAD availability originates from the activities

of other flavin-linked dehydrogenases and oxidases in the

fatty acid b-oxidation and the TCA cycle pathways, and is

an important determining factor in epigenetic regulation of

energy-expenditure genes by LSD1 (Hino et al. 2012).

Thus, cellular redox or energy status can influence LSD1

activity and change target gene transcription via its epi-

genetic modulation. Other oxidoreductase enzymes that use

FAD as a cofactor include SDH (complex II), acyl-CoA

dehydrogenase, a–ketoglutarate dehydrogenase, and a

component of the PDH complex, the enzymatic activity of

which can be influenced by intracellular FAD level

(Teperino et al. 2010).

a-Ketoglutarate (a-KG) and 2-hydroxyglutarate (2-HG)

a-KG, also called oxo-glutarate, is an important biological

compound and a key intermediate in the TCA cycle. It is

produced either from isocitrate by isocitrate dehydrogenase

(IDH), or from glutamine and glutamate by enzymes, such

as glutaminase 1 and glutamate dehydrogenase (Oermann

et al. 2012). a-KG levels in cancer cells are elevated due to

the increased glutamine utilization. a-KG in the nucleus

can be a substrate for a-KG-dependent methyl dioxygen-

ases, such as ten eleven translocation (TET) and Jumonji-C

domain-containing HDM (JHDM) (Teperino et al. 2010).

TET converts methylated cytosine to 5-hydroxy methyl-

cytosine, which is altered to unmethylated cytosine by

hydroxymethylcytosine glycosylase; thus, activating target

genes epigenetically or protecting promoters from aberrant

DNA methylation (Putiri et al. 2014; Klug et al. 2013).

JHDM removes repressive histone methylation marks, such

as H3K9me3 and H3K27me3; thus, activating differentia-

tion-related genes during progenitor cell differentiation (Lu

and Thompson 2012). Therefore, the reduced availability

of a-KG due to a depressed TCA cycle decreases the

activity of a-KG-dependent proteins important for epige-

netic regulation by hydroxymethylation.

IDH1 and IDH2 are not TCA-cycle enzymes but pro-

duce a-KG from isocitrate using NADP? as a cofactor

instead of NAD? (Reitman and Yan 2010). Mutant forms
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of IDH1 and IDH2 in cancer produce an abnormal on-

cometabolite, 2-hydroxyglutarate (2-HG), from a-KG

(Cairns and Mak 2013). Since 2-HG is structurally similar

to a-KG, it competes with a-KG for binding to several

classes of a-KG-dependent enzymes (Ye et al. 2013) and

inhibits DNA demethylases, such as TET2 and JHDM,

which serves to permanently silence differentiation-related

genes by DNA and histone hypermethylation (Lu and

Thompson 2012). Thereby, 2-HG induces differentiation-

arrest and expansion of progenitor cells; thus, facilitating

tumor development. 2-HG also inhibits histone demethy-

lases, including lysine-specific demethylase 4C, lysine-

specific demethylase 7A, and lysine-specific demethylase

4A (Schulze and Harris 2012), causing increased histone

methylation and inhibited expression of lineage-specific

differentiation-related genes (Xu et al. 2011). These reports

demonstrate how deranged cancer metabolites such as

2-HG facilitate tumorigenesis by modifying enzymatic

activities during the epigenetic process.

Transmission of metabolic phenotypes to daughter cells

Most changes on cancer-cell metabolite levels are transient

because cancer cells migrate into a neighboring area where

the tumor microenvironment is different from the original

site, and the metabolic state of the cancer cells is altered.

However, most tumor cell metabolic phenotypes persist

and are transmitted to daughter cells (Pattabiraman and

Weinberg 2014). Genetic and epigenetic changes in cancer

explain all metabolic phenotypes when they originate from

pre-existing inheritable changes. Metabolic stress has been

suggested to change epigenetic mechanisms (Lu and

Thompson 2012). In the following section, the mode of

epigenetic inheritance and its possible link in the inheri-

tance of newly acquired metabolic phenotypes during cell

division will be discussed.

Inheritance of DNA methylation during replication

DNA methylation is transmitted with high fidelity, and the

process is facilitated by DNA methyltransferase 1

(DNMT1), which shows high affinity for hemi-methylated

DNA (Holliday and Ho 2002). However, the mechanism

for high-fidelity transmission of DNA methylation is

unclear. Many fork-related replication proteins are

involved in DNA replication to link information from the

two strands and ensure high fidelity replication of DNA

sequences. One of the fork replication proteins is prolif-

erating cell nuclear antigen (PCNA), a DNA processivity

factor (Probst et al. 2009). In addition to the role of PCNA

in DNA replication, a function in the inheritance of DNA

methylation has also been suggested, as D. melanogaster

harboring a PCNA mutation show position-effect variega-

tion related to transcriptional silencing due to translocation

of a specific gene to the heterochromatin regions, followed

by DNA methylation (Henderson et al. 1994).

Another fork replication protein, NP95 (also known as

ICBP90 and UHRF1) product, interacts with DNMT1

during transmission of epigenetic marks, and preferentially

binds to hemi-methylated DNA. Deleting NP95 causes

methylation defects similar to those from loss of DNMT1

(Sharif et al. 2007; Bostick et al. 2007). The NP95 product

binds to the hemi-methylated DNA form made from

semiconservative DNA replication. Then, the associated

DNMT1 in the replication fork methylates the newly syn-

thesized unmethylated daughter strand, producing methyl-

ated daughter DNA in both strands (Probst et al. 2009).

Although several molecular mechanisms have been

revealed, the DNA methylation process and the dynamics

of reversible DNA methylation are not fully understood.

Therefore, further data on the basic mechanisms of the

DNA methylation and demethylation processes are needed

before the entire translational process for input of the

metabolic signature into the epigenome can be elucidated.

Inheritance of histone modifications

Parental nucleosomes are disrupted at the replication fork

during replication; thus, the histone modifications must be

correctly reassembled during or after DNA replication for

transmission of histone information to daughter cells

(Huang et al. 2013; Zhu and Reinberg 2011). However, the

histone-modification process is much less clear than the

DNA methylation and demethylation processes. In contrast

to the DNA methylation inheritance mechanism, the tem-

plate for histone modification is lacking. In addition, some

marks, including histone acetylation and phosphorylation

are unstable (Chestier and Yaniv 1979), and these modifi-

cations are not considered heritable modifications.

Several mechanisms to transmit histone modifications

during cell replication have been reported. Histone variant-

specific chaperones are involved in disrupting and reas-

sembling nucleosomes during DNA replication. The H3-

H4 chaperone ASF1 binds to newly synthesized or recycled

histone dimers and transfers them to another histone

chaperone, CAF1 (Mello et al. 2002). CAF1 is recruited to

the replication fork by interacting with PCNA, and medi-

ates the histone-modification process by interacting with

other PCNA-associated histone modifiers, such as HDACs

and lysine methyltransferases.

The self-reinforcing loop model has been proposed as

the mechanism for transmitting H3 K9 histone marks to

daughter cells. In the model, parental marks are recognized

by the chromatin-binding protein, heterochromatin protein

1 (HP1), which recruits a chromatin modifier, such as
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SUV39H1 (Bannister et al. 2001; Lachner et al. 2001);

thus, ensuring methylation of surrounding histones near the

parental histone marks. A similar self-reinforcing loop

during replication has been proposed for H3K27me3

marks, in which PRC2 instead of HP1 binds to its own

methylation sites, ensuring methylation of surrounding

histones near the parental histone marks (Hansen et al.

2008). These self-reinforcing loop models apply only to

repetitive regions (in which long arrays of nucleosomes

carry the same histone marks) where the disrupted parental

histones from the replication forks and the newly synthe-

sized histones are randomly incorporated into the daughter

strands. However, the transmission of histone modifica-

tions in other parts of the genome is not clear.

The histone modification process cannot be completed

during the S phase. Although H3K9me2 modification of

newly deposited histones is almost complete shortly after the

S phase, the levels of H3K9me3 and H3K27me3 in S-phase

cells are only about 70 % of those in the histones of the

mother strands, and the levels fully recover only in the G1

phase (Xu et al. 2012). The histone modifications during the S

phase indicate the presence of histone-modification mecha-

nisms that are independent of DNA replication forks, although

the relevant information revealed remains insufficient.

Correlating metabolic stress-induced changes

with heritable DNA and histone marks

Heritable information should ideally be precisely dupli-

cated during cell division, but when or how metabolic

stress-induced changes are translated into heritable epige-

netic marks is not fully understood. As we discussed in a

previous section, changes in intracellular SAM levels can

affect DNA and histone methylation, particularly during

the S phase of the cell cycle, when most DNA and histone

modifications occur (Nelson et al. 2002). Even after the S

phase, H3K9me3 and H3K27me3 progress; thus, intracel-

lular SAM-level changes beyond the S phase can also

affect histone methylation status.

In contrast to histone methylation, histone acetylation is

a transient modification and cannot constitute a heritable

modification, suggesting that intracellular acetyl-CoA or

NAD? level changes can affect the histone acetylation

level but cannot induce heritable histone modifications.

However, changes in acetylated histones can affect the

expression of genes associated with acetyl-modified his-

tones and could induce heritable changes indirectly via

those gene-expression changes (Verdone et al. 2005).

Most microenvironments near tumor cells change con-

tinually and consistently; thus, metabolic stress can be

transient and may not be translated into an epigenetic

change. However, persistent metabolic stress can be

induced from mutations at well-known oncogenes or

tumor-suppressor genes. For example, p53 is a tumor

suppressor that plays important roles in cell growth,

apoptosis, cell cycle, autophagy, DNA damage and repair,

reactive oxygen species (ROS) regulation, and metabolism

(Zhang et al. 2010; Rai et al. 2011). p53 is not only an

important stress sensor for intracellular ROS level,

hypoxia, and DNA damage (Horn and Vousden 2007;

Vousden and Prives 2009), but also a key regulator of both

glycolysis and OXPHOS (Vousden and Ryan 2009).

Reduced nutrient or energy levels activate AMPK and

decrease AKT-mTOR pathway activities, both of which

activate p53 (Vousden and Ryan 2009). Induced p53 can

change intracellular metabolism by regulating glucose

transporter expression or the levels of enzymes in the

glycolytic pathway (Schwartzenberg-Bar-Yoseph et al.

2004; Bensaad et al. 2006; Mathupala et al. 2001). p53

mutations or inactivation found in various cancer cells can

disrupt energy balance and metabolism under stressed

conditions, and the metabolic changes affect epigenomic

changes and tumor progression.

Another example is amplification of c-myc found in

many different cancers, which plays important roles regu-

lating cell proliferation and metastasis. Activating c-myc

increases levels of glucose transporters, glycolytic

enzymes, and glutaminase (Wu and Zhao 2013). Activating

c-myc by amplification in cancer cells induces a deranged

response to the tumor microenvironment, which leads to

epigenetic derangement and tumor progression.

Is there any direct evidence for the induction of epige-

netic change by metabolic stress? A direct answer to this

question is difficult because mutations in oncogenes or

tumor-suppressor genes, such as TP53 and c-myc, affect

various signaling pathways as well as metabolism and

because each specific metabolite change most often

accompanies other functional or signaling pathway chan-

ges. However, we can estimate the effect of metabolism on

epigenetic changes indirectly by observing IDH1 and IDH2

mutants, because these mutations induce relatively pure

metabolic changes. For example, abnormal depletion of the

TCA-cycle constituent a-ketoglutarate occurs at the

expense of a marked increase in 2-HG. Interestingly,

human gastrointestinal stromal tumor (GIST) cells and

paragangliomas harboring these IDH mutations have

abnormal DNA and histone methylation patterns (Figueroa

et al. 2010; Killian et al. 2013; Letouze et al. 2013). An

animal model with an IDH1 mutation reproduces this

abnormal methylation pattern, suggesting that metabolic

change can affect epigenetic phenotypes (Sasaki et al.

2012). The mechanism of this abnormal methylation pat-

tern is competitive inhibition of a-KG-dependent dioxy-

genases (Xu et al. 2011) and inhibition of histone lysine

methylases (Chowdhury et al. 2011). Mutations in fumarate

hydratase, another TCA-cycle enzyme, also show
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hypermethylation patterns, suggesting that different TCA-

cycle lesions result in similar epigenetic outcomes (Leto-

uze et al. 2013). These results clearly demonstrate a link

between metabolic deregulation and heritable epigenetic

abnormalities. This correlation could confirm the mecha-

nism for tumor heterogeneity, which currently is suspected

to be a major reason for drug resistance and cancer pro-

gression, because the metabolic effects could be dependent

on the various microenvironments in different areas

(Meacham and Morrison 2013; Easwaran et al. 2014).

Therefore, revealing the underlying mechanisms linking

metabolism and the epigenome could help solve problems

related to drug resistance and cancer progression.

Targeting metabolic regulators affecting

the epigenome: a new therapeutic approach

Epigenetic alterations have emerged as promising candi-

dates for developing specific markers for cancer detection,

Table 3 Targeting metabolic regulators that affect the epigenome and metabolism in cancer

Metabolites Source Classification Epigenetic role Stage References

EC, ECG, EGC,

EGCG

Green tea Polyphenol,

Flavonoids,

Catechins

DNMT and HAT

inhibitor, modulates

miRNA, down-regulate

SAM or SAH

Phase II Yang et al. (2009a), Huang et al. (2011),

Lee et al. (2005), Chen et al. (2011), Yu

et al. (1997)

Genistein Botanic

polyphenol

(isoflavone)

Phytoestrogenic

isoflavone

DNMT1 inhibitor Phase II Molinie and Georgel (2009), Taylor et al.

(2009), Steiner et al. (2008), Messing

et al. (2012)

Resveratrol Grapes,

mulberries,

cranberries,

blueberries,

peanuts

Type of natural

phenol, and

a phytoalexin

DNMT and HDAC

inhibitor

Phase I Boocock et al. (2007), Carter et al. (2014),

Choi and Friso (2010), Reuter et al.

(2011), Howells et al. (2011)

Shikonin Lithospermum

erythrorhizon

(Zicao).

Natural

anthraquinone

derivative

PKM2 inhibitor Clinical

trail

Yang et al. (2009b), Guo et al. (1991)

Selenium Nuts, chicken,

game meat,

beef

Minerals;

essential trace

element

Inhibiting DNMT1

activity and affecting

SAM or SAH

Phase

III

Marshall et al. (2011), Davis and Uthus

(2002, 2003), Klein et al. (2011)

DIM Cruciferae

family

Diindolylmethane Class I HDAC inhibitor Phase I Li et al. (2010), Fares et al. (2010), Singh-

Gupta et al. (2012), Banerjee et al. (2011)

Curcumin Tumeric, curry Diferuloyl

methane

DNMT inhibitor and

miRNA modulator

Phase I Chen et al. (2007), Singh and Aggarwal

(1995), Sun et al. (2008), Sharma et al.

(2004), Cheng et al. (2001)

Isothiocyanates,

sulforaphane

Broccoli,

cabbage, kale,

watercress

Metabolites of

glucosinolates

DNMT and HDAC

inhibitor

Phase I Myzak et al. (2004, 2006), Alisch et al.

(2012), Pledgie-Tracy et al. (2007), Zhang

and Tang (2007), Herr et al. (2013),

Lozanovski et al. (2014), Shapiro et al.

(2006)

Butyrate Produced by

colonic

fermentation

Short chain fatty

acid

Histone acetylation, DNA

methylation

Phase II Riggs et al. (1977), Maggio et al. (2014),

Sealy and Chalkley (1978), Reid et al.

(2004)

Allyl mercaptan,

diallyl

disulfide

Garlic and other

Allium species

organosulfur HDAC inhibitor Phase II Nian et al. (20090 Lea et al. (2002), Jo et al.

(2008), Fukao et al. (2004)compounds

Folate Beans, grains,

cereals, pastas,

green

vegetables

Water-soluble B

vitamin

Deficiencies alter DNA

methylation, providing

methyl group for SAM

synthesis

Phase-II Lamprecht and Lipkin (2003), Huang

(2002), Duthie (2011), Logan et al. (2008)

Choline Shrimp, egg,

chicken

Grouped within

the B-complex

vitamins

DNA methylation Phase I Choi and Friso (2010), Niculescuet al.

(2006), Gossell-Williams et al. (2005),

Arlauckas et al. (2014)

DIM 3,30-diindolylmethane, DNMT DNA methyltransferase, EC epicatechin, ECG epicatechin-3-gallate, EGC epigallocatechin, EGCG epi-

gallocatechin-3-gallate, HAT histone acetyltransferase, HDAC histone deacetylase, PKM2 pyruvate kinase M2, SAH S-adenosyl-L-homocysteine,

SAM S-adenosyl-L-methionine
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diagnosis, and progression. Most epigenetic alterations are

largely mediated by chemical modifications in DNA bases

or histones (Paschos and Allday 2010) and are potentially

reversible as they are controlled by epigenetic enzymes.

Thus, investigating epigenomic profiles, including DNA

methylation, histone marks, chromatin conformation, and

miRNAs is important due to the implications for

developing novel target agents that reverse transcriptional

abnormalities by modulating the cancer epigenome (Bo-

umber and Issa 2011; Campbell and Tummino 2014).

Studies have yielded new promising compounds targeting

the epigenetic modifiers or enzymes. Most importantly,

DNA methyltransferase inhibitors (decitabine, 5-azaciti-

dine, and its deoxy derivatives for myelodysplastic

Fig. 1 Possible mechanisms of metabolic control over epigenetic

modulation and their inheritance. Metabolic pathways and metabolites

that can affect the epigenome are shown. Important metabolites that can

affect the epigenome include citrate, a-ketoglutarate (a-KG), 2-hy-

droxyglutarate (2-HG) and acetyl-CoA carboxylase (acetyl-CoA) (from

the TCA cycle), S-adenosyl-L-methionine (SAM) (from the methionine

cycle), N-acetylglucosamine (GlcNAc) (from the hexosamine biosyn-

thetic pathway), and NAD?/NADH (from glycolysis). The epigenetic

enzymes modulated by metabolites are shown. DNA methyltransferase

(DNMT), ten-eleven translocation protein (TET), and methyl CpG

binding proteins are responsible for DNA modifications, whereas histone

acetyltransferases, deacetylases, methyltransferases and demethylases

are responsible for histone modifications. Changes in epigenetic enzyme

activities affect the level of epigenetic modifications; thereby, changing

the epigenomic and expression profiles. The schematic structure of the

molecules involved in DNA or histone epigenome for inheritance

modifications are also shown. Proliferating cell nuclear antigen (PCNA)

recruits enzymes, such as histone deacetylases (HDACs) or Lys

methyltransferase SET8, chromatin remodelers (Williams syndrome

transcription factor (WSTF)–SNF2H and chromatin assembly factor 1

(CAF1) at the replication forks, and induce changes in DNA methylation

and histone modifications on newly synthesized daughter strands
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syndromes) and HDAC inhibitors (romidepsin and vori-

nostat for T-cell lymphoma) have been successfully

developed as epigenetic drugs that have anti-tumor activ-

ities in vitro and in vivo (Boumber and Issa 2011; Ghoshal

and Bai 2007; Connolly and Stearns 2012) and received

FDA approval.

Recent recognition of the correlation between metabolic

and epigenetic changes can provide novel strategies to

improve the effect of epigenetic modifiers or to decrease

side effects on normal cells when cancer-specific metabo-

lism affecting the epigenome is utilized. Table 3 summa-

rizes the metabolic targets that can affect epigenetic

modifications. In addition, understanding the transforma-

tion mechanism of metabolic signals into heritable epige-

netic information may provide another novel strategy for

reversing epigenetic abnormalities in human diseases

including cancer.

Conclusion

In this review, we have summarized current knowledge on

cancer cell metabolism and its impacts on epigenetic

modulation or inheritance (Fig. 1). Alterations in finely

tuned metabolic equilibrium via disturbed metabolites can

change enzyme activities related to epigenetic modifica-

tions, which can lead to heritable epigenetic changes.

Hence, two conjectures can be proposed about the role of

metabolism in cancer initiation and progression. First,

tumor-associated gene mutations, such as TP53 or c-myc,

can lead to metabolic changes, resulting in new metabolic

status and cancer progression. Alternatively, metabolic

changes initiated by environmental factors, which are

usually transient, can modify the epigenome and initiate

cancer development. These two processes can potentiate

each other and speed up malignant transformation or can-

cer progression. As many complex human diseases

including cancers harbor both epigenetic aberrations and

metabolic dysregulation, understanding the molecular

processes linking them has huge implications for disease

pathogenesis and therapeutic intervention.
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