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in rat brain synaptosome P2 fraction
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Abstract Solanum anguivi fruit saponin has antidiabetic

property via interference with cellular energy metabolism

and inhibition of reactive oxygen species (ROS) genera-

tion. In the current study, brain specific in vitro anti-oxi-

dant role of S. anguivi saponin was investigated in the P2

synaptosomal fraction of rat brain. Using 3-(4,5-dimeth-

ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction

assay, S. anguivi saponin concentration- dependently

(10–200 lg/ml) reversed Fe2? and sodium nitroprusside-

induced decrease in mitochondrial activity via inhibition of

ROS production, ROS-induced oxidation of protein and

non-protein thiol-containing molecules and lipid peroxi-

dation as measured by thiobarbituric acid reactive sub-

stances levels. Conclusively, S. anguivi fruit saponin

represents a class of natural compounds with the ability to

reverse synaptosomal disruption, loss of mitochondrial

integrity and function often associated with the progression

of Huntington’s disease, Alzheimer disease, Parkinson

disease and amyotrophic lateral sclerosis diseases.
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Introduction

Incomplete reduction of oxidized oxygen fed into the cel-

lular catabolism through mitochondrial oxidative phos-

phorylation is a key source of reactive oxygen species

(ROS) (Apel and Hirt 2004). Upon bonding with cellular

macromolecules, ROS negatively affects histological

architecture, compromises the integrity of subcellular

organelles and alters the 3-dimensional structures of cel-

lular proteins and enzymes with a concomitant loss of

enzymatic functions, cellular membrane integrity, altered

gene expression and replication regulations. When unre-

solved, aggressive cell loss due to apoptosis and necrosis

occurs. These sequence of events are well documented in

the pathogenesis cancer (Feig et al. 1994), diabetes

(Inoguchi et al. 2003), inflammation/immune injury,

arthritis, coronary diseases, hemorrhagic shock, and neu-

rodegenerative diseases (Rego and Oliveira 2003).

In addition to the enzymatic machineries (catalase,

superoxide dismutase, glutathione peroxidase, glutathione

peroxidase) (Mates 2000) evolutionarily adapted to scav-

enge free radicals, some phytochemicals act as comple-

mentary antioxidant agents due to their electrophilicity,

ability to promote anti-oxidant enzyme gene expression and

to positively modulate the actions of anti-oxidant enzymes
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(Malireddy et al. 2012). Although many of these phyto-

chemicals and their plant sources exist in literature, the

current study focuses on saponin from Solanum anguiviLam

(Solanaceae). Antioxidant properties and Ca2?-induced

mitochondrial swelling inhibition (Elekofehinti et al. 2013)

have been previously reported for S. anguivi saponin. Here,

we further investigated its in vitro ROS-quenching proper-

ties in synaptosomal andmitochondrial fractions of rat brain.

Materials and methods

Chemicals

Reduced glutathione (GSH), malonaldehydebis-(dimethyl

acetal) (MDA), 5,50-dithiobis(2-nitrobenzoic acid)

(DTNB), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-

lium bromide (MTT), thiobarbituric acid (TBA), sodium

dodecyl sulfate (SDS) were purchased from Sigma-Aldrich

(USA). All other chemicals used in this study were of the

highest analytical grade.

Plant material

The fruits of S. anguiviwere collected fromAdekunle Ajasin

University, Akungba Akoko horticultural garden. They were

identified and authenticated at the herbariumof Plant Science

and Forestry Department, University of Ado Ekiti, Nigeria

(voucher specimen number UHAE: 286). The fruits were air

dried and grounded into a powdery fine texture and stored at

room temperature in air tight polythene bag prior to use.

Extraction and isolation of saponins from S. anguivi

fruit

One hundred grams (100 g) ground sample extracted in

1,000 ml methanol (24 h) and concentrated was partitioned

in hexane and water (1:2, v/v, O/N). The aqueous layer was

concentrated and partitioned (ethyl acetate/n-butanol, 1:3,

v/v). Concentrated butanol fraction was resolved on silica

gel TLC plate [Merck, Kleselgel 60F-254, n-butanol: acetic

acid: water (60:10:30 v/v/v)] and developed with Lieber-

man–Burchard reagent followed by column purification

(silica gel column, 60–120 mesh), non-saponin components

was washed with n-hexane followed by n-butanol: acetic

acid: water (1:1:1 v/v/v) elution (Majinda 2012). Pure

saponin fractions were pooled after Lieberman–Burchard

together and used for further experiments.

Animals

Male Wistar rats, weighing 270–320 g from our own

breeding colony (Animal House-holding, UFSM, Brazil)

were kept in cages with free access to food and water in a

room with controlled temperature (22 ± 3 �C) and in 12 h

light/dark cycle. The protocol of this study has been

approved by the Brazilian Association for Laboratory

animal Science (COBEA) of the Federal University of

Santa Maria.

Preparation of rat synaptosome P2 fraction

and experimental grouping

Rat brain synaptosome P2 fractions were prepared as

described (Dunkley et al. 2008). Synaptosome P2 fraction

(2 mg protein) was incubated with or without (control)

different concentrations of saponins (10–200 lg/ml) in the

presence or absence of the pro-oxidant [i.e., Fe2?(10 lM)

and SNP (5 lM)] for 30 min at 25 �C in an incubation

medium containing in mM: 10 HEPES buffer, 220 man-

nitol, 68 sucrose, and 10 KCl, pH 7.0 (total incubation

volume = 300 ll). After incubation, cell viability, non-

protein thiol (NPSH), total thiol content, lipid peroxidation

(TBARS) and ROS production were determined.

Assessment of cell viability or mitochondrial activity

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-

mide (MTT) reduction assay was used to monitor mito-

chondrial activity (Riss et al. 2004). Absorbance values

were monitored at 550 nm (SpectraMax, USA) and data

were reported as percentage of control.

Assessment of non-protein thiol (NPSH) and total thiol

(T-SH) content

Graded concentration (10–200 lg/ml) of saponin was

added to synaptosomal fraction in the presence or absence

of Fe2?(10 lM)/SNP (5 lM) and 300 ll of 10 % trichlo-

roacetic acid. Following centrifugation (4,0009g at 4 �C
for 10 min), the protein pellet was used for total thiol

determination (T-SH), while the free thiol groups (NPSH)

were determined in the clear supernatant as described

(Seligman et al. 2005). The results were corrected with

protein content and expressed in percentage.

Assessment of lipid peroxidation and ROS

The lipid peroxidation end-products were quantified using

TBARS assay (Dawn-Linsley et al. 2005). Measurements

were recorded at 532 nm (SpectraMax, USA). Malondial-

dehyde (0–3 nmol/ml) was used for the standard curve

while protein concentration was determined Bradford

method(Bradford 1976). ROS production in isolated syn-

aptosomal P2 fraction was measured using a 20,70-dichlo-
rofluorescein diacetate (DCFH-DA) fluorescence probe.
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The formation of the oxidized fluorescent derivative (DCF)

was measured in the supernatant as the result of reactive

oxygen/nitrogen species (ROS/RNS) generation (Shimadzu

RF-5301) with excitation and emission wavelengths of 488

and 525 nm respectively and with slit widths of 1.5 nm.

Statistical analysis

The results are expressed as mean ± S.E.M (standard error

of mean) of three to four independent determinations.

Statistically significant differences among groups were

analyzed by one-way ANOVA followed by the Duncan

multiple range test when appropriated. Differences were

considered to be statistically significant when p\ 0.05.

Results

Effect of saponins from Solanum anguivi on cell

viability

The effect of saponins on mitochondrial activity was

investigated and the result showed that saponin did not

have any effect on mitochondrial viability as revealed by

MTT reduction assay (Fig. 1a). This indicates that saponins

from S. anguivi do not interfere with the metabolic activity

of the mitochondrial. Fe2? and SNP decreased mitochon-

drial activity as shown in Fig. 1b and c respectively, when

compared to control (p\ 0.05). Co-treatment with saponin

significantly reduced Fe2?- and SNP-induced disruption of

mitochondrial activity.

Effect of saponins from Solanum anguivi on lipid

peroxidation in synaptosomal P2 fraction

Saponin did RSnot have any significant effect on synap-

tosomal membrane lipid peroxidation (Fig. 2a). Both Fe2?

and SNP caused a significant increase in TBARS produc-

tion but Fe2? induced lipid peroxides more effectively than

SNP (p\ 0.05, Fig. 2b, c). Saponins from S. anguivi

caused a significant decrease (p\ 0.05) in both Fe2?

(Fig. 2b) and SNP (Fig. 2c) stimulated TBARS production

but could not bring the values to control level.

Effect of saponins from Solanum anguivi on ROS

production in synaptosomal fraction

The effect of saponin on ROS production in synaptosomal

fraction of rats’ brain is presented in Fig. 3a. Saponin

(10–200 lg/ml) did not modify the production of ROS

when compared to control (p[ 0.05). Treatment with Fe2?

and SNP resulted in significant production of ROS

(p\ 0.05) when compared with control (Fig. 3a, b,

p\ 0.05). However, co-treatment of synaptosomal fraction

with saponin (10–200 lg/ml) significantly attenuated the

production of ROS in synaptosomal fraction (P2).
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Fig. 1 Effect of saponins from S. anguivi fruits on mitochondrial

viability in synaptosomal fraction of rats brain (a), co-treatment with

Fe2? (b) or SNP (c). Columns represent mean ± S.E.M. of three

independent experiments. MTT reduction was significantly inhibited

by the Fe2? and SNP and co-treatment with saponins (10–200 lg/ml)

markedly attenuated this effect (p\ 0.05). The results are expressed

as percentage of control
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Effect of saponins from Solanum anguivi on total-SH

and non-protein thiol (NPSH) in synaptosomal P2

fraction

Oxidative stress can be associated with a decrease in total-

SH content and NPSH levels in cells. Treatment of syn-

aptosomal fraction with saponin did not cause a reduction

in NPSH level (Fig. 4a) and total-SH content (Fig. 5a) in

synaptosome. Both Fe2? and SNP caused a significant

reduction in NPSH level, which was mitigated by co-

treatment of synaptosome with saponins (10–200 lg/ml)

(Fig. 4b, c). Saponin was able to restore to control level,

the total-SH content that was significantly reduced by Fe2?

and SNP (Fig. 5b, c).

Discussion

The iron (Bilgic et al. 2012; Pfefferbaum et al. 2009) and

polyunsaturated lipid-rich neuronal environment (Janssen

et al. 2014) coupled with low expression of anti-oxidant
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Fig. 2 Effect of saponins from S. anguivi fruits on lipid peroxidation

in untreated synaptosomal P2 fraction of rats brain (a) and co-

treatment with Fe2? (b) or SNP (c). TBARS is expressed as nmol of

malondialdehyde per mg of protein. Data are presented as mean ±

S.E.M. resulting from three independent experiments.*p\ 0.05 as

compared with control, #p\ 0.05 as compared to the Fe2? and SNP-

treated synaptosomal fraction
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Fig. 3 Effect of saponins from S. anguivi fruits on synaptosomal P2

fraction of rats brain (a), and co-treatment with Fe2? (b) or SNP (c).
Both Fe2? and SNP induced DCFH oxidation in the incubation

medium. Columns represent mean ± S.E.M. resulting from three

independent experiments and data are expressed as percentage of

control (untreated cells). *p\ 0.05 versus untreated slices (control),
#p\ 0.05 versus Fe2? and SNP-treated cells
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enzymes account for high susceptibility of the brain cells to

free radical-induced oxidative damages. Such damage

significantly contributes to the progression of Hunting-

ton’s, AD, PD and ALS diseases (Rego and Oliveira 2003;

Apel and Hirt 2004; Reddy 2009; Cavallucci et al. 2013).

Increase in the number of reported cases of these

neuropathologies therefore calls for deepened investigation

of natural and synthetic anti-oxidant (phyto)-chemicals

capable of crossing the blood brain barrier (BBB).

The current study identified S. anguivi fruit saponin as

one of such naturally occurring compounds with in vitro

anti-oxidant properties in rat brain. Since, BBB-crossing is

often identified as the limitation for most drugs whose site

of action is the brain, this limitation is much reduced in
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Fig. 4 Effect of saponins from S. anguivi fruits on synaptosomal P2

fraction of rats brain (a), and co-treatment with Fe2? (b) or SNP

(c) on non-protein thiol (NPSH) content in synaptosome P2 fraction

of rats brain. Columns represent mean ± S.E.M. resulting from three

independent experiments and data are expressed as percentage of

control (untreated cells). *p\ 0.05 as compared with control,
#p\ 0.05 as compared to the Fe2? and SNP-treated synaptosomal

fraction
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Fig. 5 Effect of saponins from S. anguivi fruits on total thiol (SH)

content in synaptosomal P2 fraction of rats brain (a), and co-treatment

with Fe2? (b) or SNP (c). Columns represent mean ± S.E.M.

resulting from three independent experiments and data are expressed

as percentage of control (untreated cells). *p\ 0.05 as compared

with control, #p\ 0.05 as compared to Fe2? and SNP-treated

synaptosomal fraction
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saponin as earlier report did establish that saponin mod-

erately partition into the brain (Wang et al. 2007).

Another key consideration is the neurotoxicity of phy-

tochemicals, here, S. anguivi saponin selectively preserved

mitochondrial function in MTT assay while reversing

Fe2?- and SNP-induced loss of mitochondrial function.

This finding reiterates non-toxicity of saponin which war-

rants its use as cell-permeabilizing agent thus, allowing

organellar functions to be studied in intact cells (Kuznetsov

et al. 2008). In addition to maintaining mitochondrial

integrity, S. anguivi saponin similarly protected synapto-

somal fractions from the debilitating effects of ROS pro-

duced by Fe2? and SNP. Undoubtedly, this finding has

clinical implications in protecting the histological archi-

tecture and molecular machineries required to maintain

inter-neuronal electrical and chemical communication

which becomes compromised following ROS attack on

synaptosomes (Magni et al. 2009). It is also worth noting

that thiol-containing macromolecules such as synaptosomal

plasma membranes of calpain I (Siman et al. 1983), vol-

ume-sensitive taurine efflux proteins (Martinez et al. 1994)

and non-protein mono/dithiols involved in vesicular GABA

release (Robillard et al. 1987) may also benefit from S.

anguivi saponin due to protein thiol protecting properties.

In conclusion, results of the present study strongly

demonstrated that saponin from S. anguivi exerted in vitro

neuroprotection in rat brain synaptosomal fraction against

Fe2?- and SNP-induced toxicity and provides a basis for

further investigation of possible clinical applications in

Huntington’s, AD, PD and ALS diseases.
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