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Abstract The anaplastic lymphoma kinase (ALK) recep-

tor tyrosine kinase represents a potential therapeutic tar-

get. Specially, a variety of alterations in the ALK gene

including mutations, overexpression, amplification, trans-

locations and structural rearrangements, are involved in

human cancer tumorigenesis. The second-generation ALK

inhibitor CH5424802 (development code: AF802; Chugai

Pharmaceutical, a subsidiary of Roche) achieves tumor

regression with excellent tolerance and shows promising

efficacy in patients with ALK-positive non-small cell lung

cancer. CH5424802 shows good kinase selectivity, has a

promising pharmacokinetics profile, and has strong anti-

proliferative activity in several ALK-driven tumor models.

CH5424802 has also shown anti-tumor activity in mouse

xenograft studies. Here, we summarize recent advances and

the evidence that CH5424802 acts as an ALK inhibitor.

We also discuss its potential for further development as an

anticancer drug in clinical trials.

Keywords Novel tetracyclic anaplastic lymphoma kinase
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Lung cancer is often fatal and has a higher mortality rate

than breast, colorectal and prostate cancer (Pirozynski

2006; Siegel et al. 2013). Clinically, lung cancers can be

classified as small cell lung cancer (SCLC) and non-small

cell lung cancer (NSCLC), with SCLC and NSCLC

accounting for 80–85 % of all lung cancers. Despite

committed efforts to improve lung cancer diagnosis and

treatment, the 5-year survival rate for patients with NSCLC

remains low at *10–15 %. More than 50 % of patients are

diagnosed at advanced stages of the disease; at that point,

treatment has a palliative rather than a curative intent

(Scagliotti 2007; McDermott et al. 2008).

A new era for cancer therapy has dawned in recent years

with the development of novel methods for identifying and

targeting tumors’ molecular defects. Targeted therapies

appear promising and offer new therapeutic models in the

field of oncology. While numerous kinase inhibitors have

been developed to treat a broad range of cancers, 208

NSCLC-targeting drugs are now in development: 17 in

phase III, 130 in phase II, and 61 in phase I (White 2012).

Targeted therapies dominate all stages of the NSCLC

pipeline, and the major strategy of the late-phase drugs is

inhibition of tyrosine kinases such as anaplastic lymphoma

kinase (ALK).

Anaplastic lymphoma kinase belongs to the family of

tyrosine kinase receptors (TKRs). Recently, ALK-TKR has

emerged as a potential biomarker and therapeutic target in
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solid and hematologic tumors (Cabezón-Gutiérrez et al. 2012;

La Madrid et al. 2012). In the ALK gene, a variety of genetic

alterations such as mutations, overexpression, amplification,

translocations, or other structural rearrangements, have been

implicated in anaplastic large cell lymphoma (ALCL) and in a

subset of NSCLC, suggesting ALK addiction in human cancer

(Azarova et al. 2011; Soda et al. 2007; Shigematsu et al. 2005;

Webb et al. 2009).

ALK tyrosine kinase activity is necessary for its trans-

forming activity and oncogenicity (Sasaki et al. 2010;

Koivunen et al. 2008). Crizotinib (PF-02341066, Xalkori)

as the first-generation of ALK inhibitor was developed by

Table 1 ALK-targeted inhibitors

Inhibitor (company) structure Some significant aspectsa

Crizotinib (Pfizer)

O

N

N
N

NH

Cl

Cl

F

H2N

Crizotinib (PF-02341066, Xalkori) has been approved by FDA for treating NSCLC with ALK

translocations. It is a dual c-MET and ALK inhibitor with IC50 of 11 and 24 nM, respectively in

lymphoma cell lines showing the NPM-ALK oncogenic fusion protein.

CH5424802 (Chugai Pharmaceutical)

O

H
N N

N
O

N

CH5424802 is an orally active, potent, and highly selective ALK inhibitor with IC50 of 1.9 nM, and

currently advancing in phase I/II clinical trials in NSCLC patients in Japan. The trials are planned to

be finished in March 2014. This inhibitor has shown activity against the gatekeeper ALK mutant

(Ardini and Galvani 2012).

AP-26113 (Ariad Pharmaceuticals) ND AP-26113 is a potent dual inhibitor of ALK/EGFR with IC50 value of 0.62 nM. This inhibitor exhibits

activity in crizotinib-resistant patients. Its approximately have tenfold higher potency and selectivity

for ALK-positive cells compared to crizotinib (Rivera et al. 2010). Undergoing phase I/II clinical

trials for this unique small inhibitor were initiated in September of 2011 (Zhang et al. 2010).

LDK378 (Novartis) ND LDK378 is an orally available ALK inhibitor with IC50 of 0.15 nM and undergoing phase I trials in

ALK rearranged tumors. LDK378 exhibits high efficacy in vivo and induces complete and strong

tumor regression in an ALK-positive NSCLC dependent models. It is active in tumors bearing the

C1156Y mutation that confers crizotinib-resistance (Li et al. 2011).

ASP3026 (Astellas Pharma)

N

N

N

N
H

N
HS

O O
O

N

N
N

ASP3026 is an orally available ALK inhibitor with IC50 3.2 nM and no preclinical data is available.

The trial commenced in December 2010 and now in phase I trial in patients with advanced

malignancies, B cell lymphoma, solid tumors, and ALK-positive tumors (La Madrid et al. 2012).

X-396 (Xcovery) ND X-396 shows promising anti-tumor activity in vitro and in vivo on various ALK-dependent tumor

models and appears to have potential to treat patients with resistance-conferring mutations. The

distribution of X-396 in brain tissue suggests an interesting aspect and a clue towards activity against

ALK-positive brain metastases. (Lovly et al. 2011). Its ALK enzyme inhibition IC50 value is

\0.4 nM.

Retaspimycin hydrochloride (Infinity

Pharmaceuticals)

OH

OH

N
H

N
H

O

O
O

OH

O
O

NH2

HCl

Retaspimycin hydrochloride (IPI-504) has been investigated as heat shock protein inhibitor with

considerable activity in ALK-positive NSCLC patients. Now progressing in phase II trials in

combination with docetaxel versus placebo/docetaxel. In phase IB/II, study is underway in

combination with everolimus in KRAS-mutant NSCLC.

Preclinical agent Several preclinical ALK inhibitors are under testing which include CEP-28122 (Teva), GSK-

1838705A (GlaxoSmithKline) and 3-39 (Novartis). Clinical grade anti-ALK antibody is also under

development. Combining an anti-ALK antibody with ALK inhibitors might be more effective than

either agent alone and is evident from early preclinical data.

ND Chemical structure has not been disclosed yet
a www.prous.com
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Pfizer and approved as a dual MET/ALK inhibitor for

treating NSCLC with ALK translocations in August of

2011. Crozotinib-mediated inactivation of EML4–ALK

kinase caused the disengagement of oncogenic signaling

pathways and induced growth arrest and cell death, but

made tumors acquire resistance. Therefore, numerous ALK

kinase inhibitors (Table 1) have been in clinical evaluation

as potential therapies as second-generation ALK inhibitors

(Soda et al. 2008; McDermott et al. 2008). This report

highlights the clinical, biological, and molecular features of

CH5424802 and discusses the use of CH5424802 as a

‘druggable’ ALK inhibitor for cancer therapy.

CH5424802 as an orally active, potent, and highly

selective ALK inhibitor, is currently advancing in human

clinical trials (Kinoshita et al. 2011a, 2011b, 2012). As an

ATP-competitive inhibitor, CH5424802 exhibits strong

antiproliferative activity in NSCLC and ALCL. Molecular

modeling analysis revealed its binding to the ATP site of

ALK in the DFG-in mode (Sakamoto et al. 2011; Kinoshita

et al. 2011b). In an enzymatic activity assay, CH5424802

inhibits ALK activity at nanomolar concentrations (IC50,

1.9 nM; Kd, 2.4 nM; Ki, 0.83 nM) and exhibits good

kinase selectivity; among 402 kinases, only three kinases,

ALK, cyclin G-associated kinase (GAK), and leukocyte

tyrosine kinase (LTK) showed greater than 50 % inhibition

at 10 nM CH5424802 (Sakamoto et al. 2011). The inhib-

itory action of CH5424802 can be explained by the high

sequence similarity of LTK to ALK (Iwahara et al. 1997).

In NSCLC expressing echinoderm microtubule-associated

protein-like 4 (EML4)-ALK fusion oncogene (Soda et al.

2007), CH5424802 exhibited preferential antitumor activ-

ity. CH5424802 also exhibited antitumor activity in ALCL

expressing the nucleophosmin (NPM)-ALK fusion. About

50–60 % of ALCLs possesses a reciprocal chromosomal

translocation that fuses NPM to ALK, thus forming a sol-

uble chimeric and oncogenic NPM-ALK (Bischof et al.

1997).

The good pharmacokinetic profile of CH5424802 has

been linked with its strong antiproliferative activity in

ALK-driven tumor models (Sakamoto et al. 2011). The

half-life and the oral bioavailability of CH5424802 in mice

were 8.6 h and 70.8 %, respectively. No differences in

body weight or gross signs of toxicity were observed in

CH5424802-treated mice at any dose level. In the mouse

xenograft model inoculating NCI-H2228 cells (a NSCLC-

expressing EML4-ALK), the oral administration of

CH5424802 dose-dependently inhibited tumor growth with

an ED50 of 0.46 mg/kg, but not in the xenograft model

inoculating A549 cells that is an NSCLC cell line that does

not express ALK fusions.

In the mode of action study, CH5424802 prevents ALK

autophosphorylation in NCI-H2228 cells (Sakamoto et al.

2011). CH5424802 also suppresses the phosphorylation of

STAT3 and AKT in NCI-H2228. The inhibitory effect of

CH5424802 on the phosphorylation of ALK and STAT3

was confirmed in in vivo models. In the ALK-positive

ALCL cell line KARPAS-299, CH5424802 completely

inhibited the phosphorylation of STAT3 (Sakamoto et al.

2011). STAT3 is required for ALK-mediated lymphoma-

genesis in ALCL (Chiarle et al. 2005).

Furthermore, CH5424802 exhibited anticancer potency

against the L1196 M gatekeeper mutation of ALK

accompanied with the inhibition of both ALK and STAT3

phosphorylation (Sakamoto et al. 2011). L1196 M, in

which methionine is substituted for leucine at position

1,196 in ALK, exhibited increased kinase activity com-

pared with wild-type ALK (Lu et al. 2009).

The results for the first-in-human phase I/II study of

CH5424802 in patients with ALK-positive NSCLC has

been reported recently (Kiura 2012). The highest dose level

defined in the protocol, 300 mg b.i.d., did not reach the

maximum tolerated dose, and toxicities were mild to

moderate. Importantly, all patients achieved tumor

regression at all dose levels, suggesting that it could be

well tolerated. The promising efficacy of CH5424802 in

patients with ALK-positive NSCLC hints at further success

in the ongoing phase II and advanced trials. Hopefully, the

effort to develop potent ALK inhibitors such as

CH5424802 will result in clinical process in cancer treat-

ment for patients with ALK-driven tumors.
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