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Mesenchymal stem cells (MSCs) or MSC-like cells have been identified in a variety of different
tissues that share molecular expression profiles and biological functions but also retain a
unique differentiation preference depending on their tissue origins. MSCs play beneficial roles
in the healing of damaged tissue by directly differentiating to many different resident cell
types and/or by secreting several trophic factors that aid tissue repair. Aside from MSCs’
reparative stem cell function, they drive immune responses toward immunosuppression and
anti-inflammation. This novel function of MSCs opens up new avenues for clinical develop-
ment of MSC immune-therapeutics to treat uncontrollable, life threatening, severe, chronic
inflammation and autoimmune disease. Unexpectedly high rates of MSCs’ tumor homing
capacity and their tumor supporting capability have also been noted in tumor-bearing animal
models. In this review, we will discuss MSCs’ basic cell biology and perspectives on MSCs in
terms of tissue repair, immune modulation, and tumor homing.
Key words: MSC, Tissue repair, Immune modulation, Tumor homing, Adipose stem cell,
Inflammation

INTRODUCTION

MSCs, also called as bone marrow stromal cell
(BMSC), were first identified as fibroblast-like stromal
cells residing in trabecular bone anastomoses of long
bone, which secrete many kinds of cytokines and
growth factors that support the proliferation and the
differentiation of hematopoietic stem cells (HSCs)
(Friedenstein et al., 1970). At early stages of HSC cul-
ture, MSCs or BMSCs were used as feeder cells to
maintain HSCs in vitro. In 1999, Pittenger et al. re-
vealed that MSCs can differentiate into a variety of
mesenchymal derived cells such as osteoblasts, chon-
drocytes, and adipocytes in vitro (Pittenger et al.,
1999) and this opened up an opportunity for clinical
application of MSCs. Since then, MSCs have been

used as cellular sources for cell therapy or tissue en-
gineering products to regenerate bone, cartilage, and
adipose tissues. More recently, it was reported that
transfused MSCs can be differentiated into cells other
than mesodermal cells including epithelial cells, neurons,
and glial cells, and also have new functions such as
suppressing immune responses in a variety of inflam-
mation or autoimmune related diseases animal models
(Nauta and Fibbe, 2007; Salem and Thiemermann,
2010). Due to immune-privileged characteristics of
MSC, widespread clinical use of ex vivo cultured allo-
geneic or autologous MSCs are in trials for steroid re-
fractory acute graft versus host disease (GvHD) (Le
Blanc et al., 2004), Crohn’s disease (Ciccocioppo, 2011;
Mannon, 2011), type I diabetes mellitus (DM) (Zanone
et al., 2010), acute myocardial infarction (AMI) (Kocher
et al., 2001; Chen, 2010), chronic obstructive pulmon-
ary disease (COPD) (D'Agostino et al., 2010), acute
radiation syndrome (Lange et al., 2011), and so on.
Even though clinical benefits of transplanted MSCs
on tissue repair and/or immune modulation are anti-
cipated, the high cost for ex vivo cell culture and the
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possibility of tumor formation after extensive cell
expansion still remains an unsolved problem. Instead
of expensive ex vivo cell cultures, small molecules or
growth factors recruiting endogenous stem cells to the
site of tissue injury are also being explored as a new
paradigm in stem cell therapy (Hong et al., 2009,
2011). Recent findings of circulating and homing of
BMSCs in tissue injury (Hong et al., 2009) or in
pathophysiological conditions (Rochefort et al., 2006;
Rosová et al., 2008) are other possible applications of
stem cell therapeutics. In this review, multiple facets
of MSCs as therapeutic cells will be discussed.

MSCs OR MSC-LIKE CELLS FROM DIF-
FERENT TISSUE ORIGINS

MSCs or MSC-like cells were identified in bone
marrow, adipose tissue (Gronthos et al., 2001; Zuk et
al., 2002), dental pulp (Gronthos et al., 2011), and
gingiva (Zhang et al., 2010) and can be classified into
BMSCs, adipose-derived mesenchymal stem cells
(AdMSC), dental pulp mesenchymal stem cell (DPMSC),
and gingiva MSC (GMSC), respectively, and cord blood
MSC. Their incidences are quite variable depending
on tissue origins and donor age. Among them, AdMSCs
are the most abundant.

Autologous BMSCs can be obtained from bone marrow
aspirates but their frequency among mononuclear
cells (MNC) is very low. This low retrieval of BMSC is
probably due to strong adherence of BMSCs to the
stroma, which requires a novel strategy to dislodge

adherent cells or mobilize them to migrate to a more
accessible location such as peripheral blood. An extre-
mely low incidence of BMSC in bone marrow aspirates
may be circumvented by using G-CSF (granulocyte-
colony stimulating factor) or GM-CSF (Granulocyte-
macrophage colony-stimulating factor) to mobilize
BMSC to the blood (Orlic et al., 2001). However, several
previous studies suggested that G-CSF can mobilize
only EPC (Endothelial progenitor cell) but not BMSC
to the peripheral blood, some of which could be then
redirected to the injured tissue of AMI (Orlic et al.,
2001; Yoon et al., 2005) for a limited time window after
an injury. Furthermore, a strong inflammatory re-
sponse of G-CSF to the injury, one of unwanted side
effects of G-CSF, limits its clinical use for AMI tissue
repair and other ischemia-induced tissue damages.
Recent findings of a novel function of substance-P (SP)
as an injury-inducible messenger to mobilize bone
marrow stem cells to the blood and then to engage in
the tissue repair clearly elucidates the presence of an
endogenous healing mechanism that recruits BMSCs
to the site of tissue repair (Hong et al., 2009) (Fig. 1).
This small molecule, an 11 amino acid peptide drug,
enables one to harvest substantial numbers of BMSCs
in the withdrawn blood sample and may substitute
endogenous BMSC mobilization for elaborate ex vivo
cell culture of BMSCs.

In contrast to the low incidence of BMSC, AdMSCs
are more abundant and seem to have several advan-
tages if their differentiation capacity and immune
modulator function are comparable to those of BMSCs.

Fig. 1. Schematic view of BMSC mobilization driven by SP. SP-peptide is released from the injured site immediately after
the tissue injury and diffuses into the peripheral blood. This is the first step for SP’s engagement in the endogenous healing
mechanism, inducing BMSC participation as an injury-inducible messenger. The SP level in the blood is an important
parameter for BMSCs to sense tissue injury. SP can mobilize reparative stem cells (BMSCs) to the peripheral blood. SP-
mobilized reparative stem cells then home to the injured tissue and become engaged in tissue repair. 
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The frequency of AdMSCs represents approximately
2% of total lipoaspirate cells, compared to a BMSC
frequency of 1 in 25,000 and an MNC frequency of 1 in
100,000 in bone marrow (Kingam et al., 2004). In
addition, the broad distribution of fat tissue in our
body and greater accessibility of fat stores (such as
subcutaneous fat and abdominal fat) could provide
another source of stem cell donor tissue. In this
regard, the AdMSC is an attractive, readily available
type of adult stem cells that have become increasingly
popular for use in mesenchymal tissue repair and in
other therapeutic applications.

A variety of other tissues harbor MSC-like cells.
Dental pulp is considered to be a little bone marrow-
like structure where DPMSC are identified. DPMSCs
also share common characteristics with BMSCs, but
preferentially differentiate to odontoblasts (Seo et al.,
2004; Gronthos et al., 2011). These features of DPMSC
support the regeneration of bio-tooth from DPMSCs
that are obtained from autologous teeth and cryopre-
served in a tooth bank. Gingiva also harbors gingiva-
derived MSCs, which possess multipotent differentia-
tion capabilities and display immunosuppressive and
anti-inflammatory functions. They inhibit the proli-
feration of T lymphocytes and promote the generation
of regulatory T cells (Treg) (Zhang et al., 2009, 2010).
Cord blood MSCs are similar to BMSC and have a
prominent capacity for differentiation and proliferation.
Many types of clinical studies that use Cord blood
MSCs are in clinical trials for GvHD, Crohn’s disease,
IBD, AMI, osteoarthritis, and so on.

MSCs or MSC-like cells, even though their tissue
origins are different, possess similar cellular and mole-

cular characteristics (Dominici et al., 2006), including
adherence to plastic, multipotent differentiation po-
tential to osteoblasts, adipocytes, and chondroblasts,
and expression of cell surface antigens such as CD73+,
CD90+, CD105+, CD34−, and CD45−. Recently, Crisan
et al. (2008) suggested that some MSC-like cells from
fat tissue are perivascular cells that are associated
with blood vessel walls and express CD140b+ (PDGFR-
β), CD146+, and NG2+. These cells also retain a multi-
potent differentiation potential similar to traditional
BMSCs. This finding may be a reason why stem cells
are more abundant in fat tissue than in bone marrow,
considering ample vascular structures in the adipose
tissue. Furthermore, AdMSCs have the capacity to dif-
ferentiate not only into cells of mesodermal lineages,
but also, into neuronal and glial cells in vitro and in
vivo (Zuk et al., 2002; Kokai et al., 2005; Kingham et
al., 2007; Chi et al., 2010). Thus, MSCs or MSC-like
cells may have similar clinical potential in several
defined systems.

MSCs or MSC-like cells are identified based on sev-
eral criteria: surface markers analysis by fluorescence
activated cell sorting (FACS), fibroblastic colony forming
units (CFU-F), and multipotent differentiation capaci-
ties in vitro and in vivo. Surface expression profiles of
CD29+, CD90+, CD105+, CD106+, Stro-1+, CD34−,
CD11b−, and CD45− and their combinations are cur-
rently used for sorting MSCs at an early stage after
their isolation. The CFU-F assay is a useful method
for analyzing a stem cell pool from primary isolates,
which is important for expectation of the degree of cell
expansion during the cell culture. MSCs, even though
derived from different tissue origins, show multi-

Fig. 2. Ectopic bone and bone marrow formation of BMSC. BMSCs have multipotent differentiation capacity in vitro if
proper conditions are met. The capacity of ectopic bone and bone marrow formation becomes a hallmark for BMSC. SP-
mobilized BMSCs were transplanted with hydroxyapatite and tri-calcium phosphates (HA/TCP) to the subcutaneous tissue
of nude mice to form collagen-rich bone matrix and bone marrow filled with hematopoietic cells and adipocytes. The
comparison group was BMSC without SP as a positive control. 
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potent differentiation capacity in vitro if proper con-
ditions are met. However, this criterion does not
always correspond to their in vivo differentiation cap-
acity. However, MSC-like cells derived from sources
other than bone marrow usually do not retain the cap-
acity to regenerate ectopic bone and bone marrow for-
mation when transplanted with hydroxyapatite and
tri-calcium phosphates (HA/TCP) to the subcutaneous
tissue of nude mice (Fig. 2). Therefore, this capacity of
ectopic bone and bone marrow formation remains a
hallmark for BMSC so far.

MSCs OR MSC-LIKE CELLS AS REPARA-
TIVE STEM CELLS FOR TISSUE REPAIR

BMSCs play a role as reparative stem cells in a var-
iety of tissue injuries by directly differentiating to
mesenchyme cells (Orlic et al., 2001; Toma et al., 2002;
Yoon et al., 2005) or cells other than mesenchyme cells
such as neural epithelial cell types as shown in bleo-
mycin-induced lung injuries (Ortiz et al., 2003; Rojas
et al., 2005), liver injury (Sato et al., 2005), and skin
injuries (Sasaki et al., 2008). Several lines of evidence
support the idea that non-mesenchyme differentiation
of BMSCs accumulate in epithelial damage (Ortiz et
al., 2003; Rojas et al., 2005) but the molecular mecha-
nism of the mesenchymal to epithelial transition
(MET) of BMSC in the injured tissue has not been
elucidated yet, and it is not clear whether this MET
process is transient or irreversible. Furthermore, it
needs to be clarified whether BMSC-regenerated epi-
thelia are functionally tight epithelia or are more like
pathologic ones such as transitional epithelia.

The reparative function of BMSCs was best studied
in AMI at an early stage of BMSC therapeutics (Orlic
et al., 2001; Toma et al., 2002; Yoon et al., 2005). Due
to limited regenerative capacity of the heart, myo-
cardial infarction (MI) results in irreversible myocar-
dial cell loss and functional impairment, eventually
leading to heart failure and death (Lewis et al., 2003).
In previous reports, potential therapeutic benefits of
BMSC transplantation have been demonstrated (Strauer
et al., 2002; Menasche et al., 2003; Perin et al., 2003;
Pittenger and Martin, 2004). Their therapeutic effects
have been attributed to their potential to differentiate
into many different cell types such as cardiomyocytes,
endothelial cells, and vascular smooth cells (Zimmet
and Hare, 2005; Minguell and Erices, 2006) and/or to
trans-differentiate ventricular myocytes to cardiomyo-
cytes, which was demonstrated in animal models and
in human MSCs (Xu et al., 2004).

Several stem cell mobilizing agents such as G-CSF
(Shi et al., 2002), SDF-1 (Pitchford et al., 2009), VEGF,

angiopoietin-1 (Hattori et al., 2001), and so on have
been found to accelerate tissue repair. The mechanism
for mobilization and homing has been rather extensi-
vely investigated in AMI. Ip et al. (2007) showed that
MSCs utilize integrin α1 for myocardial migration
and engraftment, instead of the CXC receptor 4 being
involved in EPC homing to the ischemic myocardium.
Currently, BMSCs and/or EPC transplantation still
show low engraftment and low functional improve-
ment in AMI.

MSCs or MSC-like cells are more expected for CNS
tissue repair as alternative cell source, instead of
neural or neural derived cells. Neural stem/progenitor
cells are localized in the subventricular zone of the
lateral ventricle and the subgranular zone within the
dentate gyrus of the hippocampus in adults (Kuhn et
al., 1996; Doetsch et al., 1999), which are not readily
accessible for autogenic cell therapeutics. Thus, alter-
natively accessible donor cells to substitute for autol-
ogous neural stem cells are required.

For the last decade, researchers tried to get MSCs to
differentiate to neuronal and glial cells. Numerous
papers have suggested that BMSCs or AdMSCs could
be used to treat neurological disorders, but direct
evidence is still lacking as to whether these cells can
functionally behave like neuronal or glial cells in vivo.
Recently, it was suggested that trophic effects of
MSCs; i.e., secre tions of neurotrophic factors such as
glial cell-derived neurotrophic factor (GDNF), brain-
derived neurotrophic factor (BDNF), nerve growth
factor (NGF), angiogenic factors such as angiopoietin-
1, and vascular endothelial growth factor (Zhang et
al., 2002; Neuhuber et al., 2005; Crigler et al., 2006;
Yilmaz et al., 2010) and immuno-modulating factors
(Gordon et al., 2008; Kassis et al., 2008) may enhance
neural survival and differentiation and stimulate
angiogenesis and migration of endogenous neural
stem cells to the injury site, which eventually might
improve neural function in CNS injury or disease.

Direct conversion of BMSC or AdMSC to a neural
lineage has not yet made significant progress, but ap-
proaches to their differentiation to Schwann cell (SCs),
axon-myelinating cells in the peripheral nervous sys-
tem (PNS), became recent topics (Dezawa et al., 2001;
Tohill et al., 2004; Caddick et al., 2006; Keilhoff et al.,
2006; Kingham et al., 2007; Jiang et al., 2008; Chi et
al., 2010). By using retinoic acid, forskolin, bFGF
(basic fibroblast growth factor), and heregulin-beta-1
(or GGF-2) (Zavan et al., 2010) and/or by adopting
spheroid induction culture, BMSCs or AdMSCs were
able to acquire typical SC phenotypes, expressing SC
markers such as Sox10, p75, S100, Krox-20, L1, PLP/
DM20, PMP22, ErbB2, PDGFr-aa, O4, A2B5, P0, and
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MBP and secreting several neurotrophic factors such
as NGF, BDNF, CNTF, GDNF, as did naïve SCs (Chi
et al., 2010). Furthermore, the induced SCs were
successfully engrafted to the lesion site of contusion-
spinal cord injury, where a PNS type myelin sheath
was regenerated on CNS axons (Fig. 3). Thus, such
cells show therapeutic promise in the repair of CNS as
well as PNS damage even though only a small portion
of transplanted cells participated in myelin sheath
formation at the lesion site.

BMSCs and AdMSCs are also proposed for the repair
of retinal tissues in degenerative retinal diseases such
as age-related macular degeneration (AMD) and reti-
nopathy. AMD is characterized by damage to the retinal
pigment epithelium (RPE), which could be managed
if the RPE could be regenerated earlier. BMSCs and
AdMSCs have been used to regenerate RPE and neural
retinal tissue. (Otani et al., 2004; Harris et al., 2006;
Harris et al., 2009; Vossmerbaeumer et al., 2009; Singh
et al., 2011). However, it was not clearly demonstrat-
ed that BMSCs can be directly converted to RPE, or
whether its immune-modulating function plays a major
role in the amelioration of severe chronic inflamma-
tion of AMD, and thus in the delay of AMD progression.

MSCs FOR IMMUNOMODULATION

MSCs modulate the inflammatory response by down-
regulating pro-inflammatory cytokines and/or up-re-
gulating anti-inflammatory factors and also possess
remarkable immunosuppressive properties. MSCs sup-
press T-cell and natural killer (NK) cell functions and
induce regulatory T-cells (Aggarwal and Pittenger,
2005; Nauta and Fibbe, 2007; Ryan et al., 2007;

Selmani et al., 2008; Uccelli et al., 2008; Zhang et al.,
2009, 2010), and modulate dendritic cell activities
(Jiang et al., 2005; Kim and Hematti, 2009; Spaggiari
et al., 2009). Those novel functions of MSCs promoted
both autologous and allogeneic BMSCs to an immuno-
therapeutic agent in a variety of autoimmune and
severe inflammation-related diseases such as GvHD
(Le Blanc et al., 2004), type I DM (Abdi et al., 2008),
Crohn’s disease (Ciccocioppo, 2011; Mannon, 2011),
COPD (D'Agostino et al., 2010), sepsis (Németh et al.,
2009), and wound healing (Zhang et al., 2010). Recently,
it was revealed that MSCs, regardless of their tissue
of origin, display immunosuppressive and anti-inflam-
matory functions in vitro and in vivo.

Several reports support the idea that BMSCs modu-
late a variety of T cell responses by producing cytokines
and/or by direct cellular contact. BMSCs, after mito-
gen stimulation, produce numerous cytokines; especially
interleukin-6 (IL-6) and transforming growth factor-β
(TGF-β) (Liu et al., 2009; Oh et al., 2009), both of which
regulate pro-inflammatory T helper 17 (Th17) cells and
anti-inflammatory Foxp3+ regulatory T cells (Treg)
(Bettelli et al., 2006; Weaver et al., 2007; Casiraghi et
al., 2008). In addition, BMSCs or AdMSCs prevent T
cell responses to cellular and nonspecific mitogenic
stimuli, targeting both naive and memory CD4 and
CD8 T cells (Di Nicola et al., 2002; Krampera et al.,
2003). Thus, MSCs regulate differentiation and devel-
opment of different T-cell subsets, all of which could
constitute a novel immune-regulatory function.

MSCs also regulate NK cells, a major effector cell of
the innate immunity system (Trinchieri, 1989; Biron,
1997). Natural cytotoxicity receptors, NKp46, NKp30,
and NKp44, are crucial for the cytotoxic activity and

Fig. 3. Differentiation of AdMSC to myelinating SCs. By adopting a spheroid induction culture method, AdMSCs were
induced to form a nestin-expressing spheroid (nestin: green, nucleus: red) and then a typical SC phenotype expressing SC
markers such as A2B5, similar to naïve SCs in vitro. Transplantation of induced EGFP-expressing SCs to a spinal cord
injury revealed that induced SCs engage in myelin sheath formation and in the node of Ranvier, which is seen by the
formation of Caspr (red), at the lesion site (This figure contains published data (Chi GF et al., 2010) and its reuse was
permitted by the publisher).
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cytokine production of NK cells. In particular, in NK
cells cultured with MSCs, NKp44 activating receptor,
which is absent in resting NK cells but expressed
upon their activation, is not expressed (Spaggiari et
al., 2008). Again, cytokine-induced proliferation of
freshly isolated resting NK cells is highly susceptible
to MSC-mediated inhibition (Spaggiari et al., 2006).
MSCs inhibit the IL-2-induced proliferation of resting
NK cells, expression of the activating receptors of NK
cells, and secretion of interferon-γ of resting NK cells
by approximately 80%. Therefore, MSCs are expected
to regulate innate immunity by abrogating activation
of resting NK cells.

As previously shown, MSCs educate macrophages to
be polarized to a novel type of alternatively activated
macrophages (Kim and Hematti, 2009) and stimulate
macrophages to secrete IL-10 in an experimental sepsis
model (Németh et al., 2009). Alternatively activated
macrophages, commonly called M2 type macrophages,
are characterized by increased expression of CD206, a
high level of IL-10 and IL-6, and a low level of TNF-α.
Several studies have shown that M2 macrophages can
produce mediators essential in the resolution of in-
flammation, the promotion of tissue modeling, and the

elimination of tissue debris, thus facilitating survival/
proliferation of both resident and replacing cells, and
consequently promoting wound repair (Savage et al.,
2008; Martinez et al., 2009; Daley et al., 2010; Menzies
et al., 2010). Thus, therapeutic MSCs may play dual
roles in tissue repair by terminating devastating in-
flammation and creating a more receptive microenvi-
ronment for the survival of reparative MSCs in injured
tissue (Fig. 4).

MSCs’ HOMING TO TUMOR: PROS OR
CONS

A tumor consists of malignant cells associated with
a large variety of surrounding cells constituting the
tumor stroma. Recently, it has become clear that tumor
stroma plays an important role in cancer initiation,
development, local invasion, and metastases (Li et al.,
2007; Ahmed et al., 2008). During tumor development,
tumor-associated stroma cells are recruited from
locally derived host fibroblasts or from circulating
MSCs (Roorda et al., 2009). As shown in the case of
multiple myeloma, many MSCs derived from myeloma
patients are significantly different from those from
healthy donors, whose abnormalities range from dif-
ferences in gene and protein expression to allelic ab-
normalities (Reagan and Ghobrial, 2011). Alterations
in MSC function can be initiated by co-culture through
a combination of cell-to-cell interactions and the se-
cretion of chemo-attractant cytokines (Reagan and
Ghobrial, 2011), which then contribute to tumor pro-
gression. In a variety of experimental tumor models,
co-transplantation of MSCs supports tumor growth,
survival, bone marrow colonization, metastasis, and
evasion from the immune system (Djouad et al., 2003;
Reagan and Ghobrial, 2011). Numerous studies showed
that transfused MSCs preferentially home to the site
of the tumor. In addition, MSCs, as expected from
MSCs’ inherent anti-inflammatory and immunosup-
pressive functions, may help tumor cells to escape host
immune surveillance and nullify adoptive cancer
immune-therapeutics. This circumstance in the tumor
setting is definitively an unwanted effect of MSCs,
which is outbalanced by MSCs’ beneficial effects in
tissue repair and control of abnormal immune response.

On the other hand, this could provide a rationale for
MSCs to be strategically developed as a tumor target-
ing delivery vehicle. Several reports have proven the
efficiency of MSCs as a carrier for in vivo delivery of
various clinically relevant anticancer factors, includ-
ing cytokines, interferon, pro-drugs or replicative
adenoviruses, and monoclonal antibodies, which were
shown by inhibition of tumor growth after engraft-

Fig. 4. Anti-inflammatory effect of MSCs in tissue repair.
Traumatic tissue injury turns on a primary inflammatory
response at the injury site, which in turn elicits much bigger
inflammation-induced secondary tissue damage. If the
inflammation period is sustained, wound healing is delayed
and chronic inflammation may occur. If MSCs are delivered
to the injured site at an early phase of inflammation, an
anti-inflammatory environment may be created and further
secondary tissue damage may be prevented. Under those
anti-inflammatory conditions, apoptosis of host cells in the
injured site may be prevented and cell debris and dead cells
can be cleared by alternatively activated macrophages,
which may be transformed by MSCs. Thus, therapeutic
MSCs may play dual roles in tissue repair by terminating
devastating inflammation and creating a more receptive
microenvironment for the survival of reparative stem cells
in injured tissue. 
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ment of tumor-targeting MSCs within or in the vicinity
of tumors (Dwyer, 2010; Niess et al., 2011). This
seems to work best in specific tumor types such as
sarcoma and pancreatic and breast carcinoma. MSCs
designed to carry tumor-specific killing activities,
called “the Mesenkillers” may be proper to eradicate
the specific tumor (Grisendi, 2011) (Fig. 5). However,
it is too early to generalize this principle to all types of
cancer therapy. But the remarkable tumor-homing
capacity of MSCs may be taken advantage of in the
future if other safety tools could be designed.

CONCLUSION

MSCs or MSC-like cells, even though their tissue
origins are different, are quite similar in expression of
molecular markers and biological functions. MSCs are
expected as reparative stem cells for a variety of
tissue injuries or disease by differentiating to many
different types of resident tissue cells. More fre-
quently, in clinical scenarios such as chronic inflam-
mation, life threatening steroid refractory immune
rejection, and autoimmune syndrome, MSCs’ other
novel function, an immune modulating effect, is adopt-
ed for the therapeutic rationale. However, in certain
tumor settings, MSCs’ immune modulatory function,
in combination with their tumor homing preference,
may provide a reason for their causing unwanted tumor
progression. This tumor homing capacity of MSCs can
be strategically utilized as a novel tumor-targeting

anticancer therapeutic. In conclusion, recent progress
in MSC therapeutics promises benefits for numerous
uncontrolled diseases that cannot be met by conven-
tional medication. Also their possible risk for the
progression of tumors was uncovered. Therefore, MSC
therapeutics can be advantageously developed as a
specific tumor-targeting delivery vehicle.
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