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Abstract
With the in-depth investigation of various diseases, angiogenesis has gained increasing attention. Among the contributing 
factors to angiogenesis research, endothelial epigenetics has emerged as an influential player. Endothelial epigenetic therapy 
exerts its regulatory effects on endothelial cells by controlling gene expression, RNA, and histone modification within these 
cells, which subsequently promotes or inhibits angiogenesis. As a result, this therapeutic approach offers potential strate-
gies for disease treatment. The purpose of this review is to outline the pertinent mechanisms of endothelial cell epigenetics, 
encompassing glycolysis, lactation, amino acid metabolism, non-coding RNA, DNA methylation, histone modification, and 
their connections to specific diseases and clinical applications. We firmly believe that endothelial cell epigenetics has the 
potential to become an integral component of precision medicine therapy, unveiling novel therapeutic targets and providing 
new directions and opportunities for disease treatment.
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Introduction

Endothelial cells are key components of the inner lining 
of blood vessels, known as the intima. They have essen-
tial functions in maintaining the integrity and functionality 
of blood vessels, such as regulating blood flow, participat-
ing in immune responses, and facilitating vessel formation 
and remodeling [1]. Epigenetics refers to changes in gene 
expression and chromatin structure and modification that 
do not involve alterations in the DNA sequence [2]. In the 
context of endothelial cells, epigenetic regulation plays a 
crucial role in various cellular processes related to angio-
genesis, the formation of new blood vessels. This includes 
controlling endothelial cell proliferation, migration, and the 

formation of lumens within new vessels [3, 4]. Epigenetic 
mechanisms involved in endothelial cell regulation primarily 
include DNA methylation, histone modifications, and the 
activity of non-coding RNA molecules. These mechanisms 
can influence gene expression by modifying how genes are 
packaged and accessed in the chromatin structure.

Endothelial Cell

Endothelial cells are slender, flat, polygonal cells laid on 
the inner membrane of the blood vessel wall. These cells 
are tightly connected to each other, creating a barrier that 
prevents blood from penetrating into the vessel wall. In addi-
tion to their role as a physical barrier, endothelial cells also 
play a critical role in regulating various aspects of vascu-
lar function. For example, endothelial cells release nitric 
oxide (NO) [5], an important vasodilator that relaxes vascu-
lar smooth muscle and increases the diameter of the vessel 
cavity, thereby reducing vascular resistance [6, 7]. In the 
regulation of inflammatory response, endothelial cells can 
secrete cell adhesion molecules, cytokines, chemokines, and 
so on, which can control the adhesion and migration of white 
blood cells, thereby regulating the progress of inflammatory 
response [8, 9].
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Angiogenesis

Angiogenesis is the process by which new blood vessels 
are formed from the existing vascular system in order to 
support various physiological processes like growth, tis-
sue repair, and remodeling [10, 11]. This process involves 
the proliferation and migration of endothelial cells, the 
degradation of the basement membrane, and the action of 
various cytokines [12, 13]. Angiogenesis takes on different 
roles in different diseases. For example, in wound healing 
and myocardial infarction, new blood vessels can promote 
the recovery of damaged tissue and function and help the 
healing of the disease [14, 15]. However, in tumors, new 
blood vessels contribute to the growth and metastasis of 
tumors. Therefore, we can develop new therapeutic strat-
egies by understanding the molecular mechanisms and 
regulatory factors of angiogenesis [11, 16].

Factors that affect angiogenesis include pro-angio-
genic factors such as hypoxia-inducible factor (HIF), 
macrophages, vascular endothelial growth factor 
(VEGF), HGF, and non-coding RNA and anti-angiogenic 
factors such as thromboprotein-1 and interleukin (IL)-12 
[17, 18].

Epigenetics

Over the past few decades, advancements in the field of 
genetics have primarily focused on unraveling the sequence 
of DNA to understand the impact of genes on biological 
traits and genetic diseases. Traditional genetics holds that 
genes determine an individual’s characteristics. However, 
in recent years, an emerging discipline, epigenetics, has 
attracted wide attention and exploration. It includes DNA 
methylation, histone modification, non-coding RNA, etc., 
which can alter the accessibility and activity of genes, 
thereby regulating their expression levels [19, 20].

DNA methylation is a critical mechanism in epigenetics 
and has been extensively studied. It involves the addition 
of methyl groups to DNA molecules, which can block the 
binding of transcription factors to gene regions, leading 
to a reduction in gene expression levels. DNA methyla-
tion plays a key role not only in regulating gene expres-
sion during normal development but also in the onset and 
progression of disease [21]. Histones are proteins that are 
tightly bound to DNA and regulate gene availability and 
activity through site-specific chemical modifications, such 
as methylation, acylation, and phosphorylation. Histone 
modifications can affect the structure of chromatin and 
thus gene transcription and expression. Different types of 
tissues and cells differ in terms of histone modification, 
which also leads to differences in their expression and 

function. Non-coding RNA is another essential mechanism 
in epigenetics. Non-coding RNA refers to RNA molecules 
produced during transcription that interact with DNA and 
proteins to influence gene expression and regulation. They 
participate in the regulatory network of gene expression 
through regulation at the post-transcriptional level [22]. 
Beyond this, many other mechanisms reveal the complex-
ity of the interaction between genes and the environment, 
providing new perspectives for the risk assessment of indi-
vidual differences and diseases (Fig. 1).

Metabolic Mechanism

Glycolysis

Glycolysis is a cellular metabolic pathway that converts 
glucose into pyruvate or lactic acid, generating energy and 
metabolites. It is an important process that provides energy 
to the body [23]. Endothelial cells use glycolysis to produce 
ATP, rather than oxidative phosphorylation, to maintain their 
normal function and promote germination, proliferation, and 
migration [24], a process that requires active remodeling of 
the cytoskeleton, and when endothelial cells (ECs) migrate to 
form new blood vessels, they extend dynamically and rapidly, 
moving filamentous and lamellar and pulling the cells for-
ward, a process that is energy-demanding [25]. Pyruvate and 
lactic acid, produced during glycolysis, regulate the expres-
sion of angiogenic factors, such as VEGF and hypoxia-induc-
ible factor-1α (HIF-α) and so on, which play an important 
stimulating role in the angiogenesis process [26]. However, 
HIF-1α increases the expression of a good deal of glycolytic 
enzymes, and HIF-1α is a known inducer of pyruvate dehy-
drogenase kinase (PDK), which inactivates pyruvate dehydro-
genase (PDH) through a phosphorylation mechanism, thereby 
inhibiting the entry of pyruvate into the tricarboxylic acid 
(TCA) cycle and its conversion to acetyl-CoA [27]. Further-
more, increased glycolytic metabolism promotes angiogenesis 
at the leading edge of the vessel through a molecule called 
PFKFB3, which is involved in regulating glycolysis. When 
PFKFB3 is silenced or inhibited, it impairs vascular sprouting 
and thus angiogenesis [23].

Recent research suggests that phosphoglycerate dehy-
drogenase (GAPDH), a key enzyme in the glycolysis 
pathway, can impact the proliferation and migration of 
vascular endothelial cells, thereby promoting angiogen-
esis [28]. GAPDH also facilitates the production of vital 
NADH cofactors and activates specific signaling pathways, 
including PI3K/Akt and ERK1/2, which further influence 
the angiogenesis process [29]. Another critical enzyme in 
glycolysis, pyruvate kinase (PKM2), plays a significant 
role in angiogenesis, particularly in tumors, by promoting 
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endothelial cell proliferation, migration, and adhesion to the 
extracellular matrix. Under hypoxic conditions, interactions 
between HIF-1α and the NF-κB subunit p65/RelA regulate 
the activation of the PKM2 promoter, leading to its nuclear 
translocation and regulating the expression of VEGF, further 
promoting angiogenesis [30, 31].

Glycolytic Side Branches: Pentose Phosphate 
Pathway

Pentose phosphate pathway (PPP) is a vital pathway 
in cell metabolism that operates in conjunction with 
glycolysis. It plays a different role in glucose metabolism 
from glycolysis and also has a profound impact on the 
process of angiogenesis. The pentose phosphate pathway 
is through the production of sugar alcohol phosphate and 
NADPH [32], among which NADPH plays an important 
role in the process of angiogenesis and is a cofactor in 
many reducing reactions in cells, including the reduction 
of the antioxidant glutathione and the activation of nitric 
reductase. These responses help maintain the function 
and homeostasis of vascular endothelial cells and promote 
angiogenesis. One key function of PPP is to provide 
biosynthetic precursors needed for cell growth and division, 
such as ribose 5-phosphate, an essential nucleotide building 

block, and NADPH, which is used for the biosynthesis 
of fatty acids, cholesterol, proline, tetrahydrofolate, and 
deoxyribonucleotides [33]. In the process of angiogenesis, 
cells need nucleic acid synthesis and cell proliferation to 
maintain cell growth and division and promote angiogenesis. 
Finally, the pentose phosphate pathway works by providing 
adequate NADPH, a key intracellular reducing agent that 
is necessary for the glutathione system and other ROS 
scavengers to maintain redox homeostasis. High levels of 
ROS can damage DNA, proteins, and lipids, leading to 
genomic instability. NADPH can maintain the antioxidant 
capacity of cells; reduce oxidative stress damage to cells, 
thereby promoting cell survival and proliferation; reduce cell 
apoptosis; and thus promote angiogenesis [34].

Overall, the PPP significantly impacts angiogenesis by sup-
plying reducing reaction NADPH to cells, positively influenc-
ing the growth and function of vascular endothelial cells, and 
aiding in the regulation of the angiogenesis process.

Lactation

In a hypoxic environment, cells are unable to produce 
enough energy through the oxidative phosphorylation pro-
cess of mitochondria to provide the cells with the required 
ATP through this rapid energy-producing metabolic 

Fig. 1  The process of angiogenesis. Vascular endothelial cells are 
affected by both pro-angiogenic factors and anti-angiogenic factors, 
among which pro-angiogenic factors include HIF, macrophages, 
monocytes, VEGF family, non-coding RNAs, HGF, angiotensin II, 
asTF, classical Wnt pathway, and so on, and anti-angiogenic factors 

include TSP-1, IL-12, non-coding RNAs, etc. The balance between 
pro-angiogenic and anti-angiogenic factors determines the outcome 
of neovascularization. Depending on the degree of action of these 
factors, endothelial cells can proliferate, migrate, and form new blood 
vessels in a controlled manner
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pathway. Lactic acid can directly act on vascular endothe-
lial cells and promote the production and release of VEGF 
[35, 36]. VEGF is one of the main regulatory factors of 
angiogenesis, which can promote endothelial cell pro-
liferation and migration and promote the angiogenesis 
process. In addition, lactic acid can further induce vas-
cular endothelial cell migration and lumen formation by 
regulating enzymes [37, 38] and growth factor activity in 
the extracellular matrix. Lactic acid can also activate HIF 
signaling pathways, thereby promoting angiogenesis. HIF 
is an important cellular adaptive factor that is activated 
in hypoxic environments and regulates the expression of 
many genes, including VEGF and angiogenic receptors. 
Lactic acid indirectly promotes the activation of HIF sign-
aling pathways by inhibiting the degradation of HIF-1α 
protein and enhancing its transcriptional activity, thereby 
enhancing the ability of cells to engage in angiogenesis 
and promote the formation of new blood vessels in hypoxic 
environments [39, 40]. Finally, the binding of lactic acid 
to GPR81 can activate a variety of signaling pathways, 
including downstream cAMP and adenylate cyclase sign-
aling pathways, thereby promoting angiogenesis. The 
binding of lactic acid to MCT1 can affect extracellular 
acid–base balance and mediate signal transduction related 
to angiogenesis [41, 42].

Recent studies have shown that pyruvate kinase (PKM2), 
a key enzyme in the lactate metabolic pathway, regulates 
endothelial cell proliferation and migration, ultimately 
affecting angiogenesis. Furthermore, attention has been paid 
to the role of lactate dehydrogenase A (LDHA) in angio-
genesis. LDHA is one of the key enzymes in the glycolysis 
pathway, which can convert pyruvate produced by glycolysis 
into lactic acid. Lactic acid accumulates in inflammation and 
tumor microenvironment and is secreted in large quantities 
to ensure the energy needs of rapidly growing cancer cells, 
while excessive lactic acid will produce extracellular acido-
sis, thus promoting the proliferation, migration, and lumen 
formation of vascular endothelial cells, thus promoting the 
occurrence of angiogenesis [43]. In addition, some studies 
have found that the process of angiogenesis can be affected 
by regulating the lactate/pyruvate ratio. When pyruvate is 
reduced to lactic acid, NADH is oxidized to NAD, which, 
in turn, promotes the further reduction of pyruvate to lactic 
acid and the production of  H+. The decrease in pH in the 
extracellular environment ultimately promotes angiogen-
esis. Therefore, by inhibiting LDHA activity or increasing 
pyruvate concentration, the lactic acid/pyruvate ratio can be 
reduced. Thus, the proliferation and migration of vascular 
endothelial cells are inhibited, and the formation of angio-
genesis is reduced [44] (Fig. 2).

Fig. 2  Metabolic mechanism of glycolysis, pentose phosphate path-
way, and lactation. Glycolysis, lactation, and pentose phosphate path-
ways interact and influence each other. In the hypoxic environment, 
the body cannot meet the normal energy metabolism, thus producing 
a large amount of lactic acid, which can directly act on the HIF path-

way and VEGF signaling pathway to promote angiogenesis. However, 
G6P produced by the glycolytic pathway can also enter the pentose 
phosphate pathway to produce NADPH, which leads to endothelial 
cell proliferation, migration, and eventually, angiogenesis
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Amino Acid Metabolism

Amino acid metabolism refers to a series of chemical reac-
tion processes related to the synthesis, degradation, and 
transformation of amino acids in living organisms. Amino 
acids serve as the building blocks of proteins and the basis 
of important metabolic pathways in many organisms. Amino 
acid metabolism plays an important role in maintaining the 
normal function, growth and development, energy supply, 
and stress response of organisms. Glutamine is the most 
consumed amino acid by ECs and plays a significant role in 
tip and stem cell localization during blood vessel formation 
[45, 46]. In the process of angiogenesis, amino acids can 
provide the basic nitrogen source for the synthesis of some 
important biological molecules, such as amino acids, nucleic 
acids, and proteins. It can also produce energy through pro-
tein breakdown, providing the energy needed for the vas-
cular endothelial cells. Glutathione produced by EC via 
glutamine is used for redox homeostasis, and depletion of 
glutamine makes EC vulnerable to ROS-induced damage 
[47]. Glutamine catabolism produces glutamic acid, which 
can be converted into ornithine. Ornithine then leads to the 
production of pro-angiogenic factors such as NO, promot-
ing angiogenesis [48, 49]. Amino acid metabolism can also 
promote the expression of pro-angiogenic factors, thus pro-
moting the proliferation and migration of endothelial cells, 
thus promoting angiogenesis [50].

Another amino acid that has attracted attention is argi-
nine. Arginine is an important amino acid that can partici-
pate in several metabolic pathways through enzymes such as 
arginine decarboxylase (ADC) and dimethylarginine dimeth-
ylaminohydrolase (DDAH). Recent studies have found that 
arginine and its metabolite NO have important regulatory 
effects on vascular function and angiogenesis. Increased 
production of nitric oxide triggers activation of the induced 
form of nitric oxide synthase (iNOS), which prompts l-argi-
nine to produce more NO, a gas signaling molecule that 
plays a key role in vascular endothelial cells, inducing both 
nitrifying and oxidizing DNA damages. It leads to chronic 
inflammation and promotes endothelial cell function and 
angiogenesis [51].

In addition, arginine and its metabolites may also regulate 
angiogenesis by influencing metabolic pathways and amino 
acid transport in vascular endothelial cells. For instance, 
arginine can inhibit a protein complex called mammalian 
target of rapamycin complex 1 (mTORC1), thereby regulat-
ing the metabolism and angiogenesis of endothelial cells. 
Impaired mTORC1 activity leads to inhibition of cell pro-
liferation and growth [52]. Additionally, the activation of 
PI3K/protein kinase B (Akt)/mTOR network can control 
a variety of cellular activities, such as mRNA translation, 
cell cycle progression, gene transcription, inhibition of 

apoptosis, autophagy, and metabolism [53]. Furthermore, 
inhibited VEGF expression can lead to growth inhibition 
and decreased angiogenesis signaling [54].

DNA Methylation

DNA methylation is a common form of epigenetic modi-
fication that involves chemical modifications to the DNA 
molecule, the addition of methyl groups to the genome. It 
helps maintain genome stability, regulates gene expression, 
and is involved in cell differentiation and development. DNA 
methylation occurs as modification of cytosine nucleotides 
placed within CpG dinucleotides. Abnormal methylation 
usually occurs in many pathological diseases in the form of 
hypermethylation of CpGs within the gene promoter region, 
which induces inhibition of gene expression [55, 56]. It has 
been found that DNA hypermethylation is associated with 
inhibiting gene silencing, while promoter hypomethylation 
leads to gene overexpression and global genomic instabil-
ity [57], among which abnormal DNA methylation is the 
most studied epigenetic mechanism in ECs [58, 59]. In addi-
tion, DNA methylation is also involved in the regulation of 
endothelial cell inflammation. Endothelial cells can partici-
pate in the regulation of inflammatory response by releas-
ing cell adhesion molecules, cytokines, and chemokines 
[60]. Abnormal DNA methylation can affect the expression 
and function of these regulatory factors, and thus affects 
the inflammatory response of endothelial cells, and then 
affects the process of angiogenesis. It can also regulate the 
expression of angiogenesis-related transcription factors and 
cytokines such as VEGF, fibroblast growth factor 2 (FGF-2), 
HIF-1α, and so on [61], thereby affecting angiogenesis. In 
some disease states, abnormal DNA methylation modifica-
tion may also lead to angiogenesis disorders, for example in 
diseases such as atherosclerosis, hypertension, and diabetes, 
and abnormal DNA methylation leads to endothelial cell 
function disorders, thus affecting the health of blood vessels.

At present, some studies use gene editing technology 
to edit the expression levels and activities of key enzymes 
such as DNA methylase and demethylase, thereby chang-
ing gene expression and cell growth state, resulting in the 
expression imbalance of pro-angiogenic factors and anti-
angiogenic factors, and subsequently resulting in angio-
genesis disorders [62]. VEGF, its receptor, and eNOS (an 
essential gene essential for the promotion of angiogenesis) 
are also controlled by the methylation status of their gene 
promoters, mainly manifested as the expression of VEGF, 
and eNOS is downregulated by methyl-CPG-binding 
domain protein 2 (MBD2) binding. Methylated protein 
readers regulate endothelial function in physiological and 
disease states, thereby affecting angiogenesis [55, 63].
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Non‑coding RNA

The categories and functions of non-coding RNA are shown 
in Table 1.

Histone Modification

Histone modification is a process of chemical modification 
of histones on chromosomes. Histone modification changes 
chromatin structure and function by adding or removing 
different chemical markers on histone molecules, which, in 
turn, affects gene expression. Common histone modifications 
include acetylation, methylation, phosphorylation, ubiquitina-
tion, SUMOylation, serine/threonine dephosphorylation, etc. 
These modifications can interact individually or in complex 
ways to form histone codes that regulate gene expression at 

the chromatin level in response to changes in cell develop-
ment, growth, signal transduction, disease, and more.

Acetylation Modification

Acetylation can relax the chromatin structure, make the gene 
promoter region more prone to transcription factor binding 
and gene transcriptional activity, promote the binding of 
VEGF and its receptor (VEGFR), enhance the activity of 
VEGF/VEGFR signaling pathway, stimulate HIF-1α [83], 
and promote the proliferation and migration of endothelial 
cells, thereby promoting angiogenesis.

Recent studies have shown that acetylation modifica-
tion can directly affect the formation of angiogenesis by 
regulating the acetylation levels of some key transcription 
factors, affecting the proliferation and migration ability of 

Table 1  Different categories of non-coding RNA and their functions

Category Function Reference

Long non-coding RNA (lncRNA) H19 is a widely present lncRNA in different tissues. Studies have shown that knocking down 
H19 can significantly reduce the growth of endothelial cells, which can impair the process of 
angiogenesis, while overexpression of H19 has been found to activate JNK and AMPK signal-
ing pathways to increase VEGF and endothelial NO synthase (eNOS) levels. These findings 
suggest that H19 can directly act on endothelial cells and can also regulate the expression of 
related signaling pathways and genes, such as VEGF, bFGF, and TGF-β, which are known to 
influence the function of endothelial cells and participate in the process of angiogenesis

[64–68]

MALAT1 is also a common lncRNA that has been shown to competitively bind to miR-320a, 
partially blocking the direct interaction between miR-320a and FOXM1, leading to endothe-
lial cell proliferation and angiogenesis. MALAT1 has been associated with the promotion of 
angiogenesis in a variety of tumors. Studies have shown that MALAT1 promotes proliferation, 
migration, and invasion, and inhibits apoptosis by regulating the expression of angiogenesis-
related genes, activating PI3K/Akt signaling, and TGF-β, SMAD, and ERK/MAPK signaling 
pathways, thereby promoting tumor growth

[69–72]

MEG3 also plays an important role in angiogenesis. Studies have shown that MEG3 is involved 
in key processes such as endothelial cell proliferation, migration, and lumen formation. MEG3 
regulates the expression of related genes and activation of signaling pathways, such as VEGF, 
PGF, bFGF, TGF-β1, and HIF-1α. In addition, MEG3 can induce cell cycle arrest G0/G1 
phase, thereby inhibiting cell proliferation and ultimately inducing cell apoptosis. It also inacti-
vates the PI3K/Akt and ERK pathways, which are critical for cell proliferation, and ultimately 
has an important impact on endothelial cell function and inhibition of angiogenesis

[73–75]

MicroRNA (miRNA) miR-126 is widely recognized as a key regulator of angiogenesis. It is mainly expressed in 
endothelial cells and plays an important role in angiogenesis. miR-126 is involved in endothe-
lial cell proliferation, migration, apoptosis, and angiogenesis through negative regulation of 
PI3K, VEGF, VCAM-1, EGFL7, CXCL12-CXCR4 axis, and LRP6

[76–78]

miR-21 also plays an important role in angiogenesis. It has been found to be overexpressed in a 
variety of tumors and is involved in the promotion of angiogenesis. miR-21 promotes angio-
genesis by inhibiting negatively regulated target genes such as PTEN and TGF-βRII, increasing 
endothelial cell proliferation and lumen formation

[79]

miR-17–92 is a miRNA cluster consisting of 6 miRNAs. It plays an important role in promoting 
angiogenesis. miR-17–92 affects the proliferation, migration, and lumen formation of endothe-
lial cells by regulating multiple target genes, such as TSP-1 and CTGF, and promotes the 
process of angiogenesis

[80]

In tumor angiogenesis, miR-221/222 expression is associated with proliferating and migrating 
endothelial cells. miR-221/222 inhibits endothelial cell proliferation, migration, and anti-angio-
genesis by targeting c-KIT, targeting ZEB2 and inhibiting nitric oxide synthase (eNOS)

[81, 82]

Small nuclear RNA (snRNA) The relationship with angiogenesis is not direct
snoRNA At present, there is no sufficient research evidence to show that angiogenesis is directly related
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endothelial cells. Acetylation modification can also affect the 
structure and function of chromatin by regulating the acety-
lation state of histones, and then regulate the expression of 
genes related to angiogenesis. Examples include histone dea-
cetylases (HDACs) and histone acetyltransferases (HATs). 
HDACs remove acetyl groups from histones, thereby inhibit-
ing gene transcription. Specifically, HDAC1 is recruited to 
the promoters of pro-angiogenic cytokines IL-8 and VEGF, 
partially inhibiting angiogenesis. Interestingly, HDAC1 has 
also been found to be involved in the pro-angiogenic mecha-
nism in the cytosol. The interstitial flow between endothelial 
cells rapidly alters HDAC1 activity, shifting VEGF-induced 
angiogenesis from an HDAC1-independent to an HDAC1-
dependent mechanism [84]. This suggests that HDAC1 can 
be deacetylated to promote neovascularization. HDACs 
play diverse roles in regulating cell proliferation, migra-
tion, angiogenesis, immune evasion, and therapeutic resist-
ance, making them attractive targets for clinical treatments 
[85, 86]. HATs can catalyze the acetylation of histones and 
enhance gene transcription, thus affecting the proliferation, 
migration, and angiogenesis of endothelial cells. In addition, 
acetylation modification can also regulate gene expression 
by interacting with other epigenetic modifications such as 
DNA methylation and methylation.

Phosphorylation Modification

Phosphorylation can activate multiple signaling pathways in 
angiogenesis. For example, VEGF signaling pathway, ERK/
MAPK [87] and PI3K/Akt [88], and others, which regulate 
the activity of transcription factors or cotranscription factors, 
affect the transcriptional activity of gene promoter region 
and further promote angiogenesis. Moreover, phosphoryla-
tion can also regulate extracellular matrix attachment and 
the formation of vascular intima, and influence the mor-
phology and function of endothelial cells by regulating the 
interaction between extracellular matrix molecules and cell 
adhesion molecules. For example, the increased expression 
of POSTN, an ECM protein, will enhance the expression of 
VEGF and promote Erk phosphorylation, thus enhancing 
angiogenesis [89].

Ubiquitination Modification and SUMOylation Modification

Although ubiquitination and ubiquitination have very simi-
lar enzyme cascades, they play different roles. In addition 
to activating related signaling pathways, such as the VEGF 
pathway, HIF pathway, and NOTCH signaling pathway, 
SUMO protein can promote cell proliferation, migration, and 
resistance to apoptosis, and improve the ability of endothe-
lial cells to form tubes and branches [90, 91]. By regulating 
protein degradation pathways, such as the ubiquitin–protea-
some system and autophagy, ubiquitin modification enables 

old blood vessels to subside, while maintaining and regulat-
ing the stability and function of new blood vessel tissues, 
which promotes angiogenesis to a certain extent (Fig. 3).

Therapeutic Strategies

Diabetes

High glucose status can lead to impaired function of various 
cells such as endothelial cells and pathological changes of 
blood vessels. In diabetes, abnormal DNA methylation can 
contribute to the loss of endothelial cell function. Drugs that 
affect DNA methylation and histone modification already 
exist, such as DNMT inhibitors (e.g., Aza) and histone dea-
cetylase inhibitors (HDACi, e.g., VPA and TSA), which pro-
mote β-cell development, proliferation, and differentiation. 
It also regulates its function by preventing inflammatory cell 
damage, improving insulin resistance, and preventing micro-
vascular complications in the later stages of diabetes [92]. 
Furthermore, these epigenetic drugs have been tested and 
used in the treatment of various clinical diseases. For exam-
ple, Aza is the first-line drug for the treatment of high-risk 
myelodysplastic syndromes, and there is a growing literature 
showing that histone deacetylase can regulate glucose home-
ostasis and islet function, so we expect that in diabetes, appli-
cation of DNA methyltransferase inhibitors such as 5-azocy-
tosine (5-AZA) or histone deacetylase inhibitors can restore 
endothelial cell function and promote angiogenesis [93]. In 
a recent study, Ou et al. [92] targeted demethylation of the 
cell cycle regulator CDKN1C site to inhibit p57 expression 
and induce β-cell replication. Together, these studies support 
future epigenetic editing attempts in diabetes therapy [94]. 
Moreover, miRNAs are also involved in key pathways of 
insulin secretion, insulin signaling, and inflammation in the 
development of diabetes. By regulating the expression level 
of miRNA, it is possible to affect the expression of related 
genes and the activity of signaling pathways.

Cardiovascular Diseases

Cardiovascular diseases are often accompanied by endothe-
lial cell dysfunction and vascular intimal inflammation. Epi-
genetic therapy targeting endothelial cells can help repair 
the damage to endothelial cell function by regulating DNA 
methylation, histone modification, and non-coding RNA 
modification. This therapy aims to restore the integrity and 
function of endothelial cells, and produce a variety of angi-
ogenic factors such as VEGF and basic fibroblast growth 
factor (bFGF). It regulates the signaling pathways related 
to angiogenesis, such as PI3K/Akt and ERK1/2; reduces 
inflammatory response; inhibits the activation of immune 
cells and the release of inflammatory mediators; regulates 
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the adhesion of endothelial cells; promotes the interaction 
between peripheral immune cells and endothelial cells; 
maintains the stability and integrity of blood vessels; and 
ultimately promotes angiogenesis.

At present, the study of DNA methylation for cardio-
vascular disease is still in the development stage. Since 
the changes in DNA methylation are reversible, this offers 
encouraging prospects for the treatment of the disease. Stud-
ies have found that high methylation levels of ABCA1 are 
associated with coronary heart disease and aging. Acetyl-
salicylic acid (ASA) treatment can reduce the DNA meth-
ylation level of ABCA1, thus reducing the occurrence of 
atherosclerosis and coronary heart disease, and acetylsali-
cylic acid is currently in the third stage of clinical trials 
[95]. Arunachalam et al. [96] proved that resveratrol, a his-
tone acetylation inhibitor, can improve metabolic disorders, 
atherosclerosis, and coronary heart disease by upregulat-
ing SIRT1 in endothelial cells. Currently, resveratrol is also 
in the second stage of clinical trials for the treatment of 
coronary heart disease [96]. Inclisiran (ALN-PCSSC) is a 
long-acting RNA interference (RNAi) therapeutic agent that 
inhibits the synthesis of the proprotein convertase subtilisin 
proteinase-kexin type 9 (PCSK9). Inclisiran was observed in 
phase 1–3 clinical trials to have a low rate of adverse events 

and significantly lower LDL cholesterol levels. Inclisiran 
may offer a new approach for lowering low-density lipopro-
tein cholesterol (LDL-C) and a more successful RNA drug 
for cardiovascular disease [97]. Although some epigenetic 
drugs have not been widely used in clinical practice in car-
diovascular disease, it is believed that in the future, through 
continuous exploration and large-scale clinical studies, more 
emerging epigenetic drugs for the treatment of cardiovascu-
lar diseases will be created to better improve the symptoms 
and prognosis of patients with cardiovascular diseases.

Tumor

During tumor development, tumor cells release angiogenic 
factors that stimulate endothelial cells in surrounding tissues 
to form new blood vessels to supply nutrients and oxygen 
needed by the tumor. Therefore, in the treatment of tumor 
patients, we need to inhibit the formation of new blood ves-
sels in the tumor. By inhibiting the expression of VEGF 
and its receptors, it can reduce the angiogenesis capac-
ity of endothelial cells and limit the growth and spread of 
tumors. Inhibition of tumor necrosis factor (TNF)-α, IL, etc., 
reduces inflammatory response, thereby inhibiting tumor-
related angiogenesis. It can also promote the expression 

Fig. 3  Metabolic mechanism of DNA methylation and histone modi-
fication. DNA methylation refers to the addition of methyl groups 
to DNA molecules, thereby regulating the HIF pathway and VEGF 
pathway, releasing inflammatory factors, participating in the regu-
lation of inflammatory response, and affecting the inflammatory 

response of endothelial cells, thereby affecting the proliferation, 
migration, formation of the cavity, and angiogenesis of endothelial 
cells. Histone modification can affect the VEGF signaling pathway, 
PI3K/Akt, ERK/MAPK, and other signaling pathways, and also play 
a certain role in promoting the process of angiogenesis
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of angiogenesis inhibitors, such as regulating the produc-
tion of angiostatin and endostatin. These factors can inhibit 
endothelial cell proliferation and angiogenesis, thereby lim-
iting tumor growth and expansion.

EZH2 is a crucial component epigenetic regulatory 
mechanism that mediates histone methylation. In recent 
years, many small molecule inhibitors of EZH2 have been 
developed, some of which have entered various stages of 
clinical trials. For example, tazemetostat (EPZ-6438, trade 
name Tazverik) showed excellent efficacy and tolerability in 
clinical trials, and the FDA introduced it for the treatment 
of epithelioid sarcoma and follicular lymphoma in 2020. In 
addition, five different small-molecule EZH2 inhibitors and 
a dual EZH1/2 inhibitor, valemetostat (DS-3201b), are being 
evaluated in a series of clinical trials [98]. Bromine domain 
and off-terminal (BET) family member proteins play a key 
role in the epigenetic inheritance of histone Kac modifica-
tions, and abnormal activation of BET proteins is strongly 
associated with various human diseases, including cancer. 
For this reason, inhibition of BET bromine domain proteins 
(BBIs) is considered a promising therapy for BET-related 
diseases, and over the last few decades, 70 clinical trials 
have been conducted. However, drug resistance and adverse 
events pose significant challenges to the development of 
BBIs. Nevertheless, optimism remains high for the future of 
BET inhibitor drug development [99]. Other HDAC inhibi-
tors, such as vorinostat, romidepsin, panobinostat, and belin-
ostat, have also been approved for the treatment of some 
tumors [100–103].

Conclusions and Future Prospects

We can foresee that endothelial cell epigenetics will hold 
immense potential and promising prospects in the field of 
angiogenesis research. Individualized treatment plans can be 
implemented on patients to achieve precision medicine treat-
ment strategies. Through epigenetic research on endothelial 
cells, new drugs or treatment programs can be developed for 
clinical application to reduce patients’ pain and delay dis-
ease progression. Combined with other treatment strategies, 
it can control and guide the generation and reconstruction of 
blood vessels and play different roles in different diseases.
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