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Abstract
Diabetes is one of the critical independent risk factors for the progression of cardiovascular disease, and the underlying 
mechanism regarding this association remains poorly understood. Hence, it is urgent to decipher the fundamental patho-
physiology and consequently provide new insights into the identification of innovative therapeutic targets for diabetic 
atherosclerosis. It is now appreciated that different cell types are heavily involved in the progress of diabetic atherosclero-
sis, including endothelial cells, macrophages, vascular smooth muscle cells, dependence on altered metabolic pathways, 
intracellular lipids, and high glucose. Additionally, extensive studies have elucidated that diabetes accelerates the odds of 
atherosclerosis with the explanation that these two chronic disorders share some common mechanisms, such as endothelial 
dysfunction and inflammation. In this review, we initially summarize the current research and proposed mechanisms and 
then highlight the role of these three cell types in diabetes-accelerated atherosclerosis and finally establish the mechanism 
pinpointing the relationship between diabetes and atherosclerosis.
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Introduction

The last several decades have observed an unanticipated 
global increase in the prevalence of diabetes mellitus (DM). 
Diabetes, a chronic endocrine disease stemming from insu-
lin insufficiency with the symptom of hyperglycemia, is a 
dominant independent risk factor for a global epidemic of 
cardiovascular disease (CVD). Additionally, it remains the 
principal cause of premature deaths. The American Diabetes 
Association (ADA) recommends cutoffs for prediabetes and 
diabetes, the glycemic parameters that diagnose diabetes are 
glycated hemoglobin (HbA1c) ≥ 6.5%, fasting plasma glu-
cose (FPG) ≥ 126 mg/dl, and 2-h postprandial glucose (2-h 
PG) ≥ 200 mg/dl[1]. According to the latest diabetes atlas 
demonstrated by the International Diabetes Federation, up 
to 537 million patients suffered from diabetes worldwide in 
2021, which accounts for one-tenth of adults. Diabetics hold 
a growing risk for vascular diseases, containing the micro-
vascular and macrovascular complications. Macrovascular 
complications include atherosclerosis that can ultimately 
manifest as stroke, myocardial infarction, and peripheral 
artery disease[2]. So, it is important to explore the underly-
ing mechanisms linked between diabetes and atherosclerosis 
in order to attenuate the diabetic atherosclerosis.

It has been reported that there existed the solid relation-
ship between diabetes mellitus and atherosclerosis in the 
literatures. In 2007, a study confirmed some genetic links 
between atherosclerosis and diabetes; for example, the 
genetic variation at the CALPN10, FABP4, PPARA, and 
PPARG loci may induce higher cardiovascular disease 
risk in patients with type 2 diabetes mellitus (T2DM) [3]. 
Another multi-ethnic genome-wide association study iden-
tified several new loci, such as TCF7L2, HNF1A, CTRB1, 
MRAS, and CCDC92 that are linked with both diabetes and 
atherothrombotic CVD [4]. These findings suggested that 
between atherosclerosis and diabetes, genetic variations may 
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increase individuals’ susceptibility of patients with one dis-
ease to the other, making them more prone to developing 
both diabetes and atherosclerosis at the same time. Besides, 
previous work also established that diabetes mellitus and 
atherosclerosis shared some common pathological pathways, 
such as chronic inflammation and endothelial activation 
caused by disrupted blood flow, subsequent mitochondrial 
oxidative stress, extracellular matrix component changes, 
and cellular defense systems disruption [5]. Insulin resist-
ance with hyperinsulinemia, hyperglycemia, and impair-
ment of insulin signaling result in endothelial dysfunction 
and inflammation, vascular smooth muscle cells (VSMCs) 
phenotypic switch (proliferation, migration, and dedifferen-
tiation), and monocyte/macrophage-derived foam cell for-
mation due to the advanced glycation end product (AGE) 
production, elevated free fatty acids (FFA), protein kinase 
C (PKC) activation, oxidative stress, mitochondrial dysfunc-
tion, and epigenetic modifications, which demonstrates that 
all three cell types collectively facilitate the development of 
atherosclerosis [6].

In addition to genetic and pathologic mechanisms, the 
clinical relationship between atherosclerosis and diabetes 
also has been well established. New oral drugs including 
the sodium-glucose cotransporter 2 inhibitors (SGLT2i) are 
utilized for the treatment of T2DM. SGLT2i, such as dapa-
gliflozin, empagliflozin, and canagliflozin, demonstrates 
pleiotropic effects in protecting from cardiovascular dis-
eases beyond their impact on hyperglycemia by landmark 
cardiovascular outcome trials recently. Of clinical relevance, 
it has been recently reported that major adverse cardiovas-
cular events and cardiovascular death in T2DM patients 
with cardiovascular diseases were reduced by SGLT2i [7]. 
In addition, dulaglutide, a glucagon-like peptide 1 receptor 
(GLP-1R) agonist, has been investigated to prevent against 
atherosclerosis, indicating that these effects on cardiovascu-
lar disease are the result of lowering glucose [8]. The com-
monly used antidiabetic drugs in the clinic include SGLT2i, 
GLP-1R agonist, dipeptidyl peptidase-4 (DPP-4) inhibitors, 
and metformin. They are applied for anti-diabetic reduce 
glucose by decreasing glucose absorption from intestines 
or reabsorption from renal tubules and stimulating insulin 
secretions. At the same time, these agents also inhibit vas-
cular inflammation [9, 10] endothelial dysfunction [11], 
modulate lipid profile (such as LDL-C reduction and HDL-C 
improvement) [12], and increase plaque stabilization [13], 
to alleviate atherogenesis.

In this review, we mainly summarize the existing patho-
logical changes found in three key cell types that contribute 
to atherosclerosis in diabetes mellitus: endothelial cells, 
VSMCs, and macrophages. We finally aim to mechanisti-
cally integrate diabetes mellitus and atherosclerosis and 
list some attractive possibilities for modifying diabetic 
atherosclerosis which contains targeting glucotoxicity and 

lipotoxicity, inhibiting cellular dysfunction, and promoting 
pro-resolution mechanisms.

Endothelial Cells in Diabetic Atherosclerosis

The endothelium is a monolayer of endothelial cells resid-
ing in the inner surface of arteries, veins, and capillaries. 
Endothelial cells serve a pivotal role in maintaining vas-
cular homeostasis via regulating vascular tone, permeabil-
ity, angiogenesis, and the target of anti-inflammatory and 
antithrombotic factors [14, 15].

Diabetes is a chronic endocrine disease, manifested by 
abnormally high blood glucose levels [16]. A progressive 
link between enhanced blood glucose levels and CVD 
existed, with higher HbA1c levels related to an increase in 
subclinical atherosclerosis risk with a particular elevated 
risk of mortality in elderly individuals [17, 18]. Under 
hyperglycemia conditions, dysfunction of the endothelium is 
presented with impairment of endothelium-dependent vaso-
dilation, increased inflammatory adhesion molecules, hyper-
permeability, and low-density lipoprotein (LDL) oxidation 
[19] (Fig. 1). Diabetes mellitus mainly affects endothelial 
homeostasis through glucotoxicity, although the definite 
mechanisms of high blood glucose-induced endothelial 
damage are complex and not fully elucidated. Notably, high 
blood glucose promotes the production of reactive oxygen 
species (ROS), which consequently interferes with a series 
of downstream pathways including AGE formation, PKC 
activation, and polyol pathway flux [20].

Intracellular high glucose induces the formation of AGEs, 
activates the PKC pathway, and facilitates mitochondrial 
dysfunction to produce excessive ROS, and the subsequent 
oxidative stress induces inflammation, which further pro-
motes the production of ROS. The permeability of endothe-
lial cell increases, which increases glucose uptake, LDL 
transcytosis, and monocyte/macrophage infiltration. Even-
tually, endothelial cells become dysfunctional and die.

Advanced Glycation End Products (AGEs)

Glycation reaction is a spontaneous non-enzymatic reac-
tion of free-reducing sugars with amino groups of proteins, 
lipids, and nucleic acids, ultimately facilitating the formation 
of AGEs. Previous work has denoted that AGEs can be iden-
tified by tracing receptors on the cytomembrane, which con-
tains receptor for advanced glycation end products (RAGE) 
and scavenger receptors (SR-A and SR-B) that influence the 
pathogenesis of diabetic complications [21, 22]. High lev-
els of plasma AGEs in diabetic patients damage endothelial 
cells, and then the detrimental effect lasts after normal blood 
glucose levels are reached [23]. Of note, under hyperglyce-
mic conditions, aging and erythrocyte glycation contributes 
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to their engulfment by endothelial cells and leads to endothe-
lial dysfunction [24]. An AGP-PPARγ axis was found to 
mediate the production of NO and ROS, which promoted the 
generation of AGEs in diabetic endothelial cell [25]. Expo-
sure of human umbilical vein endothelial cells (HUVECs) to 
AGEs in vitro induced the diminishment of eNOS and NO 
production [26]. Similar results were observed in human 
coronary artery endothelial cells (HCAECs), where AGEs 
caused endothelial dysfunction by decreasing eNOS and 
increasing oxidative stress after the activation of p38 and 
ERK1/2 [27]. Mechanistically, hyperglycemia may also 
induce inflammation through an AGEs/PKCβII/ERK1/2 /
EGR-1 pathway in HUVECs isolated from gestational dia-
betes mellitus patient umbilical cords [28].

Since AGEs matter in vascular complications in diabetes, 
the risk of subclinical atherosclerosis is assessed by detect-
ing the scale of collected AGEs in the skin, skin autofluo-
rescence was related to flow-mediated vasodilation indepen-
dently, which acts as a sign of endothelial disorders [29].

Several treatment strategies with the involvement of 
AGEs and RAGE have been investigated. Specifically, 

isosamidin is a preventive agent for methylglyoxal-medi-
ated endothelial dysfunction, owing to the breakdown of the 
crosslinks of methylglyoxal-derived AGEs [30]. An anti-
RAGE leads to the reduced vascular RAGE expression and 
increased collaterals for the clinical treatment of diabetic 
peripheral artery disease [31]. microRNA (miR)-21-3p was 
found to elevate the levels of soluble RAGE and compete 
with RAGE for binding AGE, which results in decreases 
in the production of ROS and inflammatory cytokines in 
HUVECs induced by high glucose concentrations [32]. As 
RAGE is a vital mediator of endothelial dysfunction, target-
ing of RAGE and intervention with the AGEs/RAGE signal-
ing pathway are a promising therapeutic tool to alleviate the 
progression of diabetes-associated comorbidities.

Inflammation

Chronic inflammation is a common feature of diabetes and 
is known to increase the incidence of atherothrombotic 
events [33]. Excess saturated fatty acids, ceramides, and 
glucose in the blood of diabetics trigger the link between 

Fig. 1  Endothelial cell in diabetic atherosclerosis. Diabetic athero-
sclerosis initiates by endothelial cell dysfunction, increases endothe-
lial cell permeability, promotes the expression of pro-inflammatory 
cytokines and adhesion factors, increases glucose uptake, LDL 
transcytosis, and monocyte/macrophage infiltration. eNOS uncou-
pling impairs the ability of endothelial cell-mediated vasorelaxation 
function and oxidative stress induced by excessive ROS produc-
tion. Eventually, endothelial cells become dysfunctional and die. 
AGE, advanced glycation end product; AMPK, AMP-activated pro-
tein kinase; BAX, Bcl-2-associated X protein; EGR-1, early growth 
response protein 1; eNOS, endothelial NO synthase; ER, endoplasmic 

reticulum; ERK1/2, extracellular signal-regulated kinase 1/2; ET-1, 
endothelin-1; GLUT1, glucose transporter 1; ICAM-1, intercellular 
adhesion molecule-1; IL-1β, interleukin-1β; IL-18, interleukin-18; 
KLF4, Krüppel-like factor 4; mtDNA-CN, mitochondrial DNA copy 
number; NADPH, nicotinamide-adenine dinucleotide phosphate; 
NOX1, NADPH oxidase 1; P38 MAPK, p38 mitogen-activated pro-
tein kinase; PKCβII, protein kinase C βII; PPARδ, peroxisome pro-
liferator-activated receptor δ; RAGE, receptor for advanced glycation 
end product; ROS, reactive oxygen species; UPR, unfolded protein 
response; VCAM-1, vascular cell adhesion molecule-1
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the thioredoxin-interacting protein and the NLR family 
pyrin domain containing 3 (NLRP3) inflammasome [34]. 
The NLRP3 inflammasome is the major mediator of IL 
(interleukin)-1β and IL-18 cytokine secretion activating 
pro-inflammatory pathways [35]. High blood glucose pro-
motes the production of IL-1β by pancreatic islets β cells, 
which leads to glucotoxicity and the functional damage of β 
cells [36]. Despite advances in glucose and lipid-lowering 
therapies, a significant proportion of diabetics suffers from 
several complications and eventually results in end-organ 
damage [37]. Indeed, plasma LDL-lowering treatments are 
highly effective in preventing atherosclerosis; however, they 
incur a significant burden of atherosclerotic cardiovascular 
disease (ASCVD), and extensive studies suggested that it 
is probably the outcome of residual inflammatory risk [35, 
38]. One study revealed that NLRP3 knockdown inhibited 
NLRP3 inflammasome activation, vascular cell adhesion 
molecule-1 (VCAM-1), and intercellular adhesion mol-
ecule-1 (ICAM-1) expression in intima in diabetes-accel-
erated atherosclerosis mouse models [39]. Endothelial 
cells were exposed to high glucose inducing an increase 
of G-protein coupled receptor 5B of family C (GPRC5B), 
leading to a pro-atherogenic GPRC5B-dependent positive 
feedback loop through tyrosine kinase Fyn and NF-κB acti-
vation [40]. Mechanistically, elevated levels of S-nitrosyla-
tion of G-protein alpha-2 (SNO-GNAI2) act with CXCR5 
to induce Hippo/YAP-dependent endothelial inflammation. 
The treatment with melatonin reduces SNO-GNAI2, which 
was revealed as an efficient strategy for mitigating diabetic 
atherosclerosis[41]. Moreover, treatment with trelagliptin, 
a DPP-4 inhibitor, suppressed the level of pro-inflamma-
tory chemokines and adhesion of monocytes via inhibiting 
NF-κB signaling in human aortic endothelial cells (HAECs) 
[42]. Canagliflozin, an SGLT2 inhibitor, also ameliorates 
acetylcholine-induced vasodilation and reduces the expres-
sions of VCAM-1 and ICAM-1 via an anti-inflammatory 
mechanism in experimental diabetic mice [43]. Together, 
these studies show that inflammation in endothelial cells 
facilitates the atherogenic process, indicating that targeting 
vascular inflammation can be an effective approach to miti-
gate diabetic atherosclerosis.

Oxidative Stress

Diabetes promotes atherosclerosis via increased oxidative 
stress which is attributed to an imbalance between the exces-
sive ROS production and antioxidative factors, in favor of 
ROS [44]. ROS encompasses an array of derivatives derived 
from molecular oxygen produced by various ROS-gener-
ating enzymes, such as nicotinamide-adenine dinucleotide 
phosphate (NADPH) oxidases (NOX), the mitochondrial 
electron transport chain (ETC), uncoupled endothelial 
NO synthase (eNOS), and cyclooxygenase (COX). ROS 

consists of non-radical species and free radical species, 
such as hydrogen peroxide  (H2O2) and superoxide anion 
radical  (O2

−) [45]. Endothelial cells are exposed to sev-
eral factors that induce oxidative stress, including oxidized 
low-density lipoprotein (ox-LDL) [46], high blood glucose 
[47], and free fatty acids [48]. Notably, pancreatic islets β 
cells are extremely sensitive to ROS damage induced by 
high glucose and FFA owing to the subnormal expression 
of superoxide dismutase (SOD) and catalase, resulting in 
β cells dysfunction [49]. High blood glucose and insulin 
concentrations also stimulate aberrant NOX activation and 
lead to endothelial malfunction and overstimulation of NOX 
in diabetes, creating a cytotoxic microenvironment, where 
eNOS uncoupling impairs the ability of the endothelium to 
perform vasorelaxation and glucose transport [50]. Similar 
results were obtained with endothelium-restricted human 
endothelin (ET)-1 overexpression that caused perivascu-
lar oxidative stress, enhanced monocyte/macrophage infil-
tration, and aggravated atherosclerosis in T1DM through 
NOX1 [51]. Fibroblast growth factor 21 (FGF21) has an 
anti-oxidative capacity relevant to metabolic disorders and 
prevents high glucose (HG)-induced endothelial dysfunction 
and enhanced eNOS activity that leads to dilation of the 
aorta through activation of the CaMKK2-AMPKα signaling 
pathway in both type 1 and type 2 diabetes [52]. A study 
showed that endogenous gasotransmitter hydrogen sulfide 
 (H2S) against HG-induced damage of endothelial cells and 
reversed endothelial cell viability via activation of PI3K/
Akt/eNOS signaling [53]. Therefore, HG-induced oxida-
tive stress contributes to endothelial dysfunction, promot-
ing the initiation and development of diabetes-associated 
atherosclerosis by damaging endothelia-dependent vascular 
relaxation and increasing permeability.

Endoplasmic Reticulum Stress

Endoplasmic reticulum (ER), a cellular organelle with 
multifunctional roles in transmembrane protein synthesis, 
folding, and translocation, participates in the production of 
cellular lipids and regulation of cellular  Ca2+ uptake. Sev-
eral pathophysiology conditions disrupt ER homeostasis, 
followed by the alternation of protein-folding which results 
in irreversible unfolded protein response (UPR) activation 
and is referred to as ER stress [54]. Moreover, ER plays a 
vital role in the regulation of endothelial function. Lipo-
protein-cholesterol, inflammation, and oxidative stress incur 
endothelial dysfunction and ER stress [55, 56]. ER stress is 
also activated by insulin resistance and vascular endothelial 
dysfunction in diabetics [57]. Several studies indicated that 
the downregulation of AMPK/PPARδ signaling in vascular 
endothelial cells was considerable in relation to the activa-
tion of hyperglycemia-induced ER stress[58–60], which is 
inhibited by the improvement of endothelial cell function. 
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The finding that anti-hyperglycemic drugs (metformin, 
SGLT2 inhibitors, and GLP-1 receptor agonists) attenuate 
tunicamycin or HG (27.5 mM dextrose)-induced dysfunction 
in HCAECs in vitro indicates a major role of cardiovas-
cular protective effects [61]. Recent research revealed that 
treatment with stanniocalcin 1 secreted from mesenchymal 
stem cells (MSCs), which restored cell viability, decreased 
the inflammatory response and lipid deposition and amelio-
rated palmitic acid (PA)-triggered impairment in HUVECs 
through inhibiting ER stress and endothelial-to-mesenchy-
mal transition (EndMT) [62].

Mitochondrial Dysfunction

Since the mitochondrial is the principal organelle for adeno-
sine triphosphate (ATP) generation, it is considered to be the 
cell “power plant,” where more than 90% of total cellular 
production of ATP is carried out by oxidative phosphoryla-
tion (OXPHOS) in the mitochondrial ETC [63]. Mitochon-
drial is not only an important organelle in cellular energy 
metabolism, but also the primary source of ROS which 
damages ETC proteins and mitochondrial DNA (mtDNA) 
[64]. T2DM and atherosclerosis are characterized by mito-
chondrial dysfunction and oxidative stress [65]. A follow-up 
study found that mitochondrial DNA copy number (mtDNA-
CN), a substitute biomarker of mitochondrial dysfunction, 
is lower and related to cardiovascular complications in 
T2DM [66]. Moreover, an in vitro hyperglycemia model 
in HUVECs induced mitochondrial ROS and increased 
SIRT1-mediated PINK1/Parkin-dependent mitophagy; these 
effects can be attenuated by the treatment with liraglutide (a 
GLP-1 receptor agonists) [67]. Consistent with this finding, 
treatment with metformin significantly suppressed the pro-
gression of diabetic atherosclerosis via inhibition of mito-
chondrial fission in endothelial cells in streptozotocin (STZ)-
induced diabetic mice, which was associated with activated 
AMPK-mediated blockage of dynamin-related protein 1 
(Drp1) expression and translocation to the mitochondrial 
[68]. All findings above indicate that lowering mitochondrial 
dysfunction is a potential therapeutic target to limit athero-
sclerosis in diabetes.

Senescence

Senescence, a vital risk factor for endothelial dysfunction, is 
an elementary step in a series of events associated with the 
initiation and progression of ASCVD and other endothelial 
dysfunction-related diseases. Endothelial cell senescence 
can impair the vascular endothelium which is induced by 
HG and ox-LDL [14]. HUVEC overexpression of C1q/tumor 
necrosis factor-related protein 9 (CTRP9) significantly 
decreased the expression of Krüppel-like factor 4 (KLF4) 
and cyclin-dependent kinase inhibitor p21 and increased 

the expression of telomerase reverse transcriptase (TERT) 
which prevented HG-induced endothelial senescence [69]. A 
study found that MSC-derived extracellular vesicles attenu-
ated endothelial cell senescence through miR-126a/Src in 
natural aging and T2DM mouse models [70]. Moreover, 
in vitro studies showed that the DPP-4 inhibitor anagliptin 
protected against oxidative and glucolipotoxicity stresses 
induced cellular senescence in HUVECs [71].

Autophagy

Autophagy is an endogenous protective system for main-
taining cellular homeostasis. Emerging studies unraveled an 
important autophagy function of endothelial cells, includ-
ing modulating the response of endothelial cell to metabolic 
stresses and endothelial plasticity [72]. Autophagy is emerg-
ing as a crucial modulator of diabetes. For example, LDL 
has activity similar to insulin and inhibits endothelial cell 
autophagy via activation of the PI3K/Akt/mTOR signaling 
and enhancing glucose uptake by translocating the glucose 
transporter 1 (GLUT1) that increases the incidence of dia-
betes [73]. Moreover, endothelial-specific mTORC1 dele-
tion alleviates hindlimb ischemia in diabetic mice partly 
via activation of autophagy [74]. Forearm vein endothe-
lial cells isolated from diabetic patients have been shown 
to have impaired NO signaling and inadequate autophagy 
[75]. Furthermore, high glucose inhibits CAV1-CAVIN1-
LC3B signaling-mediated autophagic degradation, pro-
motes the LDL transcytosis across endothelial cells, and 
the development of atherosclerosis [76]. Consistent with 
these findings, endothelial-specific Sirt6 overexpression in 
diabetic ApoE−/− mice ameliorates atherosclerotic plaque 
formation, through not only SIRT6-mediated acetylation 
of caveolin-1 that triggers its autophagic degradation but 
also suppression of high glucose-induced LDL transcyto-
sis [77]. Recently, GLP-1 therapy was found to attenuate 
 H2O2-stimulated endothelial dysfunction and overly stimu-
late autophagy and restore histone deacetylase 6 (HDAC6) in 
a GLP-1R-ERK1/2-dependent manner [78]. Suppression of 
the glycogen synthase kinase 3β (GSK3β) might be impor-
tant for restoring endothelial cell homeostasis and reducing 
atherogenesis through increasing basal autophagy and recov-
ering impaired lysosome acidification in HAECs [79]. In 
addition, regular exercise protects the arteries from vascular 
disease by stimulating endothelial cell autophagy through 
decreased interleukin-1 receptor antagonist [80].

Apoptosis, Necroptosis, Pyroptosis, Ferroptosis

Cell death maintaining homeostasis and preventing the 
development of diseases contains two forms, programmed 
and non-programmed. Programmed cell death mostly 
refers to apoptosis, necroptosis, and pyroptosis, while 
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non-programmed cell death refers to necrosis. Ferroptosis 
was revealed as a new type of cell death [81]. First and fore-
most, endothelial apoptosis is significantly enhanced in dia-
betic endothelial cells and high glucose cultured HUVECs, 
which contributes to vascular remodeling during develop-
ment [82, 83]. Recent research revealed that high glucose 
might induce HUVECs apoptosis via reduced  H2S levels 
and impaired the downstream PI3K/Akt/eNOS signaling, 
which links to hyperglycemia-caused vascular injuries [53]. 
Moreover, inflammatory factor tumor necrosis factor-asso-
ciated factor 6 (TRAF6) also has a major contribution to 
hyperglycemia-induced endothelial cell dysfunction, such 
as apoptosis and endothelial-monocyte adhesion [84]. A 
recent study revealed that supra-nutritional selenium intake 
was related to augmented diabetes risk through induced 
endothelial cell apoptosis, ER stress, and increased ROS 
production [85]. Treatment with vitexin, a polyphenolic fla-
vonoid, decreased apoptosis in HG-induced HUVECs via 
disrupted Wnt/β-catenin and Nrf2 signaling [86]. Further-
more, notoginsenoside Fc (Fc) protects against HG-induced 
rat aortic endothelial cell dysfunction by inhibiting apoptosis 
and reducing the production of pro-inflammatory cytokines 
through a PPARγ-mediated pathway [87].

Furthermore, there is an evidence for a negative interac-
tion between apoptosis and necroptosis, while exogenous 
 H2S alleviates high glucose-induced HUVEC injury through 
inhibiting necroptosis [88]. Other evidence consolidates the 
vital contribution of pyroptosis in endothelial dysfunction; 
for example, under hyperglycemic conditions, pyroptosis in 
endothelial cells causes the initial atherosclerosis through 
the TLR4/NF-κB pathway [89]. In addition, renal glomeru-
lar endothelial cells exposed to HG undergo pyroptosis 
through the caspase-1-gasdermin D (GSDMD) canonical 
pathway [90]. Moreover, long noncoding RNA KCNQ1OT1/
miR-214/caspase-1 signaling mediated pyroptosis induced 
by HG in diabetic human and rat corneal endothelium [91]. 
These findings reveal a potential therapeutic benefit in tar-
geting endothelial cell death and delaying the progression 
of atherosclerosis during diabetes.

Consequently, the chain of events that results in diabetic 
atherosclerosis is attributed to vascular local endothelial 
dysfunction, which is caused by disturbed flow in areas of 
arterial curvature or branching. This flow pattern acts on 
endothelial cells to stimulate multiple inflammatory path-
ways, derange vascular permeability, and increase expres-
sion of proinflammatory cytokines and adhesion molecules, 
such as monocyte chemotactic protein-1 (MCP-1), VCAM-
1, ICAM-1, and E-selectin, which recruit circulating mono-
cytes and T cells [92]. Of note, hyperglycemia and lipo-
protein abnormalities further trigger monocyte adhesion to 
endothelial cells [93]. Meanwhile, high glucose and CD36 
deficiency facilitate the LDL transcytosis across the arte-
rial wall, where they are easily modified by oxidation, and 

macrophages internalize ox-LDL that lead to the devel-
opment of lipid-engorged macrophage, called foam cells, 
which make a contribution to early fatty streak formation in 
the artery wall [76, 94].

Overall, a lot of current studies demonstrate that diabetic 
atherosclerosis is triggered by endothelial dysfunction, 
which increase inflammation and ROS production. Amelio-
rating endothelial cell dysfunction may inhibit the onset of 
diabetic atherosclerosis.

Macrophages in Diabetic Atherosclerosis

Under normal homeostasis, macrophages reside in the 
adventitia where they interact with VSMCs to regulate 
blood vessel diameter and contribute to steady-state func-
tions. In atherosclerotic lesions, macrophages are the most 
abundant immune cell subset localizing under the endothe-
lium and contribute to lipid retention (Fig. 2). In response to 
endothelial activation, classical monocytes are recruited to 
the intima and differentiated into macrophages [95]. Then, 
the NLRP3 inflammasome in macrophage is activated in the 
context of diabetes and induces pro-inflammatory (M1) mac-
rophage formation with mitochondrial dysfunction, which 
impairs lysosome function. The phagocytic efficiency of 
macrophage increases and leads to the foam cell formation. 
At the same time, NLRP3 inflammasome is activated, and 
cholesterol outflow decreases. Finally, increasing pyropto-
sis and necrosis and decreasing apoptosis of macrophages 
inhibit macrophage removal from plaque and form to 
necrotic core.

Macrophage Polarization

Most studies in the field of macrophage phenotypes in ath-
erosclerosis focus on proinflammatory (M1) and anti-inflam-
matory (M2) [96]. M1 macrophages response to interferon-γ 
(IFN-γ) and the Toll-like receptor ligand lipopolysaccha-
ride (LPS), while M2 macrophages response to IL-4 [97]. 
Hyperglycemia potentiates atherosclerosis progression and 
retards plaque regression by increasing the expression of 
proinflammatory genes, such as those encoding IL-1β, IL-6, 
and tumor necrosis factor-α (TNF-α), while causing a resist-
ance to M2-associated gene expression [98, 99]. In addition, 
macrophages uptake ox-LDL to form foam cells leading to 
atherosclerosis. Indeed, AGEs are localized in foam cells 
within the atherosclerotic lesions, contributing to endothelial 
dysfunction and arterial stiffness [100, 101]. Macrophages 
have heterogeneity at the single-cell level, and different mac-
rophage subsets can coexist within a tissue. Although single-
cell data from atherosclerotic plaques have become avail-
able [102], a detailed analysis of the macrophage alignment 
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and compartment with data from diabetic atherosclerosis 
is lacking.

Mitochondria Dysfunction

Mitochondria that play central roles in ATP production 
are exquisitely sensitive to their environs and can be eas-
ily damaged. Macrophages with functioning mitochondria 
maintain an appropriate balance between energy storage and 
consumption, while abnormal lipid and glucose metabolism 
caused by insulin resistance impairs mitochondrial function 
[103]. Generally, the metabolism of M1 macrophage depends 
on glycolysis, while M2 macrophage relies on the oxida-
tive phosphorylation pathway [104, 105]. It was recently 
reported that hypoxia-inducible factor-1 activation shifted 
cellular energy metabolism from oxidative phosphorylation 
to glycolysis and promoted polarization of M1 macrophage 
in a state of insulin resistance induced by obesity [106, 107]. 
Besides, the activated NOTCH1 pathway also leads to mito-
chondrial metabolism reprogramming for M1 macrophage 
polarization. In M1 macrophages, activated NOTCH1 liber-
ates its intracellular domain which increases mitochondrial 

glucose oxidation [108] and promotes mtDNA transcription. 
mtDNA expression enhances mtROS levels that in turn aug-
ment M1 gene expression. These lines of evidence show that 
insulin resistance reprograms macrophage polarization into 
M1 macrophages, and mitochondrial dysfunction shifts the 
energy supply from oxidative phosphorylation to glycolysis.

Lysosomal Defects

Under hyperglycemic conditions, mitochondrial dysfunction 
also impairs lysosome function, which leads to an increase in 
ROS production and blocks autophagic flux in macrophages 
[109]. This agrees with a recent study that phagocytosis of 
apoptotic pancreatic β cells caused lysosomal permeabili-
zation and subsequently generated ROS that activated M1 
macrophage inflammasome [110]. Lipid toxicity caused by 
insulin resistance can also lead to lysosomal dysfunction in 
macrophage [111]. Obesity causes immune cell infiltration, 
including macrophage, into adipose tissue that increases 
insulin resistance. Lysosomal stress/dysfunction occurs in 
adipose tissue macrophages in obesity-associated insulin 
resistance [112]. In conclusion, mitochondrial dysfunction 

Fig. 2  Macrophage in diabetic atherosclerosis. Under the condition 
of hyperglycemia, the M1 polarization of macrophages increases and 
more ox-LDL is phagocytic to form foam cells. In addition, mac-
rophage mitochondrial and lysosome dysfunction increases. At the 
same time, NLRP3 inflammasome is activated, and cholesterol out-
flow decreases. Eventually, the increase of pyroptosis and necrosis 
of macrophages and the decrease of apoptosis promote atheroscle-

rosis progression. ABCA1, ATP binding cassette subfamily A mem-
ber 1; ABCG1, ATP binding cassette subfamily G member 1; ASC, 
apoptosis-associated speck-like protein containing a C-terminal 
caspase recruitment domain; FFA, free fatty acid; HIF-1α, hypoxia-
inducible factor 1α; IL-1β, interleukin-1β; IL-6, interleukin-6; NICD, 
Notch  intracellular domain; ox-LDL, oxidized low-density lipopro-
tein; TNF-α, tumor necrosis factor-α
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of macrophage in the context of diabetes also leads to lyso-
somal stress/injury.

Increased Phagocytic Activity

The accumulation of glycation and AGEs occurs during nor-
mal aging or in the development of several diseases, such 
as diabetes and atherosclerosis [113]. Glycation modulates 
cytokine expression and alters the phagocytic efficiency 
of macrophage [113]. Scavenger receptors can recognize 
modified low-density lipoproteins, such as ox-LDL and 
acetylated LDL [114]. In atherosclerotic plaque, ox-LDL is 
mainly known as the important source of intracellular lipid 
accumulation. Moreover, modified LDL including ox-LDL, 
has a lower affinity to LDL receptor. It is internalized mainly 
through unspecific phagocytosis, which results in cholesterol 
accumulation. These processes lead to the foam cell for-
mation and accelerate the process of atherosclerosis [115]. 
In addition to ox-LDL, in the case of T2DM, raising glu-
cose and FFA levels, insulin resistance, and lowering HDL 
cholesterol all result in increasing expression of scavenger 
receptor on macrophages, thereby contributing to T2DM and 
related atherosclerosis [116].

Inhibited Reverse Cholesterol Transport

Hyperglycemia can lead to lipoprotein clearance and cho-
lesterol excretion disorders. Glycemic control by SGLT2i 
treatment can improve plasma lipoprotein profiles by heparin 
sulfate proteoglycan-dependent clearance mechanisms. Fur-
ther research suggests that the bile acid transporters ABCG5 
and ABCG8 in the conversion of cholesterol to bile acids 
reduce the risk of atherosclerosis [117]. These are consistent 
with the role of reverse cholesterol transport transporters, 
such as ABCA1 and ABCG1. A recent study found that the 
application of reconstituted HDL-polarized macrophages to 
the M2-type, increased ABCA1 and ABCG1 expression, and 
improved the characteristics of diabetes-related atheroscle-
rosis [118]. Another study found that a miR-325 inhibitor 
decreased the lipid content and facilitated the cholesterol 
efflux in RAW264.7 cells by the PPARγ-LXR-ABCA1 path-
way [119]. In conclusion, dysregulation of lipid metabolism 
in diabetic atherosclerosis leads to high plasma TG levels, 
impairs cholesterol efflux, and M2-type polarization of mac-
rophages, resulting in foam cell formation and proathero-
genic lipid profile, which is closely related to the onset and 
progression of atherosclerosis.

NLRP3

Chronic sterile inflammation significantly drives diabetes-
associated atherosclerosis [6, 120]. Sterile inflammation 
and downstream activation of the inflammasome have been 

involved in complications associated with diabetes [121]. 
In diabetes and atherosclerosis, the NLRP3 inflammasome 
is the prominent inflammasome family member [35, 122]. 
A recent study confirmed that neutrophil extracellular traps 
(NETs) persisted in diabetes and impaired atherosclerosis 
resolution by increasing inflammasome in macrophage 
[123]. In addition, treatment of bone marrow–derived mac-
rophages with MCC950, a NLRP3 selective inhibitor, sig-
nificantly dampened pro-inflammatory cytokine secretion 
in response to diabetogenic mediators. MCC950 treatment 
reduced mononuclear macrophage contents, inflammatory 
gene expression, cell adhesion, and fibrous cap thickness in 
experimental atherosclerosis [124]. Metformin, one of the 
most widely used first-line medications for type 2 diabetes 
therapy, inhibited NLRP3 inflammasome activation in mac-
rophage [125]. These results are consistent with a protective 
role for SGLT2i-modulated NLRP3 inflammasome activ-
ity in human macrophage [126, 127]. Other studies have 
found that in type 1 diabetes, the macrophage inflammatory 
state was triggered by the NLRP3/iNOS pathway [128]. The 
NLRP3 inflammasome in macrophage is activated in the 
context of diabetes, induces pro-inflammatory macrophage 
formation, and promotes the progression of diabetic athero-
sclerosis. Thus, inhibition of inflammation is a promising 
therapeutic target for diabetic atherosclerosis.

Epigenetic Mechanisms of Macrophage Activation

Recently, the field of epigenetics affords new insights into 
the pathogenesis of T2DM, while also providing potential 
new opportunities for therapy. Epigenetic mechanisms are 
known as crucial controllers of macrophage phenotype. Epi-
genetic enzymes can regulate macrophages and alter gene 
expression by adding or removing acetyl or methyl groups 
[129]. A review summarized the epigenetics-mediated mac-
rophage activation mechanisms in T2DM into the follow-
ing aspects: (1) hyperlipidemia increased DNA methylation 
and inhibition of anti-inflammatory gene expression, (2) 
hyperglycemia-promoted macrophage activation depends 
on NF-κB pathway by increasing activating methylation 
marks, (3) hypoxia-activated macrophage via histone acet-
ylation, (4) inflammatory macrophage activation impaired 
wound healing [130]. A recent study revealed that epigenetic 
regulation of S100A9 and S100A12 affected the monocyte-
macrophage system under hyperglycemic conditions [131]. 
Circular RNAs (circRNAs) are involved in various disease 
processes as a novel class of endogenous RNAs. A study 
showed that circPPM1F modulated M1 macrophage activa-
tion in type 1 diabetes mellitus through the circPPM1F/HuR/
PPM1F/NF-κB axis [132]. In addition, hsa_circ_0060450, 
the sponge of miR-199a-5p, can suppress the JAK-STAT 
signaling pathway to inhibit macrophage-mediated inflam-
mation in type 1 diabetes mellitus [133]. It was found that 
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another type of non-coding RNA, long non-coding RNA 
(lncRNAs), was increasingly implicated in the pathological 
process of diabetes complications. Under normal conditions, 
lncRNA DRAIR decreased the enrichment of repressive his-
tone modifications by inhibiting the recruitment of histone 
methyltransferase G9a, which allowed anti-inflammatory 
gene expression. However, under diabetic conditions, down-
regulation of DRAIR and subsequently upregulation of G9a 
reversed these events, resulting in anti-inflammatory gene 
repression, monocyte activation, and chronic inflammation 
[134].

Hyperglycemia Induces Trained Immunity 
in Macrophages

Hyperglycemia is a major feature of T1DM and T2DM, 
and treatment mainly focuses on lowering blood glucose. 
Although hypoglycemic therapy, while effective in reducing 
vascular risk in type 1 diabetes patients, was not associ-
ated with glycemic control [135, 136]. However, in T2DM, 
lowering glucose had no or moderate effect on atheroscle-
rosis-related vascular outcomes [137, 138]. Persistent risk 
of cardiovascular complications after glycemic control is 
associated with metabolic memory [137]. Hyperglycemia 
can induce trained innate immunity of bone marrow–derived 
macrophages, thereby increasing aortic root atherosclerosis 
[139]. In addition, hyperglycemia-induced trained phenotype 
also occurs in human monocytes [140].

Macrophage Apoptosis

Dyslipidemia accompanying type 2 diabetes is a major risk 
factor for atherosclerosis. The cholesterol accumulation and 
oxidized products in the arterial wall recruit monocyte into 
the subendothelial layer. Monocyte can differentiate into mac-
rophage and subsequently become foam cells to participate 
in plaque formation. Studies also demonstrated that apoptosis 
was the mainly method for macrophage removal from plaque, 
which significantly reduced foam cell formation [141]. Poten-
tiation of atherosclerosis by hyperglycemia is mainly through 
increasing macrophage proliferation and decreasing apoptosis 
as revealed by feeding mice with atherogenesis high-fat diet 
[142]. A review systematically summarized the pathways by 
which insulin resistance promoted ER stress–induced mac-
rophage apoptosis and plaque progression. First, ER stress acti-
vated the MEK-ERK-SERCA pathway to lower cytoplasmic 
calcium, leading to enhanced activation of calcium-mediated 
apoptotic pathways. Then, pattern recognition receptors, such 
as scavenger receptors, which are synergistic with ER stress-
inducing apoptosis, increased in insulin-resistant macrophage. 
Finally, increased nuclear FoxO induced IκBε, suppressing a 

compensatory NF-κB cell-survival pathway in insulin-resistant 
macrophage [143].

Pyroptosis, Ferroptosis, Necroptosis

Previous studies demonstrated that macrophages under-
went an apoptotic phenotype transformation in diabetes. 
Recent studies found other types of macrophage death in 
addition to apoptosis, such as pyroptosis, ferroptosis, and 
necroptosis. Pyroptosis has been associated with inflamma-
tory diseases as a type of programmed cell death, includ-
ing diabetic atherosclerosis. One study found that sinapic 
acid abated the pyroptosis of macrophage by downregula-
tion of lncRNA-MALAT1 by using a rat model of diabetic 
atherosclerosis [144]. A recent study reached the same 
conclusion that hyperglycemia could induce macrophage 
pyroptosis, thereby contributing to periodontal pathogen-
esis in diabetes [145]. Interestingly, macrophage pyroptosis 
and subsequently triggered macrophage function impair-
ments could be reversed by metformin [146]. Another study 
revealed a novel lipid-regulated pathway associated with 
SIRT1-p53-ASC signaling and pyroptosis in macrophage 
[147]. The NLRP3 inflammasome relates to various human 
diseases by regulating pyroptosis [148]. Thus, compounds 
inhibiting NLRP3 inflammasome activation can be poten-
tial treatments for these diseases. Another study discov-
ered a novel potent pyroptosis inhibitor against NLRP3-
dependent pyroptosis in macrophage [149]. Necroptosis is 
a programmed cell death pathway dependent on RIP1 and 
distinct from apoptosis [150, 151]. Previous work estab-
lished that RIP1-dependent necroptosis in Jurkat and U937 
cells is enhanced under conditions of hyperglycemia [152]. 
One question that needs to be asked, however, is whether 
macrophage necrosis has a role in diabetes. Most studies 
in macrophage ferroptosis have only been carried out in 
a small number of areas, including atherosclerosis associ-
ated with hyperuricemia [153]. Thus, detailed studies are 
required to determine the role of macrophage-programmed 
cell death in diabetes.

Macrophages are widely regarded as therapeutic targets 
because they are involved in all stages of atherosclerosis. 
The chain of pathological events that results in atheroscle-
rosis development is known to be triggered by endothelial 
dysfunction. In response to endothelial activation, classical 
monocytes adhere to the arterial wall, migrate to the intima, 
and then differentiate into macrophage that actively uptake 
lipids through phagocytosis and become lipid-laden mac-
rophage foam cells [95]. One possibility is that hyperglyce-
mia plays an important role in atherosclerosis through extra-
cellular mechanisms. AGEs accumulate in diabetic patients 
and affect endothelium activation and adhesion molecule 
expression on the surface which promotes monocytes/mac-
rophage adhesion and entrance into the subendothelial space 



143Journal of Cardiovascular Translational Research (2024) 17:133–152 

1 3

during the initial stages of atherosclerosis. Moreover, these 
molecules increase cytokine release by macrophage, main-
taining a pro-inflammatory environment within the devel-
oping plaque [115]. Macrophage apoptosis in atheroscle-
rotic lesions has been studied in the last few years. Reduced 
apoptosis in macrophage accelerates atherosclerosis likely 
through lipid core formation and plaque rupture [154].

In conclusion, M1 macrophages increase and M2 mac-
rophages decrease in diabetic atherosclerosis, but the hetero-
geneity of macrophages needs further study at the single-cell 
level. Repairing mitochondrial dysfunction and lysosomal 
dysfunction may be a therapeutic strategy. Effective ways 
for increasing apoptosis of macrophages may reduce the 
necrotic core, thereby stabilizing atherosclerotic plaques 
and reducing acute coronary syndrome.

Smooth Muscle Cells in Diabetic 
Atherosclerosis

VSMC participants in both early and late-stage atherosclero-
sis. In the early atherosclerosis lesion, migration of VSMCs 
from the media into the intima promotes plaque formation, 
while VSMCs in advanced plaque form a protective fibrous 

cap to cover the necrotic core [155]. Worse blood glucose 
control in diabetics significantly alters VSMC phenotypes, 
such as α-SMA + VSMCs, macrophage-like VSMCs, smooth 
muscle foam cells, VSMC-derived osteochondrogenic cells, 
senescent VSMCs, and synthetic vascular smooth muscle 
cells, owing to loss of mitochondrial homeostasis. At the 
same time, intracellular mitochondrial dysfunction and 
autophagic flux blockade, ROS production and pro-inflam-
matory (IL-1β, IL-6, and TNF-α) expression increase, 
leading to an increased pro-inflammatory cell response. 
The apoptosis of VSMCs decreases, and the proliferation 
and migration increase, which promotes the migration of 
VSMCs into the subendothelial layer (Fig. 3), which relates 
to the development of macrovascular and microvascular dis-
eases [156].

α‑SMA+VSMCs

Under stress stimuli, VSMCs switch from a pro-con-
tractile to a pro-synthetic state, which is called a pheno-
typic switch or cell dedifferentiation [157]. Phenotypic 
switching is defined by the loss of classical contractile 
markers (such as alpha-smooth muscle actin (α-SMA/
ACTA2), smooth muscle 22 alpha (SM22α/TAGLN), and 

Fig. 3  VSMC in diabetic atherosclerosis. Under diabetic conditions, 
VSMCs undergo a phenotypic switch with decreasing expression of 
the contraction phenotypic markers, such as α-SMA, SM22α, and 
MYH11. VSMCs are transformed into macrophage-like, osteogenic-
like, and senescent VSMCs. At the same time, intracellular mitochon-
drial dysfunction and autophagic flux blockade, ROS production, 
and pro-inflammatory (IL-1β, IL-6, and TNF-α) expression increase, 
leading to an increased pro-inflammatory cell response. At the same 
time, the apoptosis of VSMCs decreases, and the proliferation and 

migration increase, which promotes the migration of VSMCs into the 
subendothelial layer. The solid line is the proven signal pathway, and 
the dashed line is the signal pathway yet to be proved. α-SMA, alpha-
smooth muscle actin; LGALS3, galectin-3; MMP, matrix metallopro-
teinase; MYH11, myosin heavy chain 11; RCN2, reticulocalbin 2; 
ROCK1, Rho-associated kinases 1; RUNX2, Runt-related transcrip-
tion factor 2; SM22α, smooth muscle 22 alpha; TNF-α, tumor necro-
sis factor-α
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smooth muscle cell myosin heavy chain 11 (MYH11)) and 
acquire of synthetic organelles, proliferation and migration 
properties, secretion of various cytokines and extracel-
lular matrix (ECM) proteins, which plays a pivotal role 
in intimal hyperplasia and atherogenesis [155, 158]. For 
instance, excessive AGEs facilitate a switch of VSMCs 
from a contractile to a synthetic phenotype and increase 
production and secretion of collagen I through activation 
of the NF-κB pathway [159].

Macrophage‑Like VSMCs

VSMC-derived macrophage-like cells exist in both human 
[160] and mouse [161] atherosclerotic plaques. Macrophage-
like VSMCs upregulate typical macrophage markers, such 
as CD68, galectin-3 (LGALS3), and MCP-1, and improve 
efferocytosis function which stimulates lipid accumulation 
and foam cell expansion [162].

Smooth Muscle Foam Cells

Lipid-overladen foam cells are traditionally viewed as mono-
cyte-differentiated macrophage, while recent studies have 
revealed that VSMCs also transform into foam cells and 
make up at least half of the foam cell population [102]. Lipid 
transport occurs through scavenger receptors (such as CD36, 
SRA, LOX-1) and cholesterol efflux transporter (such as 
ABCA1 and ABCG1). Excessive lipid uptake and decreased 
efflux in cells can cause foam cell formation [163]. Recently, 
the major AGEs, Nε-(carboxymethyl) lysine, was found to 
promote VSMC-derived foam cell formation and induce 
VSMCs transdifferentiate to a macrophage-like phenotype 
in the arterial plaque of diabetic patients through activation 
of RAGE [162].

VSMC‑Derived Osteochondrogenic Cells

Vascular calcification is not only a consequence of a high 
calcium and phosphorous milieu, but also a result of an 
imbalance between osteochondrogenic signaling and anti-
calcific events. The transform of VSMCs to an osteochon-
drogenic state is a central step during vascular calcification 
[164]. Indeed, vascular calcification depends on AGEs/
RAGE in diabetic VSMCs [165]. Moreover, consider-
able evidence revealed that excessive ROS accelerated the 
osteochondrogenic transdifferentiation of VSMCs [166] 
and salusin-β regulated VSMC calcification via activation 
of NADPH/ROS-mediated Klotho downregulation [167]. 
Reticulocalbin 2 (RCN2) and Runt-related transcription 
factor 2 (RUNX2) were also positively correlated with the 

calcification process of VSMCs under diabetic conditions 
[168].

Senescent VSMCs

In atherosclerotic plaques, senescent VSMCs are attributed 
to the replicative senescence (with telomere shorting) and 
stress-induced premature senescence in reply to DNA dam-
age and oxidative stress-induced stimuli, which can promote 
atherosclerosis progression [169]. In VSMCs cultured from 
T2DM patients, markers of DNA damage and subsequent 
cellular senescence were significantly elevated and associ-
ated with increased miR-145 [170]. Additionally, lncRNA-
ES3 was also related to the high glucose-treated calcifica-
tion/senescence of HASMCs by directly binding to the basic 
helix-loop-helix family member e40 (Bhlhe40) [171].

Proliferation and Migration

VSMC proliferation and migration play an important role in 
the pathologic process of vascular disease, including athero-
sclerosis and restenosis. A study indicated that suppressing 
the proliferation and migration of VSMCs through restraint 
of the Pin1/BRD4 pathway could possibly mitigate diabetic 
atherosclerosis [172]. Other studies showed that hyperlipi-
demia elevated VSMC proliferation and intima-media thick-
ness of the aortas via a CCL5/CCR5-mediated phenotypic 
switching, which can be reversed by pyrogallol-phloroglu-
cinol-6,6-bieckol (PPB) [173]. Not surprisingly, AGEs, as 
an important inducing factor in diabetic atherosclerosis, may 
activate PI3K/Akt signaling through RAGE and thus acceler-
ate the proliferation and migration of HASCMs [174]. Mech-
anistically, poly (ADP-ribose) polymerase 1 induced diabetic 
neointimal hyperplasia by promoting VSMC proliferation 
and migration, through downregulating tissue factor path-
way inhibitor (TFPI2) [175]. Epigenetics and transcription 
are involved in the regulation of VSMC phenotypic switch 
in arterial remodeling [176]. For example, differing from 
VSMC senescence, miR-145 occurs a protective role in HG-
induced excessive proliferation and migration of VSMCs by 
suppressing Rho-associated kinase 1 (ROCK1) [177]. Treat-
ment with miR-127 drastically induced VSMC cycle arrest, 
reduction of proliferation and migration, and increasing of 
apoptosis by targeting ROCK1 [178]. Moreover, miR-19a 
promotes VSMC proliferation and invasion via increasing 
level of matrix metalloproteinase (MMP)-2, MMP9, α-SMA, 
and SM22α by inhibiting the RAS homolog family member B 
[179]. Under diabetic conditions, acarbose, an α-glucosidase 
inhibitor, increased the expression of miR-143 and decreased 
the phosphorylation of PI3K/Akt and focal adhesion kinase, 
resulting in reduced VSMC migration and proliferation [180]. 
Of note, these data provide a potential therapeutic benefit 
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in targeting epigenetic factor miRNAs in regulating VSMC 
function and atherogenesis.

Mitochondria Dysfunction, Defective Autophagy, 
and Lysosomal Impairment (Apoptosis, Pyroptosis, 
and Ferroptosis)

Retaining mitochondrial homeostasis is essential for main-
taining the contractile phenotype of VSMCs to protect 
against calcification [181]. Mitochondrial superoxide dis-
mutase 2 acts as a crucial gateway within VSMCs through 
counteracting ROS to block the progression of subsequent 
vascular calcification [182]. In another study, hyperinsu-
linemia induced the migration and proliferation of VSMCs 
accompanied by oxidative stress and alterations in mitochon-
drial physiology, therefore, providing a crosstalk between 
mitochondrial dysfunction and oxidative stress [183]. Coun-
teracting mitochondrial dysfunction in VSMCs is an innova-
tive therapeutic strategy for diabetic-associated atherosclero-
sis. Autophagy is an adaptive stress response and degrades 
cells by lysosomal phagocytosis that is closely linked to the 
pathogenesis of diabetic vascular calcification. Mechanisti-
cally, upregulation of extracellular matrix protein periostin 
impairs the fusion of autophagosomes and lysosome that 
results in the blockade of autophagic flux in AGE-treated 
VSMCs [184]. Moreover, treatment with alpha-lipoic acid 
has a protective function on VSMCs in T2DM, significantly 
elevated  H2S levels, and downregulated autophagy through 
activation of the AMPK/mTOR pathway [185]. Further-
more,  H2S also inhibits the proliferation and promotes 
apoptosis of VSMCs. Current evidence suggests that hyper-
glycemia-caused VSMC apoptosis is linked to decreased 
expression of dopamine D1 receptor and cystathionine-γ-
lyase, a major enzyme for endogenous  H2S formation in 
diabetic mice [186].

Inhibition of VSMC apoptosis through administration of 
sitagliptin, a DPP-4 inhibitor, reduced atherosclerotic lesions 
in diabetic ApoE−/− mice through the reduction of oxidative 
stress, increased expression of β-catenin and suppressed pro-
duction of proinflammatory cytokines [187]. Both pyropto-
sis and iron overload of VSMCs decreased the thickness of 
the fibrous cap by triggering the loss of collagen and matrix, 
which promote plaque instability and rupture [188, 189]. 
A recent study showed that Ecklonia cava extract and PPB 
decreased pyroptosis in palmitate-treated endothelial cells 
and VSMCs, which alleviated cellular dysfunction, includ-
ing downregulating the expression of caspase-1, IL-1β, 
and IL-18 via inhibiting the TLR4/NF-κB pathway [89]. 
Moreover, studies revealed that treatment with metformin 
attenuated PA-stimulated ferroptosis and enhanced the anti-
oxidative capacity of VSMCs via NRF2 signaling activation 
[190]. These findings indicate a crucial role of VSMCs in 
the pathogenesis of diabetic atherosclerosis.

As described above, by adapting different phenotypes, 
VSMCs might have beneficial or maladaptive effects on 
atherogenesis and plaque stability. Hyperglycemia and 
hyperlipidemia stimulate abnormal proliferation, migra-
tion, and invasion of VSMCs from the middle layer to the 
lining layer of the artery and is a crucial process of accel-
erating cardiovascular complication in diabetes, which is 
characterized by pathological intimal thickening and for-
mation of extracellular lipid pools [172]. Additionally, in 
diabetic patients, increased NLRP3 inflammasome activ-
ity combined with elevated levels of pro-inflammatory 
cytokines (such as IL-1β, IL-18, and IL-1β) act on VSMCs, 
which increases monocyte-VSMC interactions and pro-
motes cell proliferation [124]. Of note, pathological intimal 
thickening can progress to fibroatheromas, form fibrous 
cap, and enlarge the necrotic core, which led to foam cell 
accumulation and insufficient efferocytosis of senescence 
and apoptotic VSMCs [191].

To sum up, the role of VSMCs in diabetic atherosclerosis 
remains to be studied. Which phenotype VSMCs transform 
into and how to affect the thickness of the fiber cap to influ-
ence plaque stability remain to be further investigated.

Conclusion and Perspectives

The above studies indicate that diabetes and atherosclerosis 
are closely correlated, including pathophysiological mecha-
nism and clinical relevance. In detail, insulin resistance, dys-
lipidemia, and hyperglycemia in diabetes lead to endothe-
lial dysfunction, promote proinflammatory M1 macrophage 
polarization, and induce VSMC proliferation, migration, and 
foam cell formation, which accelerate the progression of 
atherosclerosis and plaque rupture. However, the cellular 
heterogeneity in diabetic atherosclerotic plaques remains to 
be further explored. The different diabetes-associated ath-
erogenic factors are relevant to the different phases (initia-
tion, development, and thrombogenesis of atherosclerosis 
lesions). Therefore, the way to control the insulin resistance, 
dyslipidemia, and hyperglycemia is conducive to improv-
ing the subsequent cell pathological changes and further to 
inhibit atherosclerosis progression.

In the clinic, in addition to plaque formation, hyperglyce-
mia also has an impact on plaque stability, leading to acute 
coronary syndrome with high mortality of patients. Exten-
sive studies have indicated that hypoglycemic drugs play an 
anti-atherosclerotic role in improving lipid profiles, endothe-
lial disorders, and vascular inflammation. Randomized clini-
cal trials and many clinical studies have demonstrated the 
cardiovascular benefits of SGLT2i, GLP-1R agonist, DPP-4 
inhibitor, pioglitazone, acarbose, and metformin applied in 
diabetes mellitus patients. Besides, studies have confirmed 
that hypoglycemia drugs can stabilize atherosclerotic 
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plaques. Hence, it is suggested that appropriate glycemic 
control and reduction of risk factors are the most useful strat-
egies to protect against clinically diabetic atherosclerosis. 
However, some hypoglycemic agents have no significant 
cardiovascular protective effect, such as sulphonylureas 
and insulin. Thus, it should be stressed how to select drugs 
for diabetics’ patients with or without cardiovascular dis-
eases. In addition, since the concept of hyperglycemia was 
profoundly changed, the glycemic control should focus not 
only on reaching and maintaining optimal blood glucose as 
early as possible, but also on reducing transient intermittent 
hyperglycemia and glucose variability to extend time in the 
normal glucose range [192].

Besides existing researches, the mechanisms of anti-ath-
erosclerosis effects of hypoglycemic agents still need further 
elucidation. Furthermore, it is essential to reveal the signal-
ing pathways, identify specific potential drug targets, and 
ultimately decipher novel therapeutic approaches.
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