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Abstract
A non-invasive optical technique known as photoplethysmography (PPG) can be used to provide various physiological meas-
urements and estimations. PPG can be used to assess cardiovascular disease (CVD). Hypertension is a primary risk factor 
for CVD and a major health problem worldwide. PPG is popular because of its important applications in the evaluation of 
cardiac activity, variations in venous blood volume, blood oxygen saturation, blood pressure and heart rate variability, etc. 
In this study, we provide a comprehensive analysis of the extraction of various physiological parameters using PPG wave-
forms. In addition, we focused on the role of machine learning (ML) models used for the estimation of blood pressure and 
hypertension classification based on PPG waveforms to make future research and innovation recommendations. This study 
will be helpful for researchers, scientists, and medical practitioners working on PPG waveforms for monitoring, screening, 
and diagnosis, as a comparative study or reference.
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Introduction

According to the WHO (World Health Organization), an 
estimated 17.9 million deaths occur globally each year from 
cardiovascular disease (CVD), accounting for 31% of all 
deaths worldwide [1, 2]. The United Nations’ Sustainable 
Development Goals (SDGs) include a target to reduce pre-
mature mortality from non-communicable diseases, includ-
ing cardiovascular diseases, by one-third by 2030. CVD 
includes cerebrovascular disease, rheumatic heart disease, 
coronary heart disease, and other conditions that are related 
to the heart and blood vessels [1]. PPG is a non-invasive 
optical technique that measures the variation of transmitted 
and reflected light in terms of intensity [3]. It is a low-cost 

method, and the resultant signal has several components 
such as blood vessel wall movement, blood volume, and 
blood flow in arteries which are associated with cardiac 
activity [4, 5]. There are so many applications of PPG in 
healthcare. Many studies have claimed that PPG has the 
potential for screening, monitoring, and diagnosis of respira-
tory and cardiovascular disease and neurological disorders, 
etc. PPG is one of the best options for developing effective 
and affordable tools for real-time monitoring, screening, and 
diagnosis [4, 6]. Physiological measurements and estima-
tions play crucial roles in healthcare, research, and personal 
health management. They help doctors make decisions, track 
treatment progress, and identify abnormalities or deviations 
from normal physiological functioning.

A comparative analysis of PPG publications over the past 
23 years has been conducted. In this study, the data were 
obtained from the University of Toronto libraries accessed 
on 06 June 2023. We searched “photoplethysmography” and 
found the number of articles with the search criteria, i.e., 
search for “everything,” search scope “All libraries,” and 
language “Any language” with yearly publication. Two dif-
ferent filters were applied to determine the number of pub-
lished articles. We select the search filters “Any Field” and 
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“contains” with the search “photoplethysmography” photop-
lethysmography’ with respect to filter 1. As shown in Fig. 1, 
there has been a significant increase in published papers with 
respect to the year, and an exponential increase has been 
observed in the last 10 years. We selected the search filter 
“Title” and “contains exact phrase” with respect to filter 2. 
As shown in Fig. 2, there was a significant increase in the 
number of articles, but the total number of articles was less 
than that in Fig. 1.

Figure 3 shows a comparative analysis of PPG publica-
tions over the past 23 years from the well-known and trusted 
databases known as PubMed. The PubMed database is main-
tained by the National Center for Biotechnology Informa-
tion (NCBI) in the USA. The National Library of Medicine 
(NLM) is located at the National Institutes of Health (NIH). 
We searched “photoplethysmography” as the title. Figure 3 
clearly shows that there is a significant increase in the num-
ber of articles with respect to year. Moreover, Figs. 1, 2 and 
3 show a highly positive correlation between the number of 
published articles on photoplethysmography and the years 
2010–2022. Photoplethysmography is popular because of its 
important applications in the evaluation of cardiac activity, 
variations in venous blood volume, blood oxygen saturation, 
blood pressure, heart rate variability, etc.

The regulation of blood pressure in the human body is a 
complex and multivariate physiological process; therefore, 
PPG-based blood pressure estimation may not be sufficiently 
precise [7]. In other words, extracting accurate and precise 
information from the PPG signal is not easy. Numerous stud-
ies have been conducted to extract information from PPG 
signals. Some authors have used a combination of artificial 
intelligence (AI) and signal processing algorithms. Artifi-
cial intelligence (AI) models can learn complex patterns 
and waveform variations, enabling more accurate and effi-
cient feature extraction than traditional signal-processing 

methods. ML and deep learning (DL) algorithms are sub-
sets of AI that can be employed to process PPG signals and 
extract relevant features automatically.

This article’s primary contribution revolves around the 
comprehensive discourse on diverse physiological param-
eters leveraging PPG and AI/ML coupled with devising 
healthcare applications through a systematic meticulous 
review of published scientific literature or recent scholarly 
works. While the study’s objectives are diverse, our specific 
emphasis is directed towards the following points:

(a)	 Use of PPG techniques in the field of healthcare.
(b)	 Presenting an in-depth exposition of distinct physi-

ological measurements and estimations using PPG.
(c)	 Recent advancements in the utilization of machine 

learning techniques for blood pressure measurement 
via PPG are discussed.
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Fig. 1   Published articles trend on Utoronto with filter 1 (“Any Field” 
and “contains”)
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Fig. 2   Published articles trend on Utoronto with filter 2 (“Title” and 
“contains exact phrase”)
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Fig. 3   Published articles trend on PubMed (NCBI data)
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(d)	 Identify and discuss the different machine learning 
models used for hypertension classification based on 
PPG.

(e)	 Outlining prospective and future research directions in 
the field of PPG.

After elaborating on the introduction and objectives 
(“Introduction”), the remainder of this article is structured 
into four additional sections. In “Research methodology,” 
we expound on our research methodology, delving into the 
details of the data sources, including their identification and 
search processes, selection criteria, and eligibility param-
eters. “Results” encompasses the results of the present study. 
In this section, the different physiological measurements and 
estimations from PPG, machine learning models used for 
blood pressure estimation, and hypertension classification 
based on PPG are discussed comprehensively. Transitioning, 
in “Discussion,” our focus centers on elucidating the limita-
tions and challenges inherent to the study’s results. Finally, 
in “Conclusion and Future Research Recommendations,” 
we provide concluding remarks and recommendations for 
prospective avenues for future research.

Research Methodology

The Preferred Reporting Items for Systematic Reviews and 
Meta-analyses (PRISMA) is a well-known, recognized, and 
accepted guideline for reporting systematic reviews and 
meta-analyses [2, 4] Therefore, to achieve a valid formula-
tion for systematic reviews, the PRISMA 2020 guidelines 
were used for this study [8].

Data Source: Identification and Search

So many scientific databases and search engines are avail-
able to fulfill the criteria of our research. These include Web 
of Science, PubMed, Scopus, ProQuest, Elsevier, IEEEX-
plore, ScienceDirect, and ACM Digital Library. To search 
the research articles, the keywords “Photoplethysmography” 
or “PPG” or “Photoplethysmogram” were used to identify 
all relevant articles. The flowchart of the systematic review 
according to PRISMA 2020 is shown in Fig. 4. A total num-
ber of records were identified from the database and registers 
were 1474.

Fig. 4   PRISMA 2020 flow-
chart illustrating the involved 
steps undertaken for systematic 
review
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Eligibility Criteria

To ensure the inclusion of relevant studies, the following cri-
teria were used.

(a)	 The studies were published in peer-reviewed journals 
or conferences.

(b)	 The studies were published in English only as a lan-
guage.

(c)	 These studies focus more on a recent study, mostly from 
2018 to July 2023.

(d)	 If the study papers were not available in full text, then 
they should be excluded.

(e)	 If the keyword was not available in the title or abstract, 
then it should be excluded.

(f)	 If the studies were irrelevant to healthcare, they should 
be excluded.

Selection Process

The abstracts of all included studies were carefully studied 
and analyzed to determine their relevance in fulfilling our 
objectives. In this study, we do not use the automation tool 
for the selection process. The final study selection was per-
formed using the following stepwise criteria:

(a)	 The studies should be original if any studies were simi-
lar or duplicate it was excluded.

(b)	 Studies that demonstrate the use of photoplethysmog-
raphy in healthcare have been considered.

(c)	 The studies only on humans using photoplethysmogra-
phy were considered.

(d)	 The studies of the machine learning model used for 
hypertension classification based on photoplethysmog-
raphy were considered.

(e)	 Studies have focused on measuring blood pressure 
using machine learning from photoplethysmography.

Results

Within the framework of this systematic review, a total of 
68 studies were incorporated, after the meticulous screening 
process that followed the elimination of 987 initial studies. 
Each of these studies underwent a thorough examination and 
subsequent classification guided by their thematic alignment 
with our research objectives. The following subsequent sec-
tions present the outcomes of this study.

Physiological Parameters Using 
Photoplethysmography

Table 1 summarizes the different physiological param-
eters of the study using PPG. There are many clinical 

parameters studied using PPG in healthcare. PPG can be 
utilized in various ways in healthcare such as diagnosis, 
monitoring, and screening. Different PPG waveforms were 
used to extract features such as image PPG (iPPG), the first 
derivative of PPG (FDPPG), velocity waveform of PPG 
signal (VPG), the second derivative of PPG (SDPPG), and 
acceleration waveform of PPG signal (APG). The authors 
recently surveyed the literature on physiological param-
eters using PPG in healthcare, such as arterial stiffness [9], 
jugular venous pulse [10], heart rate [11–15], heart rate 
variability, blood pressure [16–19], blood glucose [20, 21], 
venous function [22, 23], oxygen saturation [24–27], fetal 
oxygen saturation [28, 29], respiratory rate [6], lipid pro-
filing [30, 31], cardiac output [32, 33], and ankle brachial 
pressure [10, 34]. Jugular venous pulse is used to detect 
right atrial and central venous pressure abnormalities in 
CVD diagnosis [10].

Blood Pressure Estimation Based on PPG Using 
Machine Learning Models

There is a comparison of different studies on blood pressure 
estimation based on PPG using machine learning models. 
The results are shown in Table 2. The performance of each 
model and database/number of subjects used in the study 
based on PPG with SBP and DBP are shown in Table 2. 
To evaluate the model’s performance, different criteria or 
evaluation metrics have been used. These are mean error 
(ME), mean absolute error (MAE), mean relative error 
(MRE), root mean square error (RMSE), standard deviation 
(STD) or (SD), and ME ± SD. In certain studies, such as 
those referenced in [37] and [38], the correlation coefficient 
or Karl–Pearson’s coefficient of correlation (r) is employed 
as an additional performance criterion.

Let Ei be the error corresponding to the reference or 
actual or true blood pressure ( BP

Truei
) and expected or pre-

dicted blood pressure ( BP
Predi

 ) in the i th observation or 
determination, then the error can be defined as follows:

Now, absolute error AE
i
 and relative error RE

i
 in the i th 

observation can be defined as:

The ME, MAE, MRE, RMSE, and STD are defined as 
follows:

(1)E
i
= BP
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i
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i
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Table 1   Enlisting a comparative analysis of various physiological parameters studied using photoplethysmography (PPG)

Studies Published year Total subject/dataset Age range (years) Compared with Physiological parameter

[9] 2021 12 20–35 N/A Arterial stiffness and blood 
pressure

[10] 2020 20 (15 males and 5 females) 23–31 ECG and arterial finger PPG 
signals for validation

Jugular venous pulse

[11] 2019 5 02–63 Calibrated capnobase dataset 
of 8-min readings of 42 cases

Heart rate

[16] 2018 N/A N/A OMRON BP765CAN Monitor 
(validated by Hypertension 
Canada)

Blood pressure

[17] 2018 25 (17 males and 8 females) 18–65 OMRON BP765CAN Monitor 
(validated by Hypertension 
Canada)

Blood pressure

[20] 2018 24 20–30 Pathology Laboratory meas-
urements

Blood glucose

[12] 2017 N/A N/A Not compared with any refer-
ence standard

Heart rate

[13] 2017 To be tested in the future N/A Standard heart rate measure-
ment device

Heart rate

[22] 2017 25 (16 females and 9 males) 34–85 Duplex scanning with GE 
Doppler color flow imaging 
scanner

Venous function

[14] 2017 10 (6 males and 4 females). 
Algorithm tested on 35 stand-
ard MIMIC data

N/A BIOPAC MP150 Heart rate

[33] 2016 40 (19 males and 21 females) 15–75 Standard Doppler echo method Cardiac output
[18] 2016 14 (6 males and 8 females) 22–55 Watch BP Office Blood pressure
[15] 2015 5 N/A Medical oximeter Heart rate, oxygen saturation
[24] 2015 10 (7 males and 3 females) N/A Wilcoxon signed-rank test Oxygen saturation
[28] 2015 1 N/A Ultrasonic Doppler fetal heart 

rate detector
Fetal oxygen saturation and fetal 

heart rate
[30] 2014 76 N/A Pathology laboratory measure-

ments
Lipid profiling

[6] 2014 4 (females) N/A Standard heart rate meter Respiratory rate
[25] 2014 1 N/A Clevemed BioRadio Oxygen saturation
[35] 2013 42 (29 children and 13 adults) N/A Capnometry Respiratory rate
[21] 2012 5 22–35 ARKRAY Glucocard TM 

0I-mini
Blood glucose

[36] 2012 Tested on 15819 beats from 
CSL data set

N/A Complex System Laboratory 
(CSL) Benchmark dataset

Respiratory rate

[23] 2011 Several volunteers N/A Classical measurement tech-
nique probably ultrasound 
method

Venous function

[19] 2010 23 (6 males and 17 females) 18–60 Sphygmomanometer (Sphy 
BPM) and automatic BP 
monitor (Auto BPM)

Blood pressure

[10] 2009 Total 64 limbs = 32 upper 
limbs and 32 lower limbs

N/A Auscultatory mercury sphyg-
momanometer

Ankle brachial pressure

[32] 2009 16 (8 males and 8 females) 22–34 Physio Flow PF-05 impedance 
cardiograph device

Cardiac output

[29] 2009 6 (healthy pregnant female) N/A Biosys IFM 500 Doppler ultra-
sound fetal monitor system

Fetal oxygen saturation and fetal 
heart rate

[31] 2007 15 20–59 10-element Windkessel model Lipid profiling
[26] 2005 1 N/A Control PPG signal from 

stationary hand
Oxygen saturation
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where N is the total number of observations (test segments 
or samples). The above performance criteria were used to 
measure systolic blood pressure (SBP) as well as diastolic 
blood pressure (DBP).

Several types of machine learning models can be used 
for blood pressure estimation using photoplethysmography 
signals. Linear regression [64], polynomial regression, or 
a support vector machine (SVM) [60, 61, 63] can be used 
to establish a relationship between the extracted features 
from PPG signals and blood pressure values. These models 
learn a mapping function between the input features and 
the target output (blood pressure) and can provide continu-
ous blood pressure estimates. Feedforward Neural Networks 
[40], multilayer perceptron (MLP), autoencoder [45, 47], 
modified U-net, Cycle Generative Adversarial Network [43], 
Residual Network (ResNet), and Gaussian Process Regres-
sion (GPR) [38] can be used for blood pressure estimation. 
Convolutional Neural Networks (CNN) [41] and Artificial 
Neural Networks (ANN) [46] are effective for learning spa-
tial features from PPG signals. They are particularly useful 
for analyzing the temporal patterns and morphological char-
acteristics of PPG waveforms. Recurrent Neural Networks 
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(RNN) [46], Long Short-Term Memory (LSTM) [42, 45], 
Bidirectional LSTM (Bi-LSTM) [48, 49], and gated recur-
rent units (GRU) [48] are suitable for modeling temporal 
dependencies in PPG signals. Ensemble models such as 
Gradient Boosting, CatBoost [38], and Adaptive Boosting 
(AdaBoost) [53, 54, 59] leverage the diversity of different 
models to obtain more accurate blood pressure estimates 
using PPG signals. Deep Neural Networks (DNN) [51] can 
be utilized to build complex models with multiple layers for 
blood pressure estimation.

Each ML model was applied to one of the well-known 
databases such as MIMIC, MIMIC II [66], MIMIC III [67], 
PPG-BP [68], VitalDB, and Queensland for measuring BP. 
As shown in Table 2, in studies [40, 44, 49, 52], they were 
used different databases with a smaller number of subjects. 
In a recent study by [39], they applied SVR, CatBoost, Light-
GBM, and XGBoost machine learning models to predict BP. 
In this study, they used PPG waveform from the MIMIC 
III database and extracted 38 features from three categories 
namely semi-classical signal analysis (SCSA), SDPPG, and 
PPG. The authors showed that the CatBoost algorithm was 
better than the SVR, LightGBM, and XGBoost algorithms. 
The CatBoost algorithm achieved a mean absolute error of 
5.37 mmHg with a standard deviation of 5.56 mmHg and 
2.96 mmHg with a standard deviation of 3.13 mmHg for sys-
tolic and diastolic blood pressure, respectively. A previous 
study [41] estimated a mean absolute error of 5.73 mmHg 
and 3.45 mmHg for SBP and DBP respectively by using the 
CNN learning model. Previous studies [42, 49, 52, 56] use 
an electrocardiogram (ECG) and PPG waveforms to measure 
SBP and DBP.

Machine Learning Model Used for Hypertension 
Classification

Hypertension (HT), also known as high blood pressure (high 
BP), stands as the primary risk factor for CVD. In 2015, a 
report by the World Health Organization (WHO) indicated 
that 1.13 billion people were suffering from hypertension (HT) 
[69]. The 7th report of the US Joint National Committee on 
Prevention, Detection, Evaluation, and Treatment of High 
Blood Pressure (JNC7) categorized the blood pressure level 

Table 1   (continued)

Studies Published year Total subject/dataset Age range (years) Compared with Physiological parameter

[34] 2005 43 N/A Continuous wave Doppler 
method

Disadvantage of CW Doppler 
method: prone to observer 
error

Ankle brachial pressure

[27] 2005 1 N/A Nellcor PPG Oxygen saturation

*N/A not available
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Table 2   Comparison of blood pressure estimation models used in different studies

Studies Published year ML model Database/number of 
subjects

Performance criteria SBP (mmHg) DBP (mmHg)

[39] 2023 CatBoost MIMIC III (38 features of 
SCSA, SDPPG, PPG)

Mean absolute error
Standard deviation of AE

5.37
5.56

2.96
3.13

[40] 2023 Feedforward Deep NN with 
ANN Model

25 subjects Mean absolute error
Mean error
Standard deviation of error

7.41
 − 4.02
10.40

3.32
 − 0.31
4.89

[41] 2022 CNN
(U-Net)

MIMIC III (942 subjects) Mean absolute error 5.73 3.45

[42] 2022 ResNet + LSTM MIMIC (PPG + ECG) Mean absolute error
Root mean squared error

4.18
5.68

2.28
2.99

[43] 2022 Cycle Generative Adver-
sarial Network

MIMIC II (90 subjects, 
PPG, ABP signal)

Mean absolute error
Root mean squared error

2.29
3.22

1.93
2.61

[44] 2022 ANN 30 subjects Mean absolute error
Mean error
Standard deviation of error

8.89
2.52
12.15

4.92
0.59
7.07

[45] 2021 LSTM-Autoencoder MIMIC II, 5289 subjects, 
PPG

Mean absolute error
Root mean squared error

4.05
5.25

2.41
3.17

[46] 2021 ANN + RNN VitalDB (1376 subjects, 28 
PPG features)

Mean absolute difference
Standard deviation of 

errors
Root mean squared error

5.07
6.92
6.92

2.86
3.99
3.99

[47] 2021 Autoencoder MIMIC II (PPG, ABP raw 
signals)

Mean absolute error 5.42 3.14

[48] 2021 Bi-LSTM PPG-BP Mean absolute error
Root mean squared error

4.93 ± 4.40
7.38

4.18 ± 4.43
8.23

[48] 2021 GRU​ PPG-BP Mean absolute error
Root mean squared error

3.68 ± 4.28
6.11

5.34 ± 5.24
8.22

[49] 2021 Bi-LSTM Anonymous (18 patiens; 
ECG, PPG, BCG fea-
tures)

Mean absolute error
Root mean squared error

5.82
6.82

5.24
6.06

[37] 2021 Modified U-net MIMIC I, MIMIC III (PPG 
raw)

Mean absolute error
Standard deviation
Root mean squared error
Pearson’s correlation Coef-

ficient

3.68
4.42
5.75
0.98

1.97
2.92
3.52
0.97

[50] 2021 Bi-GRU + GRU + attention MIMIC II (PPG-500 seg-
ments, 59 PPG features)

MAE
SD

2.58
 ± 3.35

1.26
 ± 1.63

[51] 2020 DNN MIMIC II (PPG features, 
9000 subjects)

Mean absolute error
Root mean squared error

3.21
4.63

2.23
3.21

[38] 2020 Gaussian Process Regres-
sion (GPR)

222 recordings, 126 Mean absolute error
Mean squared error
Root mean squared error
Coefficient of correlation

3.02
45.49
6.74
0.95

1.74
12.89
3.59
0.96

[52] 2020 CNN + Bi-GRU + Attention 15 subjects (ECG, PPG, 
BCG features)

Mean absolute error
Root mean squared error
SD

4.06
5.42
4.04

3.33
4.30
3.42

[53] 2020 AdaBoost MIMIC II (19 PPG fea-
tures)

Mean absolute error
Standard deviation of AE
Coefficient of correlation

8.22
10.38
0.78

4.17
4.22
0.72

[54] 2019 AdaBoost MIMIC II (1323 PPG 
signal, PPG, SDPPG 
features)

Mean absolute error
Root mean squared error
Standard deviation of 

errors
Standard deviation of AE

3.97
8.9
8.90
7.99

2.43
4.18
4.17
3.37

[55] 2019 Deep learning (spectro-
temporal ResNet)

MIMIC III, 510 subjects Mean absolute error 9.43 6.88
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of adults into normotension (NT), prehypertension (PHT), 
and hypertension (HT) [70]. Many studies have been con-
ducted into three classes namely NT vs. PHT, NT vs. HT, 
and (NT + PHT) vs. HT. Many assessment criteria are avail-
able in the literature such as specificity, sensitivity, accuracy, 
F1-score, precision, area under the curve (AUC) and receiver 
operating characteristic curve (ROC), Matthew’s correlation 
coefficient, and Cohen’s kappa coefficient. Mostly, the authors 
used the F1-score as a performance criterion of the ML mod-
els. In Table 3, we show the F1-score as a performance cri-
terion of the model achieved by the ML classifier for hyper-
tension classification. The F1-score was calculated using the 
following formula [71]:

where
(9)

F1Score = 2 ×
Precision × Recall

Precision + Recall
=

TP

TP +
1

2
(FP + FN)

(10)Precision =
TP

TP + FP

where TP = true positive, FP = false positive, FN = false 
negative.

In Table 3, detailed descriptions related to the hyper-
tension classification model are shown such as database, 
required signal, and features used by the researchers. A 
variety of ML classifiers were proposed for hypertension 
classification. Some of the widely used algorithm/ML 
classifiers are k-Nearest Neighbors (KNN) [7, 75], Naïve 
Bayes [74], Logistic Regression [75], Random Forest [74], 
SVM [72], AdaBoost [75], and Bagged Tree [75]; these are 
ease of modelling for a complex problem. In our finding, 
some authors proposed modern neural network architec-
tures such as LightGBM [70], AlexNet [73], DenseNet 
[73], GoogleNet [73, 76], and ResNet [73]. In the study 
[69], they used a hybrid classifier known as Adaptive 
Neuro-fuzzy Inference System (ANFIS), a combination 
of ANN and fuzzy-set theory and widely used in medical 
diagnostic systems.

(11)Recall =
TP

TP + FN

Table 2   (continued)

Studies Published year ML model Database/number of 
subjects

Performance criteria SBP (mmHg) DBP (mmHg)

[56] 2018 DNN 85 subjects (ECG, PPG 
features)

Mean absolute difference
Root mean squared error

3.31
4.60

2.22
3.15

[57] 2018 Deep learning (long short‐
term memory (LSTM)

84 subjects Root mean squared error 3.73 2.43

[58] 2018 Autoregressive moving 
average (ARMA) models

15 subjects Root mean squared error 6.49 4.33

[59] 2017 AdaBoost MIMIC, 942 subjects, PAT, 
HR time interval

Mean absolute error
Standard deviation
Coefficient of correlation

11.57
10.09
0.59

5.35
6.14
0.48

[60] 2017 Neural Network MIMIC II, 910 subjects Mean absolute error
Root mean square deviation

13.4
11.6

6.9
5.9

[60] 2017 SVM MIMIC II, 910 subjects Mean absolute error
Root mean square deviation

8.54
10.9

4.34
5.8

[61] 2017 SVM Queensland (7000 samples 
from 32 patients)

Mean absolute error 11.64 7.62

[61] 2017 Neural Network
(9 input neurons)

Queensland (7000 samples 
from 32 patients)

Mean absolute error 11.89 8.83

[62] 2016 FFT-based ANN MIMIC II Beat-to-beat fitting error 0.06 ± 7.08 0.01 ± 4.66
[63] 2015 SVM MIMIC II (1000) Mean absolute error 12.38 6.34
[64] 2013 Linear Regression MIMIC, more than 15,000 

samples
Mean absolute error
Mean relative error

9.80 ± 8.09
8.94 ± 7.57

5.88 ± 5.11
10.26 ± 8.83

[64] 2013 Neural Network
(4 input neurons)

MIMIC, more than 15,000 
samples

Mean absolute error
Mean relative error

5.19 ± 5.01
4.73 ± 4.59

2.91 ± 2.92
5.02 ± 4.80

[64] 2013 Neural Network
(12 input neurons)

MIMIC, more than 15,000 
samples

Mean absolute error
Mean relative error

3.80 ± 3.46
3.48 ± 3.19

2.21 ± 2.09
3.90 ± 3.51

[65] 2009 Proprietary Algorithm MIMIC, 34 recordings, 25 Mean squared error 70.05 35.08
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Table 3   Analytical comparison of hypertension classification models used in various studies

Studies Published year Database Signal 
required

Features used Class Training and 
testing tatio 
(%)

ML classifier F1-score (%)

[69] 2023 DataCite
(657 data 

records
219 patients)

PPG 20 top features 
using cor-
relation with 
SBP and 
DBP

NT(237) vs. 
PHT(258)

NT(237) vs. 
HT1(102)

NT(237) vs. 
HT2(60)

80:20 ANFIS 92.00
98.5
98.3

[70] 2023 MIMIC III
(121 subjects, 

2958 seg-
ments for 
classifica-
tion)

PPG PPG-189 
features

NT (1158) vs. 
PHT (950)

NT (1158) vs. 
HT (850)

NT + PHT 
(2108) vs 
HT (850)

70:30 LightGBM 86.57
94.18
91.70

[70] 2023 MIMIC III
(121 subjects)

PPG VPG-200 
features

NT (1158) vs. 
PHT (950)

NT (1158) vs. 
HT (850)

NT + PHT 
(2108) vs 
HT (850)

70:30 LightGBM 89.41
94.85
91.93

[70] 2023 MIMIC III
(121 subjects)

PPG APG-190 
features

NT (1158) vs. 
PHT (950)

NT (1158) vs. 
HT (850)

NT + PHT 
(2108) vs 
HT (850)

70:30 LightGBM 86.21
94.86
89.45

[70] 2023 MIMIC III
(121 subjects)

PPG PPG-189 
features,

VPG-200 
features

NT (1158) vs. 
PHT (950)

NT (1158) vs. 
HT (850)

NT + PHT 
(2108) vs 
HT (850)

70:30 LightGBM 89.58
95.84
92.5

[70] 2023 MIMIC III
(121 Subjects)

PPG PPG -189 
features,

APG-190 
features

NT (1158) vs. 
PHT (950)

NT (1158) vs. 
HT (850)

NT + PHT 
(2108) vs 
HT (850)

70:30 LightGBM 88.62
97.01
92.18

[70] 2023 MIMIC III
(121 subjects)

PPG VPG-200 
features,

APG-190 
features

NT (1158) vs. 
PHT (950)

NT (1158) vs. 
HT (850)

NT + PHT 
(2108) vs 
HT (850)

70:30 LightGBM 89.08
96.51
92.06

[70] 2023 MIMIC III
(121 subjects)

PPG PPG -189 
features

VPG-200 
features

APG-190 
features

NT (1158) vs. 
PHT (950)

NT (1158) vs. 
HT (850)

NT + PHT 
(2108) vs 
HT (850)

70:30 LightGBM 90.18
97.51
92.77

[72] 2022 Clinical data-
PPG-BP

(219 subjects)

PPG 19 WST fea-
tures

NT (37%) vs. 
PHT (38%)

75:25 SVM 76.00
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Table 3   (continued)

Studies Published year Database Signal 
required

Features used Class Training and 
testing tatio 
(%)

ML classifier F1-score (%)

[72] 2022 Clinical data-
PPG-BP

(219 subjects)

PPG Age, BMI, 
heart rate

NT (37%) vs. 
PHT (38%)

75:25 SVM 69.57

[72] 2022 Clinical data-
PPG-BP

(219 subjects)

PPG Age, BMI, 
heart rate, 
plus 19 WST 
features

NT (37%) vs. 
PHT (38%)

75:25 Early fusion
KNN

69.77

[72] 2022 Clinical data-
PPG-BP

(219 subjects)

PPG Age, BMI, 
heart rate, 
plus 19 WST 
features

NT (37%) vs. 
PHT (38%)

75:25 Late fusion
(SVM + SVM + LR)

72.34

[73] 2021 MIMIC
(582 data for 

10 s each)

PPG PPG, VPG, 
APG

NT vs. PHT
NT vs. HT
NT + PHT vs. 

HT

70:30 AlexNet
(8—layers)

85.80
98.90
93.54

[73] 2021 MIMIC
(582 data for 

10 s each)

PPG PPG, VPG, 
APG

NT vs. PHT
NT vs. HT
NT + PHT vs. 

HT

70:30 ResNet18
(18—layers)

84.37
94.09
88.52

[73] 2021 MIMIC
(582 data for 

10 s each)

PPG PPG, VPG, 
APG

NT vs. PHT
NT vs. HT
NT + PHT vs. 

HT

70:30 GoogLeNet
(22—layers)

80.03
89.24
83.46

[73] 2021 MIMIC
(582 data for 

10 s each)

PPG PPG, VPG, 
APG

NT vs. PHT
NT vs. HT
NT + PHT vs. 

HT

70:30 ResNet
(34—layers)

84.77
94.01
88.39

[7] 2020 PPG-BP 
figshare

(121 subjects)

PPG PPG features NT (46) vs. 
PHT (41)

NT (46) vs. 
HT (34)

NT + PHT 
(87) vs HT 
(34)

N/A KNN 100
100
90.90

[74] 2020 MIMIC II
(526906 

items)

PPG PPG features NT (353840) 
vs. PHT 
(116879)

NT (353840) 
vs. HT 
(56187)

NT + PHT 
(470,719) vs 
HT (56187)

Vary from 
class to class

Random Forest 85.70
98.30
93.30

[74] 2020 MIMIC II
(526906 

items)

PPG PPG features NT (353840) 
vs. PHT 
(116879)

NT (353840) 
vs. HT 
(56187)

NT + PHT 
(470719) vs 
HT (56187)

Vary from 
class to class

Naive Bayes 82.80
99.40
91.60
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Table 3   (continued)

Studies Published year Database Signal 
required

Features used Class Training and 
testing tatio 
(%)

ML classifier F1-score (%)

[75] 2018 MIMIC
(121 subjects)

PPG and ECG PAT and 10 
PPG features

NT (46) vs. 
PHT (41)

NT (46) vs. 
HT (34)

NT + PHT 
(87) vs HT 
(34)

70:30 AdaBoost Tree 74.67
90.15
79.71

[75] 2018 MIMIC
(121 subjects)

PPG 10 PPG fea-
tures

NT (46) vs. 
PHT (41)

NT (46) vs. 
HT (34)

NT + PHT 
(87) vs HT 
(34)

70:30 AdaBoost Tree 72.76
80.11
63.79

[75] 2018 MIMIC
(121 Subjects)

PPG and ECG PAT features NT (46) vs. 
PHT (41)

NT (46) vs. 
HT (34)

NT + PHT 
(87) vs HT 
(34)

70:30 AdaBoost Tree 66.88
68.10
53.19

[75] 2018 MIMIC
(121 subjects)

PPG and ECG PAT and 10 
PPG features

NT (46) vs. 
PHT (41)

NT (46) vs. 
HT (34)

NT + PHT 
(87) vs HT 
(34)

70:30 Bagged Tree 83.88
94.13
88.22

[75] 2018 MIMIC
(121 subjects)

PPG 10 PPG fea-
tures

NT (46) vs. 
PHT (41)

NT (46) vs. 
HT (34)

NT + PHT 
(87) vs HT 
(34)

70:30 Bagged Tree 78.48
84.98
75.32

[75] 2018 MIMIC
(121 subjects)

PPG and ECG PAT features NT (46) vs. 
PHT (41)

NT (46) vs. 
HT (34)

NT + PHT 
(87) vs HT 
(34)

70:30 Bagged Tree 66.95
68.10
53.19

[75] 2018 MIMIC
(121 subjects)

PPG and ECG PAT and 10 
PPG features

NT (46) vs. 
PHT (41)

NT (46) vs. 
HT (34)

NT + PHT 
(87) vs HT 
(34)

70:30 Logistic Regression 63.92
79.11
62.26

[75] 2018 MIMIC
(121 subjects)

PPG 10 PPG fea-
tures

NT (46) vs. 
PHT (41)

NT (46) vs. 
HT (34)

NT + PHT 
(87) vs HT 
(34)

70:30 Logistic Regression 63.66
67.94
47.10
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Discussion

The British Hypertension Society (BHS) and the Associa-
tion for Advancement of Medical Instrumentation (AAMI) 
are two types of performance indicators used as BP moni-
toring global standard [52]. As shown in Table 4, the BHS 
standard provides the Grades namely A, B, C, and D accord-
ing to the different ranges of MAE with the proportion of 
subjects. According to BHS standard, the model achieved at 
least grade B for SBP and DBP predictions [47].

As shown in Table 5, the AAMI standard sets establish 
the range for the mean absolute error (MAE), standard devi-
ation (SD), and size of the population (subjects or sample).

The performance criteria of the SBP and DBP estimation 
models were evaluated using MAE ± SD. As mentioned in 
Table 5, MAE and SD should be less than 5 mmHg and 
8 mmHg respectively according to AAMI standard. As 
shown in Table 2, many ML models do not fulfill the AAMI 

Table 3   (continued)

Studies Published year Database Signal 
required

Features used Class Training and 
testing tatio 
(%)

ML classifier F1-score (%)

[75] 2018 MIMIC
(121 subjects)

PPG and ECG PAT features NT (46) vs. 
PHT (41)

NT (46) vs. 
HT (34)

NT + PHT 
(87) vs HT 
(34)

70:30 Logistic Regression 56.85
67.85
52.38

[75] 2018 MIMIC
(121 subjects)

PPG and ECG PAT and 10 
PPG features

NT (46) vs. 
PHT (41)

NT (46) vs. 
HT (34)

NT + PHT 
(87) vs HT 
(34)

70:30 KNN 84.34
94.84
88.49

[75] 2018 MIMIC
(121 subjects)

PPG 10 PPG fea-
tures

NT (46) vs. 
PHT (41)

NT (46) vs. 
HT (34)

NT + PHT 
(87) vs HT 
(34)

70:30 KNN 78.62
86.94
78.44

[75] 2018 MIMIC
(121 subjects)

PPG and ECG PAT features NT (46) vs. 
PHT (41)

NT (46) vs. 
HT (34)

NT + PHT 
(87) vs HT 
(34)

70:30 KNN 53.93
54.08
53.01

[76] 2018 MIMIC
(121 subjects)

PPG CWT scalo-
gram

NT (46) vs. 
PHT (41)

NT (46) vs. 
HT (34)

NT + PHT 
(87) vs HT 
(34)

80:20 GoogLeNet 80.52
92.55
82.95

Table 4   Grade and MAE value with BHS Standard

BHS grade Proportion of the subjects with MAE

MAE ≤ 5 mmHg MAE ≤ 10 mmHg MAE ≤ 15 mmHg

A 60% 85% 95%
B 50% 75% 90%
C 40% 65% 85%
D Worse than C

Table 5   AAMI International Standard Range

Mean absolute error Standard deviation Subjects

 ≤ 5  ≤ 8  ≥ 85
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standard for evaluating SBP such as [39, 40, 53, 60, 61, 
63]. Moreover, as shown in Table 1, many studies were per-
formed with less than 15 subjects which was insufficient 
because the AAMI standards require at least 85 subjects.

A recent study done by [70] achieved a higher F1-score 
with LightGBM ML classifier for hypertension when they 
used 189 features from PPG, 200 features from VPG, and 
190 features from APG. In their study [73], they applied 
deep learning architectures namely AlexNet, ResNet, and 
GoogLeNet based on the Hilbert–Huang Transform (HHT) 
method to predict the hypertension level and achieved higher 
F1-scores using AlexNet than ResNet and GoogLeNet. They 
applied the model on the MIMIC dataset and PPG, VPG, 
and APG features were used. In another study [7] were pro-
posed a KNN model to classify the BP applied on PPG–BP 
figshare data. The PPG–BP figshare database [68] was 
collected from 219 subjects while they used 121 subjects 
which were divided into normotensive (46 subjects), pre-
hypertensive (41 subjects), and hypertensive (34 subjects). 
The F1-scores with three classification trials as NT vs. PHT, 
NT vs. HT, and NT + PHT vs. HT. were 100%, 100%, and 
90.90%, respectively. They showed that the KNN model is 
superior to the model proposed by [75] (KNN, AdaBoost, 
Bagged Tree, Logistic Regression) whereas Liang et al. 
2018a used the MIMIC database, PPG, and PAT features. 
The disadvantage of extracting PPG features is the require-
ment for the finest PPG waveform [72]. Moreover, calculat-
ing PAT features from PPG and ECG signals is complicated 
because it requires stable and high-quality synchronized 
waveforms.

Conclusion and Future Research 
Recommendations

This study offers a systematic review of physiological meas-
urements and estimations obtained using photoplethys-
mography (PPG). This has significant clinical relevance in 
various healthcare domains such as diagnosis, monitoring, 
and screening. It includes the capabilities and constraints 
of PPG usage through a systematic analysis of diverse 
research in healthcare and the advancement of machine 
learning methods for estimation and classification. Thus, 
this study empowers researchers and clinicians with the 
knowledge required to make informed decisions regarding 
PPG utilization. The outcomes of this thorough investigation 
revealed that PPG holds potential for healthcare diagnosis, 
monitoring, and screening, particularly when combined with 
machine learning (ML) or deep learning (DL) algorithms 
to enhance computational capacity and achieve heightened 
accuracy. However, certain gaps in the existing literature are 
still evident and that will be undertaken by future studies. 
According to our findings, many studies have compared the 

accuracy of the ML model without any consideration of the 
database and features used in the model. To achieve higher 
accuracy with the ML/DL model, the data should be more 
aligned, accurate, and precise, which is a significant chal-
lenge for PPG. Advanced deep learning frameworks, such 
as LightGBM, AlexNet, DenseNet, GoogleNet, and ResNet, 
have the potential to yield superior accuracy. However, they 
require extensive training time, heightened processing capa-
bilities, and increased resources. Consequently, these frame-
works can substantially amplify the computational intrica-
cies of the system [39].

Based on the literature exploration, proposing recommen-
dations that can be considered to solve clinical problems by 
using PPG as follows: (i) early precise detection and pre-
diction—investigate the potential of PPG-derived features 
and machine learning algorithms for early detection and 
prediction of cardiovascular diseases, such as heart failure, 
hypertension, and arrhythmias; (ii) multi-modal analysis—
explore the integration of PPG with other physiological sig-
nals, such as electrocardiography (ECG) and accelerometer 
data, to develop a comprehensive and accurate cardiovascu-
lar health monitoring system; (iii) novel biomarkers—iden-
tify novel PPG-based biomarkers that can provide insights 
into cardiovascular health, such as arterial stiffness, pulse 
wave velocity, and cardiac output, and correlate these bio-
markers with disease progression; (iv) personalized risk 
assessment—develop a personalized risk assessment model 
that utilizes PPG data along with patient-specific informa-
tion (age, sex, medical history) to estimate an individual’s 
risk of developing cardiovascular diseases; (v) ambulatory 
monitoring—design wearable PPG devices for continuous 
ambulatory monitoring, allowing for real-time tracking of 
cardiovascular parameters during daily activities and sleep, 
which could aid in understanding disease patterns; (vi) stress 
and emotional analysis—explore the relationship between 
PPG signals and stress levels or emotional states, as chronic 
stress is a risk factor for cardiovascular diseases. Develop 
algorithms to detect stress-induced changes in PPG patterns 
and (vii) large-scale data analysis—conduct large-scale data 
analysis using PPG data from diverse populations to uncover 
potential disparities and variations in cardiovascular health 
and disease outcomes.

While PPG is a valuable and convenient tool for physi-
ological measurement and estimation, it may not be as accu-
rate or reliable as more direct and invasive measurement 
methods in certain clinical scenarios. There are various fac-
tors such as motion artifacts, ambient light interference, skin 
pigmentation, and device calibration that can affect the accu-
racy of PPG measurements. Therefore, proper calibration 
and consideration of these factors are essential for obtaining 
meaningful and reliable physiological data from PPG. The 
monitoring of mental health based on PPG technology is 
an exciting field, but more collaboration is needed between 
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software engineers, sensor manufacturers, and medical prac-
titioners to provide a jumpstart [4].
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