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Abstract
Mesenchymal stem cells (MSCs) can be differentiated into cardiac, endothelial, and smooth muscle cells. Therefore, MSC-
based therapeutic approaches have the potential to deal with the aftermaths of cardiac diseases. However, transplanted stem 
cells rarely survive in damaged myocardium, proposing that paracrine factors other than trans-differentiation may involve in 
heart regeneration. Apart from cytokines/growth factors, MSCs secret small, single-membrane organelles named exosomes. 
The MSC-secreted exosomes are enriched in lipids, proteins, nucleic acids, and microRNA (miRNA). There has been an 
increasing amount of data that confirmed that MSC-derived exosomes and their active molecule microRNA (miRNAs) 
regulate signaling pathways involved in heart repair/regeneration. In this review, we systematically present an overview of 
MSCs, their cardiac differentiation, and the role of MSC-derived exosomes and exosomal miRNAs in heart regeneration. In 
addition, biological functions regulated by MSC-derived exosomes and exosomal-derived miRNAs in the process of heart 
regeneration are reviewed.

Keywords  Cardiovascular diseases · Mesenchymal stem cells · Extracellular vesicles · Exosomes · Heart regeneration · 
MicroRNA

Abbreviations
CVDs	� Cardiovascular diseases
MSCs	� Mesenchymal stem cells
miRNAs	� microRNA
BM-MSCs	� Bone marrow MSCs
AT-MSCs	� Adipose tissue-derived MSCs
UC-MSCs	� Umbilical cord MSCs
ESC-MSCs	� Embryonic stem cell-derived MSCs
iPSC-MSCs	� Induced pluripotent stem cell-derived 

MSCs
5-aza	� 5-Azacytidine
AA	� Ascorbic acid
BMP2	� Bone morphogenetic protein
DMSO	� Dimethylsulfoxide

EVs	� Extracellular vesicles
ILVs	� Intraluminal vesicles
MVB	� Multivesicular body
ESCRT​	� Endosomal sorting complexes required for 

transport
VEGF	� Vascular endothelial growth factor
MI	� Myocardial infarction
HUVEC	� Human umbilical vein endothelial cell
EGF	� Epidermal growth factors
PDGF	� Platelet-derived growth factors
FGF	� Fibroblast-derived growth factors
TGF	� Transforming growth factors
NF-ĸB	� Nuclear factor ĸB
Ang1	� Angiopoietin-1
Flk1	� Fetal liver kinase-1
Vash1	� Vasohibin-1
EPHB2	� Ephrin type-B receptor-2
NRP2	� Neuropilin-2
SEMA5B	� Semaphoring-5B
NCOA1	� Nuclear receptor coactivator-1
MAZ	� MYC-associated zinc finger protein
ALOX5	� Arachidonate 5-Lipoxygenase
PPM1A	� Protein phosphatase-1A
ROS	� Reactive oxygen species
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PI3K	� Phosphoinositide 3-kinase
miRISC	� miRNA-induced silencing complex
SRF	� Serum response factor
MEF2	� Myosin enhancer factor-2
MRF	� Myogenic regulatory factor
CHD	� Congenital heart disease
Tbx5	� T-box transcription factor-5
ANF	� Atrial natriuretic factor
BNP	� Brain natriuretic peptide
PTEN	� Phosphatase and tensin homolog
SOX-6	� SRY-box transcription factor-6
CTGF	� Connective tissue growth factor
HDAC4	� Histone deacetylase-4
Hand	� Hand transcription factor-2
Dll-1	� Delta-like 1
Dab2	� Disabled homolog-2
IGF1	� Insulin-like growth factor-1
CXCR4	� Chemokine receptor type 4
CMs	� Cardiomyocytes
DU145	� Human prostate cancer cell line
hECTs	� Human-engineered cardiac tissue
CSCs	� Cardiac stem cells
HMGA2	� High-mobility group AT-Hook 2
EZH2	� Enhancer of zeste homolog 2
EMT	� Epithelial-mesenchymal transition
LV	� Left ventricular
AMP	� Adenosine 5′-monophosphate
OS	� Oxidative stress
TIMPs	� Tissue inhibitor of matrix 

metalloproteinases
MMPs	� Matrix metalloproteases

Introduction

Cardiovascular diseases (CVDs) are the major cause of 
death throughout the world [1, 2]. A number of therapeu-
tic approaches for CVDs are currently under practice such 
as drugs (ACEI/ARB/β-blockers), percutaneous coronary 
intervention, and artery bypass grafting [3–6]. However, all 
of the above mentioned strategies only allow to relieve the 
symptoms and delay the offset of disease progression but 
cannot assist to resolve the fundamental problems of regen-
eration in damaged cardiac tissue. Cardiomyocytes are ter-
minally differentiated cells and thus fail to repair themselves 
after the damage occurs by CVDs. Therefore, fibroblasts 
take the place of injured cardiomyocytes and ultimately lead 
to ventricular remodeling and heart failure [7]. Modern tech-
niques such as cell-based regenerative approach intend to 
replace the dead cardiomyocytes with healthy cardiac cells.

Mesenchymal stem cells (MSCs) are considered an ideal 
candidate for cardiac repair and regeneration due to their 
remarkable properties such as abundant availability, immune 

modulation, and non-teratogenicity [8, 9]. The role of MSCs 
in cardiac differentiation is demonstrated by numerous stud-
ies [10, 11]. Various pharmacological, chemical, genetic, 
and biological factors have been reported in multiple stud-
ies for inducing cardiac differentiation [12–15]. However, 
stem cell-based therapies have generally failed to produce 
significant improvement in heart function [16]. Studies show 
that the anti-apoptotic, anti-inflammatory, and anti-fibrotic 
properties of MSCs are mediated through paracrine factors 
(i.e., secretion of cytokines, growth factors, exosomes, and 
microRNA (miRNAs)) [17–21]. Exosomes are enriched in 
cytokines, growth factors, lipids, and miRNAs and actively 
participate in cell communication and signaling processes 
[22]. More recently, studies using MSC-derived exosomes 
and exosomal miRNAs have shown encouraging outcomes 
in terms of the regeneration of damaged hearts [23].

Numerous cutting-edge studies have demonstrated the 
regulatory potential of miRNAs generated from exosomes 
to support myocardial regeneration. Herein, we review the 
cardiomyogenic potential of mesenchymal stem cells with 
a focus on the involvement of MSC-derived exosomes and 
exosomal miRNAs in the process and also present an over-
view focusing on the cellular functions affected by MSC-
secreted exosomes and exosomal miRNAs in the process of 
heart regeneration.

Mesenchymal Stem Cells

MSCs are non-hematopoietic, multipotent, adherent cells 
that can be differentiated into osteoblasts, chondrocytes, 
and adipocytes [24–26]. Phenotypically, MSCs comprise a 
population of cells with distinct physiology, morphology, 
and surface markers [27]. There is a vast variety of sur-
face receptors present on MSCs such as extracellular matrix 
proteins, adhesion protein molecules, cytokines, and growth 
factor that gives MSCs particular functions and properties. 
The MSCs express cluster of differentiation (CD) markers, 
such as CD-44, CD-105, CD-106, CD-166, CD-29, CD-73, 
CD-90, CD-117, Sca-1, and STRO-1 [28–31]. Similarly, the 
identification of MSCs can be confirmed by the absence of 
hematopoietic stem cell-related differentiation markers, i.e., 
CD-11, CD-14, CD-34, and CD-45 [17, 29]. In addition to 
strong self-renewal and multipotency, MSCs also have the 
following three major properties: (i) immune-regulation, 
(ii) low immunogenicity, and (iii) homing potential [32]. 
Therefore, MSCs are a reliable cell source that can be used 
in damaged tissue/organs caused by aging and pathological 
changes. MSCs can be isolated from nearly all the tissues of 
the body, including adult tissues (i.e., bone marrow, adipose 
tissues, peripheral blood, skeletal muscles, tendons, synovial 
fluid, brain, dermis, and dental pulp), perinatal tissues (i.e., 
umbilical cord and amnion), and pluripotent stem cells (i.e., 
induced pluripotent stem cells and embryonic cells) [33, 34]. 
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Bone marrow MSCs (BM-MSCs), adipose tissue-derived 
MSCs (AT-MSCs), and umbilical cord MSCs (UC-MSCs) 
have been reported to be safe in clinical settings. How-
ever embryonic stem cell-derived MSCs (ESC-MSCs) and 
induced pluripotent stem cell-derived MSCs (iPSC-MSCs) 
have the advantage over other sources in terms of their high 
proliferation and unlimited expansion with consistent qual-
ity [34].

Cardiac Differentiation of Mesenchymal Stem Cells

Regenerative medicine uses the differentiation and homing 
potential of MSCs to treat injured tissues [35, 36]. The clini-
cal use of MSCs started in the late 90s and continued and 
consequently established the virtue of MSCs in the treatment 
of ischemic heart diseases. There are multiple cell culture 
conditions that are being used to induce cardiac differentia-
tion in MSCs [37]. Chemical analogs such as 5-azacytidine 
(5-aza), ascorbic acid (AA), glycoproteins such as bone mor-
phogenetic protein (BMP2), and some other compounds like 
angiotensin II and dimethylsulfoxide (DMSO) are in prac-
tice to enhance cardiac differentiation. Moreover, genetic 
modification, transcription factors, and cardiomyocyte lysis 
medium have also been used in various studies [12, 21, 
38–40]. In 2022, Poomani et al. [41] extensively reviewed 
the research studies conducted to evaluate the therapeutic 
effects of MSCs in cardiac diseases and highlighted the three 
main functions of MSCs that involve in cardiac repair and 
regeneration. These include (1) the mass production of new 
cardiomyocytes, (2) the development and stimulation of 
endogenous cardiac stem cells (CSCs), and (3) the mainte-
nance of a new vascular system [41]. However, the respec-
tive study indicates the unsatisfactory results of MSC trans-
plantation due to the poor viability and survival in infarcted 
tissue of the myocardium. To overcome that inauspicious 
outcome, researchers are focusing on exosomes and exoso-
mal miRNA-based cell free therapeutic approaches, which 
may represent promising treatment options for heart patients.

Exosomes

Extracellular vesicles (EVs) such as apoptotic bodies, 
exosomes, microvesicles, and macrovesicles have different 
structural and functional characteristics [42, 43]. The term 
‘EVs’ has been suggested to be used in modern nomencla-
ture by the International Society for Extracellular Vesicles, 
which is employed for two or more classes of EVs, which 
may be due to the lack of standardization procedures for both 
isolation and characterization of EVs. In this review, we use 
the term ‘exosome’ because of their specific origin and pres-
ence of widely accepted surface markers [44]. EVs secrete 
proteins, lipids, nucleic acids, and miRNAs which play a 
vital role in intercellular signaling [45]. Exosomes are the 

class of EVs with a size range between 30-150nm in diam-
eter [46]. The biogenesis of exosomes occurs by two path-
ways: (i) classic pathway and (ii) direct pathway. Exosome 
synthesis in the classic pathway starts with the endocytosis 
of transmembrane proteins, followed by their trafficking to 
early endosomes, then in late endosomes, where they mature 
into intraluminal vesicles (ILVs). The late endosomes with 
loaded ILVs are termed as ‘multivesicular body (MVB).’ 
MVBs are formed by two mechanisms, i.e., endosomal 
sorting complexes required for transport (ESCRT) depend-
ent and independent mechanisms. MVBs either undergo 
fusion with lysosomes and get degraded or get infused 
with the plasma membrane and release the mature exo-
some in extracellular space by exocytosis [44, 46, 47]. The 
direct pathway of exosome biogenesis is more immediate 
in which cells like T cells and erythroleukemia cell lines 
directly release exosomes from the plasma membrane. 
However, the exosomes synthesized from both pathways 
are indistinguishable [46]. The composition and functions 
of exosomes depend on the site of release, parental cell, and 
secretion pathways [48–50]. Exosomes are believed to be the 
key players in various pivotal biological processes such as 
immunological responses, cellular homeostasis, autophagy, 
cell signaling, and cell to cell interactions [51]. Exosomes 
connect with target cells via endocytosis to facilitate inter-
cellular communication between cells [52]. Exosomes exert 
their effects on recipient cells through various molecular 
mechanisms, such as epigenetic reprogramming, transfer of 
activated receptors, and target cell stimulation via surface-
bound ligands [53, 54]. Exosomes disseminate their intercel-
lular signaling actions by releasing the cargo of biological 
molecules such as nucleic acids (DNAs and RNAs), lipids, 
metabolites, and soluble and integral proteins [46].

Role of MSC‑Derived Exosomes in Heart 
Regeneration

A number of in vitro and in vivo studies show encourag-
ing results of MSC-based therapies in heart regeneration. 
However, cell-based therapeutic approach is still hampered 
by some of the major limitations such as cell death and low 
engraftment in recipient’s hearts [55–57]. Recent research 
provides shreds of evidence that the paracrine factors pro-
duce the regenerative effects of cellular therapy rather than 
stem cell trans-differentiation. The smaller size, less com-
plex nature, and potential to nullify stem cell-associated 
regulatory issues make exosomes an ideal candidate in the 
heart repair and regeneration process.

According to research, exosomes made from MSCs pos-
sibly have unique components depending on the growth con-
ditions. For instance, MSCs cultured with stroke serum, gen-
erated from the blood of mice with middle cerebral artery 
blockage, showed considerably higher cellular proliferation 



508	 Journal of Cardiovascular Translational Research (2024) 17:505–522

1 3

when compared to MSCs produced in fetal bovine serum 
or normal serum [58]. Additionally, research indicates that 
the size of the exosome, the route of administration, the 
techniques used for its separation and purification, and the 
origin of its parental cells all play a significant role in the 
therapeutic effects of MSC-Exos. The most effective method 
of distributing exosomes produced from MSCs remains 
under investigation. Although intramyocardial and intrave-
nous transplantation are the two administration techniques 
used the most frequently, transendocardial transplantation 
is perhaps the most effective technique [59, 60]. It has been 
reported that intravenous delivery of MSC-Exos in the rat 
model uses 40–400 μg, while intramyocardial injection uses 
20–80 μg. In contrast, intravenous delivery of MSC-Exos in 
mice requires 20–50 μg, whereas intramyocardial injection 
needs between 1-600 μg [61].

It has been reported that genetic alterations in the paren-
tal cells is an effective method for increasing the therapeu-
tic benefits of exosomes. By enhancing or suppressing the 
expression of particular genes or proteins, this approach has 
been validated in various studies. Ma et al. [62] in 2017 
reported that the recombinant adenovirus with the Akt gene 
sequence was able to genetically modify MSCs and cause 
the expression of platelet-derived growth factor-D (PDGF-
D) in its associated exosomes. These genetically modified 
MSCs and their exosomes promote neovascularization, 
cardiomyocyte repair, and regeneration. The majority of 
studies show that MSC-Exos has cardioprotective effects 
when administered immediately after a MI, but preservative 
effects have been reported when MSC-Exos was adminis-
tered 30 min, 48 h, or even 1 week after a MI. Therefore, the 
timing of MSC-Exos administration after MI is crucial [61]. 
Pre-clinical trials using MSC-Exos to treat cardiovascular 
disorders are still in their early stages. However, investiga-
tions have shown that MSC-Exos have cardioprotective and 
regenerative benefits following myocardial damage.

MSC-derived exosomes are considered an important 
regulator in the processes of angiogenesis, survival, and 
immune response modulation [63]. A large set of data 
demonstrate the potential of exosomes in improving the 
functioning of the damaged heart [64–68]. These studies 
from the last decades contribute to confirming the hypoth-
esis about exosomes being a persuasive factor that may 
aid in the treatment of heart injury. Yet, the details about 
the underlying mechanisms and the effecting molecules 
needed some thorough investigations.

MSC‑Derived Exosomes Promote Heart 
Regeneration via Angiogenesis

Multiple scientific studies support the narration that 
exosomes implement their therapeutic effects by upregulating 

angiogenesis, which is a process that restores blood supply 
to the injured heart through stimulation of the process of 
new blood vessel growth [69]. The exosomes being involved 
in upregulating angiogenesis have been confirmed by the 
considerable increase of vascular endothelial growth factor 
(VEGF), a key element to maintain vascular homeostasis 
and angiogenic cascade, in MSC-Exo-treated endothelial 
cells (ECs) in multiple in vitro investigations [70–74]. In 
2014, Bian et  al. [68] reported that the combination of 
MSC-derived EVs and exosomes promotes angiogenesis 
and improves cardiac functions. The authors have isolated 
the EVs (mixture of microvesicles and exosomes) from 
hypoxia-induced MSCs and injected them into the rat 
model of myocardial infarction (MI) and have observed an 
enhanced blood circulation, improved systolic and diastolic 
performance of the heart, and reduced infarct size. However, 
the exact mechanism stayed unclear how EVs show their 
functionality when it comes to their therapeutic use. Simi-
lar results have also been validated by a few other in vitro 
studies, in which the MSC-derived exosomes (MSCs-Exos) 
significantly upregulated the vascular tube formation in 
human umbilical vein endothelial cell (HUVEC), thus 
promoting the angiogenesis [75, 76]. According to these 
results, it can be assumed that ischemic MSCs can induce 
an angiogenic environment by secreting exosomes which 
aid in situ tissue repair. Furthermore, the possible inductive 
effects of hypoxic condition on the process of angiogen-
esis are also not negligible. Similar angiogenic effects of 
MSCs-Exos have been reported in in vivo study of 2020, 
by Xu et al. [74], who stated that exosomes derived from 
multiple sources (i.e., bone marrow, adipose, and umbili-
cal cord blood-derived MSCs) improve cardiac cell survival 
and angiogenesis, thus improve heart function and protect 
the myocardium. The enhanced angiogenesis has been con-
firmed by the upregulation of specific growth factors such 
as VEGF, bFGF (basic fibroblast growth factor), and HGF 
(hepatocyte growth factor). Additionally, the authors have 
provided a comparative analysis of exosomes derived from 
MSCs of different sources, thus contributing to evaluate the 
idea that exosomes derived from different MSCs sources 
may have different therapeutic efficiencies.

As we are already familiar with the fact that exosomes 
perform the intracellular signaling mechanism by releasing 
the cargo of active chemicals, the modern era of growing 
research is focusing on different biochemical molecules in 
this aspect, such as mRNAs, proteins, and miRNAs, that may 
be the root elements causing the angiogenic effects of EVs. 
The cargo-dependent functionality of MSCs-Exos in angio-
genesis has been briefly reviewed recently [16, 77]. VEGF, 
epidermal growth factors (EGF), platelet-derived growth fac-
tors (PDGF), fibroblast-derived growth factors (FGF), trans-
forming growth factors (TGF), nuclear factor ĸB (NF-ĸB) 
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interleukins, galectin-1, ezrin, cadherin, inducers of extracel-
lular matrix metalloprotease, transcription factors, and miR-
NAs are some of the studied molecules involved in angiogen-
esis by cargo-dependent role of MSCs-Exos. Collino et al. 
in 2017 [78] have also reported a variety of pro-angiogenic 
and pro-migratory molecules (i.e., VEGF, PDGF, TGF, and 
IL-8) in the fractions of EVs, separated on the basis of den-
sity, along with a cluster of proteins and miRNAs which are 
crucially involved in different pathways of cell protection. A 
detailed proteomic analysis of MSC-Exos has been carried out 
by Anderson et al. [79]; the authors have reported the presence 
of putative paracrine effector proteins of angiogenesis (i.e., 
PDGF, EGF, FGF, NF-ĸB), besides other clusters of proteins. 
The expression of these angiogenic proteins was enhanced 
when exposed to ischemic tissue-simulated conditions. In 
addition, the authors have deliberately discussed the NF-ĸB 
signaling pathway proteins as a key mediator of angiogenesis. 
This provides us with an explicit direction for future research, 
which may lead us toward the treatment of ischemic tissue-
related diseases. A further investigation by Vrijsen et al. [80] 
described that the stimulation of VEGF expression in ECs ulti-
mately activates the protein kinase cAMP-dependent (PKA) 
signaling pathway which synergistically controls the expres-
sion of angiopoietin-1 (Ang1) and fetal liver kinase-1 (Flk1), 
and stops the expression of vasohibin-1 (Vash1), a negative 
regulator of angiogenesis. Suppression of Vash1 in endothelial 
cells was also reported in 2016 by Liang et al. [81]. Another 
proteomic investigation revealed that MSC-Exos participate 
in angiogenesis and cellular proliferation through cell adhe-
sion proteins (galectin-1, ezrin, and p195) [82]. Angiopoietin 
network (ANGPT1, ANGPT4, and ANGPTL4) and other cru-
cial angiogenesis mediators including ephrin type-B recep-
tor-2 (EPHB2) and neuropilin-2 (NRP2) that were involved in 
angiogenesis were increased in ECs treated with MSC-Exos. 
Moreover, numerous genes that influence the expression of 
VEGF such as semaphoring-5B (SEMA5B), nuclear recep-
tor coactivator-1 (NCOA1), and MYC-associated zinc finger 
protein (MAZ) were also markedly elevated. Whereas ECs 
in response to MSCs-Exo-treatment dramatically reduce the 
expression of anti-angiogenic genes such as serine protease 
inhibitor Kazal-type 5 (SPINK5), arachidonate 5-Lipoxyge-
nase (ALOX5), and protein phosphatase-1A (PPM1A) [83]. 
Hence, it has therefore been suggested that the potentiality of 
MSC-Exos therapeutic effects in cardiac injury somewhat rely 
on the culture parameters and sources of MSC. As the multi-
ple in vitro and in vivo studies recommend that MSCs-Exos 
show their strongly convincing therapeutic effects in cardiac 
regeneration, there is still a large gap needed to be filled with 
thorough investigations until it becomes a main treatment 
option for cardiac injuries with a high percentile of recovery. 
With this account, it is crucial to understand the underlying 
mechanisms of MSCs-Exos in angiogenesis.

MSC‑Derived Exosomes Promote Heart 
Regeneration via Anti‑inflammatory Effects

The therapeutic effect of MSC-Exos in the case of ischemic 
heart diseases does not only limit to their angiogenic proper-
ties, but MSC-Exos also holds strong immunosuppressive 
anti-inflammatory effects [16]. As it has been acknowledged 
that myocardial infarction (MI)-induced inflammation stimu-
lates the reactive oxygen species (ROS) level and increases 
cardiac injury [84, 85]. Briefly, inflammation induced by MI 
increases fibrosis, protease activity, and pro-inflammatory 
cytokine production and alters the morphological configu-
ration of the left ventricle which develops serious clinical 
complications [86–90]. Previous research declares that anti-
inflammatory effects are developed by the exosome release 
from MSCs [55, 91, 92]. Cargo of MSC-Exos restricts MI-
induced inflammation in cardiac tissues by limiting the 
invasion and proliferation of immune cells [75]. In vitro, 
MSC-derived exosome releases IL-10 which reduces T cell 
activation, multiplication, and differentiation [93]. Moreo-
ver, in 2012 Mokarizadeh et al. [94] reported that MSC-Exos 
through membrane-bound transforming growth factor-β 
(TGF-β) and programmed death-ligand-1 (PD-L1) convert 
the pro-inflammatory response of acute MI to a tolerogenic 
immune response which ultimately inhibits tissue damage 
and stimulates repairing mechanisms. It has been hypoth-
esized that MSC-derived exosome’s anti-inflammatory 
properties originate from their parental cell. According to 
the prior studies, MSCs have distinct anti-inflammatory 
activities that include deactivating T effector cells, reduc-
ing the generation of B cells, and controlling the polariza-
tion of macrophages [95–97]. Numerous studies show that 
MSC-Exo has anti-inflammatory properties that enable it 
to produce cardioprotective benefits by intramyocardial and 
intravenous transplantation [69, 98–103]. A recent study 
demonstrated that exosomes made from MSCs success-
fully mimicked the immunosuppressive effects attributed to 
MSCs. This was demonstrated by their capacity to control 
B cell proliferation and immunoglobulin production [104].

MSC‑Derived Exosomes Promote Heart 
Regeneration via Anti‑apoptotic Effects

Therapeutic effects of MSC-derived exosomes in heart dis-
eases arbitrated by the alteration of biomolecules such as 
ATP, NADH, and ROS expression in cardiac cells. These 
biomolecules participate in the phosphorylation of c-Jun 
N-terminal kinase (JNK) followed by the activation of mul-
tiple proteins including mitogen-activated protein kinase-7 
(MKK7), MKK4, and MAP2Ks that regulate apoptosis, oxi-
dative stress, and cellular regeneration [105]. MI resulted 
in the accumulation of infiltrated inflammatory cells that 
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produce ROS and ultimately lead to apoptosis. ROS genera-
tion is reduced and the apoptotic response is controlled by 
the MSC-Exo transplantation [61]. Another study demon-
strated that cargo of MSC-Exos induces the expression of 
protein kinase B or phosphoinositide 3-kinase (PI3K), ATP, 
and NADH in the ischemic reperfused murine model, which 
activates the signaling cascade of cell survival and cellular 
metabolism [64]. Numerous studies demonstrated the anti-
apoptotic role of MSC-Exos in cardiac injury, when adminis-
tered through intravenous [99, 101, 106, 107], intramyocar-
dial [71, 74, 98, 102, 108–112], intrapericardial sac [113], 
and intracoronary [64].

MSC‑Derived Exosomes Promote Heart 
Regeneration by Reducing Fibrosis

Most myocardial injuries result in reactive fibrosis, which is 
followed by the loss of cardiomyocytes, and thus contributes 
to the remodeling of post-myocardial damage [114, 115]. 
Notably, Collagen I has been identified as a promoter of 
myocardial fibrosis during myocardial injuries [116]. It has 
been reported that MSC-Exos efficiently reduce myocardial 
fibrosis and cardiac dysfunctions comparable with cellular 
therapy of MSCs [66, 117–119]. During the process of car-
diac regeneration and repair, MSC-derived exosomes can 
mitigate cardiac fibrosis when transplanted intramyocardi-
ally [68, 98, 110, 117] or intravenously [101]. The precise 
mechanism by which MSC-Exos mediate the reduction in 
fibrosis after MI is not fully understood yet. However, in 
response to MSC-Exos, the zeste homolog 2 (EZH2) and 
group AT-Hook 2 (HMGA2) levels change, delaying the 
epithelial-mesenchymal transition (EMT) and fibrosis in 
cardiac tissues. As a result, cardiac function is generally 
improved and the left ventricle’s end-diastolic and end-sys-
tolic internal diameters increase [118]. Additionally, it has 
been reported that MSC-Exos limit TGF-1/Smad2 signaling 
by decreasing the production of TGF and Smad2 proteins. 
As a result, patients had less heart fibrosis and damage [120].

MSC‑Derived Exosomes Promote Heart 
Regeneration via Modulation of Energy Metabolism

Heart regeneration is mediated by various mechanisms 
in which modulation of cellular metabolic energy is also 
included. Therefore, abnormalities in myocardial energy 
metabolism may contribute to contractile dysfunction and 
the progressive decline in left ventricular (LV) function 
following a MI. MSCs are believed to have the capacity to 
effectively correct severe bioenergetic deficiencies in peri-
infarcted myocardial regions following MI [121]. There is 
evidence of significant intracellular ATP depletion follow-
ing ischemic injury, and research has shown that exosomes 
from adipose-derived stem cells (ADSCs) are capable of 

restoring ATP and NADH levels [122]. Moreover, exosome 
therapy has been shown to successfully restore cellular bio-
energy by increasing levels of ATP and NADH, decreas-
ing oxidative stress, and increasing phosphorylated-Akt 
and phosphorylated-GSK-3 pathways [64]. However, it is 
important to note that just a small number of research have 
investigated how MSCs, specifically MSC-Exos, alter car-
diac metabolism.

To conclude, MSC-Exos have emerged as a highly 
promising cell free entity that confers greatly in ischemic 
heart condition by means of angiogenesis, protection 
against apoptosis, fibrosis reduction, and immune and 
energy metabolism modulation, but there is still much 
to be investigated about the nature, effects, and types of 
exosomes and their underlying mechanisms of repair-
ing. However, MSC-Exos-based therapy gets hampered 
due to poor purification and uncharacterized off-target. 
Moreover, heterogeneous components of exosomes can 
also arise the risk of tumors and immune reactions. To 
avoid such unfavorable circumstances, it is crucial to 
harness the natural abilities (cargo-dependent paracrine 
effects) of exosomes to transfer the therapeutic payloads 
into the target cells. According to recent research, MSC 
and Exos have the ability to release multiple chemi-
cal components that can have a variety of therapeutic 
effects in different microenvironments. A vast number of 
research studies have explicitly considered the miRNAs 
as a potential candidate due to their comparatively high 
proportion, short size, and pleiotropic effects. Moreover, 
exosomal miRNAs regulate cell fate decisions, commu-
nication, cell division, and cell death. Therefore, it is 
now important to discuss the miRNAs and their reported 
beneficial effects in the process of cardiac regeneration. 
So that MSC-Exos-based cell free therapy can be practi-
cally applied in the medicinal field with high proficiency.

MicroRNA

miRNAs are single short-stranded (15–27 nucleotides) and 
non-coding RNA sequences which play an important role 
in gene regulation. The biosynthesis of miRNA takes place 
by canonical and multiple non-canonical pathways; both 
pathways have already been reviewed elsewhere [123]. The 
mechanism of action of miRNA relies on the site where 
miRNA interacts with the mRNA (i.e., 3′-UTR, 5′-UTR, 
promoter region, coding region) [124, 125]. This mechanism 
is mediated by epigenetic modifiers or blocking of repressor 
molecules which modify chromatin structure and facilitate 
transcriptional activation [126]. The interaction of miRNA 
with mRNA depends upon multiple factors such as the abun-
dance of miRNA and mRNA, the affinity between them, 
and subcellular localization of miRNAs [123]. Furthermore, 
miRNA participates in cell–cell communication via exosome 



511Journal of Cardiovascular Translational Research (2024) 17:505–522	

1 3

[127]. A specific set of miRNAs that are present in vari-
ous tissues and abnormal alterations in the miRNA levels 
have been correlated with organ dysfunction and embryonic 
malformation. The miRNA is one of the main regulators of 
cardiac development and dysregulation. The loss-of-function 
studies emphasize the role of functional miRNA in heart 
development [128–130]. As it has been already discussed 
that MSC-Exos perform its function by releasing a cargo 
of molecules with different natures and every entity of the 
exosomal cargo has its definite role in cardiac development 
and regeneration. However, miRNAs have attracted the most 
attention because of their regulatory role in gene expression. 
miRNAs are not supposed to be randomly selected by the 
exosomes but they have been preferentially picked up by 
specific mechanisms. Additionally, it has also been stated 
that miRNAs are more in excess in exosomes rather than in 
the parent cell itself, thus suggesting that the cells have their 
sorting mechanism that guides specific intracellular miRNAs 
to load into the exosomes and signifying its importance in 
heart regeneration [131].

Role of Mesenchymal Stem Cell‑Derived Exosomal 
miRNAs in Heart Regeneration

MSC‑Derived Exosomal miRNAs Promote Angiogenesis

Exosomal miRNAs are considered key regulators in vari-
ous biological processes such as cell signaling, proliferation, 
differentiation, and immunomodulation. There has been an 
increasing amount of data that confirmed the role of MSC-
Exos carrying miRNAs in heart regeneration. It has been 
reported that MSC-Exos transmit pro-angiogenic signals 
directly by miRNA transfer. A study performed in 2018 by 
Ferguson et al. [83] stated that MSC-Exos have an excess 
amount of the pro-angiogenic miRNAs such as miRNA-199a, 
miRNA-21, miRNA-1246, miRNA-23a-3p, and miRNA-23. 
In 2018, Zhu et al. [132] found that in comparison to nor-
mally occurring MSC-Exos, hypoxia-induced MSC-Exos 
are considerably enriched in pro-angiogenic miR-125b-5p. 
In 2018 Mayourian et al. [133] further confirmed that miR-
21-5p induces pro-angiogenic VEGF-α, ANGPT-1, and 
TGF-β signaling pathway and produces hypertrophic atrial 
natriuretic factor (ANF) and brain natriuretic peptide (BNP). 
Likewise, other miRNAs derived from MSC-Exos including 
miRNA-19a, miR-132, and miR-210 also promote angiogen-
esis for repairing injury [71, 134–139].

MSC‑Derived Exosomal miRNAs Improve 
Immunomodulatory Effects

MSC-derived exosomal miRNAs have been shown to pro-
vide an immunomodulatory effect in heart disease [117]. 
A study declared that miRNA-181a binds with the c-Fos 

protein and limits the activity of dendritic cells [140]. 
Another study stated that adipose tissue-derived exosomal 
miRNA (ADMSCs-Exos), miRNA-34a-5p, and miRNA-
146a-5p exert immunomodulatory effects by targeting 
neurogenic locus notch homolog protein 1 (Notch 1) and 
nuclear factor kappa-light-chain-enhancer of activated B 
cell (NF-κB) signaling cascades, respectively. Moreover, 
miRNA-21 participates in macrophage polarization by sup-
pressing MEK/ERK and activates the signal transducer 
and activator of transcription 3 (STAT3) signaling cascade 
[141]. Evidence suggests that miRNAs such as miRNA-126, 
miRNA-25-3p, miRNA-182, and miR-21-5p derived from 
MSC-Exos also exert immunomodulatory effects in cardio-
vascular diseases 139, 142, 143]. Furthermore, miRNA-133 
and miRNA-22 limit fibrotic activity and improve cardiac 
regeneration [144].

MSC‑Derived Exosomal miRNAs Reduce Apoptosis

MSC-derived exosomal miRNAs have shown a crucial anti-
apoptotic role in heart repair and regeneration [108]. In 2020, 
Wen et al. found that miRNA-144 secreted from bone mar-
row-derived MSC-Exos regulate apoptotic activity by induc-
ing the PI3K-Akt pathway in a hypoxic environment [145]. 
Additionally, in 2019, Sun et al. [146] reported that miRNA-
486-5p-enriched MSC-Exos reduce apoptosis inducer protein, 
i.e., phosphatase and tensin homolog (PTEN), and promote 
the Akt signaling cascade. Likewise, in an in vitro study 
anti-apoptotic effect was also observed by regulating the 
Wnt/β-catenin pathway when cardiomyocytes were treated 
with adipose tissue-derived MSC exosome [147]. Another 
study demonstrated that MSC-Exos enriched with miRNA-
22 interact with methyl CpG binding protein-2 (Mecp2) and 
restrict apoptotic activity [108]. Moreover, it is also reported 
that miRNA-21 derived from MSCs-Exos reduces apop-
totic activity [70, 148]. BM-derived MSC-Exos expressed 
miRNA-24 which reduces the apoptotic activity of cardiac 
cells in the murine model by suppressing the expression of 
the apoptotic protein, Bax, and caspase 3 [149]. Additionally, 
GATA-4 expressing MSC-derived exosome (MSCGATA-
4-DEs) reduce cardiac injury and apoptosis by releasing anti-
apoptotic RNAs, e.g., miRNA-19a in hypoxic conditions. 
miRNA-19a reduces the expression of apoptosis inducer pro-
tein B cell lymphoma-2 (Bcl2) interacting mediator of cell 
death (BIM) and phosphatase and tensin homolog (PTEN) 
[150]. Moreover, miRNA-19a activates cell survival by Akt 
and ERK signaling and suppresses JNK/caspase-3 cascade 
by interacting with SRY-box transcription factor-6 (SOX-6). 
A large set of data demonstrated that the MSC-Exos miR-
NAs such as miRNA133a-3p, miRNA 125b-5p, miRNA-221, 
miRNA-338, miR-150-5p, miR-21a-5p, miR-486-5p, miR-22, 
and miR-214 show anti-apoptotic activity and thus produce 
cardioprotective effects [111–113, 151–153].
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MSC‑Derived Exosomal miRNAs Reduce Fibrosis

MSCs are reported to regulate endogenous tissue inhibitor 
of matrix metalloproteinases (TIMPs), the matrix metallo-
proteases (MMPs), and anti-fibrotic factors, thus lessening 
the remodeling of cardiomyocytes after MI [121]. Numerous 
studies have shown that the presence of miRNAs in MSC-
derived exosomes contributed to the reduction of collagen 
accumulation during cardiac remodeling and lessen post-MI-
induced fibrosis [61, 66]. For example, thrombospondin-1 
and connective tissue growth factor (CTGF) were regulated 
by miR-19a, among other extracellular matrix proteins [61]. 
According to Chen et al. (2017), overexpression of miR-
133 from MSCs-Exos downregulate the expression of Snail1 
which exhibited cardioprotective effects [144]. Additionally, 
it has been reported that ischemic preconditioned MSC-
derived exosomal miR-22 control the post-fibrotic effects 
of cardiac damage by reducing Mecp2 gene [108].

Like exosomes, miRNAs also demonstrate very impor-
tant roles in cardiac regeneration by means of angiogen-
esis, immunomodulation, anti-apoptotic, and anti-fibrotic 
molecular mechanisms (Fig. 1 and Table 1). This suggest 
that most of the exosomal functions in cardiac regenera-
tion greatly depend upon its miRNA content, which needs 
further investigations. A significant number of researchers 

have put their efforts into genetically modifying the MSCs 
to reprogram their miRNA content so that the properties of 
miRNAs can be enhanced and be used for the treatment of 
ischemic diseases for each patient.         

Role of miRNA Reprogrammed MSCs in Heart 
Regeneration

miRNAs have been considered a major factor that helps 
in the lineage commitment of MSCs through positive or 
negative regulation thus providing a better understanding 
of the underlying mechanisms of stem cell differentiation 
[154]. The various sources of MSCs show a specific set of 
miRNAs that maintain the proliferation, differentiation, 
and self-renewal properties of mesenchymal stem cells 
[155, 156]. Few studies have examined the effect of vari-
ous miRNAs in cardiac differentiation of MSCs that have 
undergone chemical treatment. As in 2007 Shan et al. [157] 
identified a set of heart specific miRNAs such as miRNA-
143, miRNA-181, miRNA-206, and miRNA-208 in MSCs 
treated with 5-azacytidine or by an indirect co-culture with 
rat myocyte. Interestingly, miRNA-181 has been reported to 
downregulate the homeobox protein Hox-A11, a repressor 
of the differentiation process [158, 159]. In 2010, Rongrong 
et al. [160] reported that the overexpressed miRNA-145 has 

Fig. 1   Mesenchymal stem cell-derived exosomal microRNAs pro-
mote heart regeneration: exosomes secreted from MSCs show spe-
cific set of miRNAs that regulate various biological functions such as 

angiogenesis, immunomodulation, and apoptosis. This results in an 
improvement in heart repair/ regeneration
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Table 1   MSC-derived exosomal microRNAs promote heart regeneration

Source of MSCs MicroRNA Major finding Pathways Cells Reference

Angiogenesis
BM-MSCs miRNA-21, miRNA-1246, 

miRNA-23a-3p, miRNA-
23, miRNA-199a

↑ Angiogenesis and cardio-
myocyte proliferation

miRNA-21: Akt, and ERK
miRNA1246: Smad 2/3 and 

1/5/8
miRNA23: Sprouty2 and 

Sema6A
miRNA199a: Crim 1

DU145 cells
HUVECs
Endothelial cells
CMs

[83]

BM-MSCs miRNA-21-5p ↑Angiogenesis and contrac-
tility of cardiac tissue

VEGF-α, angiopoietin 1, 
ANP, and BNP

hECTs [133]

NMCMs miRNA-19a ↑ Angiogenesis HIF-1α Endothelial cells [137]
AT-MSCs miRNA-126 ↑ Angiogenesis - H9c2 [139]
Endometrium-

derived MSCs 
(EnMSCs)

miRNA-21 ↑ Angiogenesis - CMs and HUVECs [71]

BM-MSCs miR-132 ↑ Angiogenesis - HUVECs [134]
BM-MSCs miR-210 ↑ Angiogenesis Efna3 HUVECs [138]
Immunomodulatory effects
AT-MSCs miRNA-126 ↓ Inflammation fibrosis - H9c2 [139]
BM-MSCs miRNA-25-3p ↓ Inflammation SOCS3 CMs [142]
BM-MSCs miRNA-182 ↑ Immunomodulatory 

activities
TLR4/NF-κB Myocardium [103]

UC blood-MSCs miRNA-181a ↓ Inflammatory response c-Fos protein Myocardium [140]
AT-MSCs miRNA-34a-5p

miRNA146a-5p
miRNA21

↓ Inflammation, polarize miR-34: Notch 1
miR-146: NF-ĸB
miR-21: Sirp-β1

Monocytes [141]

BM-MSCs miRNA-133 ↓ Inflammatory reactions 
and fibrosis

Snail 1 Myocardium [144]

MSCs miR-21-5p ↓ Inflammatory response - Myocardial cells [143]
Anti-apoptotic effects
UC-MSCs miRNA-133a-3p ↓ Apoptosis

↓ Fibrotic activity
Akt HUVECs and H9C2 [151]

BM-MSCs miRNA-125b-5p ↓ Apoptosis p53 and Bnip3 CMs [111]
BM-MSCs miRNA‐21 ↓ Oxidative stress induced 

apoptosis
PTEN, Akt CSCs [148]

BM-MSCs miRNA-221 ↓ Apoptosis p53 and Bcl-2 CMs [112]
BM-MSCs miRNA-19a ↑ Anti-apoptotic effects PTEN, BIM, Akt, and ERK CMs [150]
BM-MSCs miRNA-125b-5p ↑ Anti-apoptotic effects

↓ Infarction size
BAK1 and p53 Myocardium [132]

BM-MSCs miRNA-25-3p ↓ Apoptosis FASL, PTEN, and EZH2 CMs [142]
BM-MSCs miRNA-29 and miRNA-24 ↓ Apoptosis

↓ Fibrotic activity
Collagen Myocardium [117]

BM-MSCs miRNA-486-5p ↓ Apoptosis PTEN, Akt, and PI3k H9C2 [146]
BM-MSCs miRNA-22 ↓ Apoptosis Methyl CpG binding pro-

tein 2 (Mecp2)
Myocardium [108]

BM-MSCs miRNA-144 ↓ Apoptosis in hypoxic 
condition

PTEN and Akt H9C2 [145]

EnMSCs miRNA-21 ↑ Anti-apoptotic and angio-
genic effects

PTEN and Akt Myocardium [71]

BM-MSCs miRNA-24 ↓ Apoptotic - Myocardium [149]
BM-MSCs miR-150-5p ↓ Apoptotic effects - CMs [153]
BM-MSCs miR-21a-5p, miR-486-5p, 

miR-22, and miR-214
↓ Apoptosis Peli1, PTEN, Fasl, PDCD4 H9c2 [113]

Anti-fibrotic effects
BM-MSCs miR-19a ↓ Fibrosis - CMs [61]
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the ability to enhance the cardiac differentiation of 5-azacy-
tidine-treated BM-MSCs.

While some research use miRNA reprogrammed MSCs 
to thoroughly investigate the process of heart regenera-
tion. As in 2013 Lee et al. [161] describe the useful effects 
of miRNA-133a in the cardiac differentiation of MSCs. 
miRNA-133a reprogrammed MSCs improve the survival of 
MSCs in the MI model via downregulation of pro-apoptotic 
genes, i.e., apoptotic protease activating factor-1 (Apaf-1), 
caspase-3, and caspase-9. Similarly, miRNA-133 overex-
pressed BM-MSCs improve cardiac activity with enhanced 
expression of total poly ADP-ribose polymerase protein, 
reduced hypoxia-induced apoptosis, and expression of snail-
1, which mediate the cardiac fibrosis after MI via connec-
tive tissue growth factor (CTGF) [145, 163]. It has been 
documented that miRNA-1 regulates various genes that are 
essential for cardiac function, such as histone deacetylase-4 
(HDAC4), hand transcription factor-2 (Hand), connexin-43 
or Gap junction alpha-1 protein (GJA1), and K+ chan-
nel subunit Kir2.1 (KCNJ2) [164]. In 2013, Huang et al. 
[165] reported that MSCs transduced with miRNA-1 could 
promote the regeneration of the injured heart. Similarly, 
miRNA-1 overexpressed in MSCs improves heart function 
via downregulation of the transcriptional repressor of car-
diac specific gene Delta-like 1 (Dll-1) [166]. In a study in 
2018, Lu et al. [167] demonstrated that MSCs overexpress-
ing miRNA-149 enhance cardiac specific gene expression 
by Wnt/β-catenin-dependent disabled homolog-2 (Dab2) 
targeted mechanism. Dab2 is a scaffold protein that plays 
a role in cell growth, cell interactions, and signal transduc-
tion [168]. In addition, Dab2 improves the healing ability 

of transplanted MSCs. A number of studies have confirmed 
the role of miRNA-126 in heart regeneration [169]. miR-
126 overexpressed MSCs improve angiogenesis and heart 
function by AKT/ERK related pathways [170]. Moreover, 
in 2013, Huang et al. [171] also reported that overexpress-
ing miRNA-126 MSCs improved the release of angiogenic 
factors and resistance toward hypoxia, promoting tubulogen-
esis by controlling Notch ligand Delta-like 4 expressions in 
MSCs. The upregulation of miRNA-34 resulted in cell death 
and poor pro-angiogenic activity of pro-angiogenic cells. 
The BM-MSC downregulation of miRNA-34a via insulin 
like growth factor-1 (IGF1) thus inhibits cardiomyocyte 
apoptosis and exceeds the limits of cell survival [172]. The 
chemokine receptor type 4 (CXCR4) gene participates in 
stem cell migration and mobilization in injured tissue via 
its ligand, i.e., stromal cell-derived factor (SDF)-1. In 2011, 
Tano et al. [173] reported that ischemic conditions repress 
miRNA-150 in MSCs which in turn activate the CXCR4 
gene, which resulted in enhanced migration and mobiliza-
tion of transplanted MSCs thus improving heart function in 
terms of neovascularization. The overexpression of miRNA-
19a/19b enhances the therapeutic potential of MSCs in heart 
regeneration. Moreover, it improves the functional recov-
ery of injured heart in diabetic MI mouse model, possibly 
through the repression of apoptotic genes [174]. MicroRNAs 
reprogrammed MSCs promote heart regeneration via various 
mechanisms, which are presented in Table 2. 

Various clinical studies give us convincing pieces of 
evidence about miRNAs as the targets of improving cell-
based therapies and the endogenous repair process of the 
heart. However, regardless of all the encouraging data, the 

Table 2   miRNAs reprogrammed MSCs in heart regeneration

Name of miRNA Source of miRNA Targets Cells Biological functions References

miRNA-133a hBM-MSCs EGFR Myocardium ↑ Cardiac differentiation [161]
miRNA-133a BM-MSCs Apaf-1, caspase-3, and caspase-9 Myocardium ↑ Cardiomyocyte survival [162]
miRNA-133a BM-MSCs Snail 1 Myocardium ↓ Inflammation and infarct size [144]
miRNA-1 BM-MSCs - Myocardium ↑ Cardiomyocyte survival and 

differentiation
[165]

miRNA-1 BM-MSCs Delta-like 1 (Dll)-1 - ↑ Cardiac differentiation [166]
miRNA-149 BM-MSCs Dab2 - ↑ Cardiac differentiation [167]
miRNA-126 BM-MSCs AKT and ERK Myocardium ↑ Angiogenesis [170]
miRNA-126 BM-MSCs Notch ligand Delta-like (Dll)-4 Myocardium ↑ Cardiomyocyte survival [171]
miRNA19a/19b BM-MSCs - Myocardium ↑ Cardiomyocyte survival

↓ Inflammation
[174]

Table 1   (continued)

Source of MSCs MicroRNA Major finding Pathways Cells Reference

BM-MSCs miR-133 ↓ Fibrosis Snail1 CMs [144]
BM-MSCs miRNA-22 ↓ Fibrotic activity Mecp2 CMs [108]
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miRNA-based cell regenerative therapies face a lot of chal-
lenges due to the poor knowledge of biological processes 
and the absence of a streamlined purification method that 
creates obstacles in ongoing research of exosomes. As the 
miRNAs have different patterns on their different targets, 
some miRNAs target genes with similar biological func-
tions, while others target genes with antagonistic func-
tions. So, it becomes more crucial to have a system biology 
approach to completely understand the possible outcome of 
miRNAs in CVDs.

Conclusion

In the current review, we highlighted the therapeutic poten-
tial of MSC-derived exosomes and their miRNAs in heart 
regeneration while covering biological functions involved 
in the regeneration of heart. Exosomes are tiny vesicles 
secreted by numerous cells including mesenchymal stem 
cells. It plays an important role in intercellular communi-
cation by releasing bioactive molecules, such as proteins, 
lipids, nucleic acids, and miRNA. Among these molecules, 
exosomal miRNA has gained considerable attention in recent 
years. MSC-exosome-derived miRNAs have the potential to 
regulate biological processes related to heart regeneration 
such as blood vessel formation, cell propagation, survival, 
and immunomodulation, and therefore possess an enormous 
regenerative capability in the treatment of heart diseases. 
As highlighted in this review, MSC-derived exosomes and 
their miRNA play a crucial role in the pathophysiology of 
heart diseases, and their therapeutic potential in heart repair 
and regeneration is an area of active research. However, 
many studies examined the expression of related miRNA 
in MSC-Exos without studying their detailed mechanism. 
Therefore, further research is still needed to determine how 
related genes exert their therapeutic effects. Furthermore, 
MSC-Exos require standardized isolation protocols since 
the instability of miRNA content in MSC-Exos will directly 
affect its clinical application value. In addition to the above 
approaches, the model miRNA combination needs to be 
identified for the treatment of ischemic heart diseases.
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