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Abstract
Remote ischemic conditioning (RIC) can be effectively applied for cardio-protection. Here, to clarify whether RIC exerts myo-
cardial protection via aldehyde dehydrogenase 2 (ALDH2), we established a myocardial ischemia/reperfusion (I/R) model in 
C57BL/6 and ALDH2 knockout (ALDH2-KO) mice and treated them with RIC. Echocardiography and single-cell contraction 
experiments showed that RIC significantly improved myocardial function and alleviated I/R injury in C57BL/6 mice but did not 
exhibit its cardioprotective effects in ALDH2-KO mice. TUNEL, Evan’s blue/triphenyl tetrazolium chloride, and reactive oxy-
gen species (ROS) assays showed that RIC’s effect on reducing myocardial cell apoptosis, myocardial infarction area, and ROS 
levels was insignificant in ALDH2-KO mice. Our results showed that RIC could increase ALDH2 protein levels, activate sirtuin 
3 (SIRT3)/hypoxia-inducible factor 1-alpha (HIF1α), inhibit autophagy, and exert myocardial protection. This study revealed 
that RIC could exert myocardial protection via the ALDH2/SIRT3/HIF1α signaling pathway by reducing 4-HNE secretion.

Keywords Remote ischemic conditioning · Ischemia/reperfusion injury · Aldehyde dehydrogenase 2 · Sirtuin 3 ·  
Hypoxia-inducible factor 1-alpha

Abbreviations
RIC  Remote ischemic conditioning
ALDH2  Aldehyde dehydrogenase 2
I/R  Ischemia/reperfusion
ROS  Reactive oxygen species
SIRT3  Sirtuin 3
HIF1α  Hypoxia-inducible factor 1-alpha
4-HNE  4-hydroxynonenal
ALDH2-KO  ALDH2 knockout
TTC   1% 2,3,5-triphenyl tetrazolium chloride
PS  Peak shortening
-dL/dt  Maximal velocity of shortening
DHE  Dihydroethidium
LVFS  Left ventricular fractional shortening
LVEF  Left ventricular ejection fraction
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Introduction

Myocardial ischemia/reperfusion (I/R) injury is common in 
the clinical treatment of cardiovascular diseases [1]. Reduc-
ing myocardial I/R injury after opening the aorta during car-
diopulmonary bypass surgery and coronary stent implanta-
tion in coronary heart disease has consistently been the focus 
of general cardiovascular clinical attention [2]. Precondi-
tioning and postconditioning can play a role in myocardial 
protection; however, they have low applicability and oper-
ability [3–5]. Remote ischemic conditioning (RIC) refers 
to the short-term myocardial I/R of another organ before 
post-ischemia reperfusion to activate the body’s endogenous 
protective mechanism [6, 7]. However, the specific mecha-
nism of action of RIC remains unclear. Therefore, exploring 
the mechanism of RIC can provide a basis for the clinical 
application of RIC [5, 8].

Aldehyde dehydrogenase 2 (ALDH2), an essential isoen-
zyme in the ALDH family, is an endogenous cardioprotective 
factor in the mitochondria, closely related to cardiovascular 
disease occurrence. It is involved in the pathology of coronary 
heart disease, heart failure, cardiomyopathy, and several other 
physiological processes [9, 10]. It is distributed in various 
tissues and organs of the human body, primarily in the mito-
chondria of the human heart, brain, lung, liver, and kidney 
cells [10, 11]. The level of ALDH2 in the heart is much higher 
than that of other types of aldehyde dehydrogenases, and it 
has the most robust activity. Approximately 40% of the East 
Asian population has the ALDH2 deletion genotype closely 
related to myocardial infarction (MI) [12].

Recent studies have shown that a variety of preconditioning 
and postconditioning strategies can play a role in myocardial 
I/R injury via ALDH2, indicating that ALDH2 is crucial for pre 
and post-stimulation [11, 13]. In addition, research suggests that 
RIC alleviates myocardial I/R injury by upregulating ALDH2 
expression levels via the PI3K/Akt or PI3K/mTOR pathway 
[14, 15]. However, there are numerous challenges (interven-
tion time, intervention mode, secondary ischemic injury, and 
the complex clinical circumstances of cardiac patients) to be 
examined [16, 17]. In addition, the complex mechanism of RIC 
has not been elucidated, especially the mechanism of ALDH2 
mediated cardioprotection. In this study, we investigated the 
role of ALDH2 in RIC-induced myocardial protection and 
related mechanisms by using ALDH2 knockout (ALDH2-KO) 
and wild-type (WT) mice to establish myocardial I/R models.

Materials and Methods

Animals

WT mice (C57BL/6 age 8–10 weeks) were obtained from 
Cavens Biogle Model Animal Research Co., Ltd. (Suzhou, 

China), and matched ALDH2-KO male mice were gen-
erated as described previously [18]. All protocols were 
approved by the Animal Care Ethics Committee of Fudan 
University and performed in accordance with the National 
Institutes of Health Guide for the Care and Use of Labora-
tory Animals. The mice were kept under a 12:12-h light/
dark cycle at a consistent temperature and humidity and 
given ad libitum access to food and water. A dose of anal-
gesics was given if the animals appeared to be experiencing 
pain (based on criteria such as immobility and failure to 
eat). At the indicated intervals, the mice were euthanized 
by  CO2/cervical dislocation, and tissues were subsequently 
harvested for analyses. Mice were randomly assigned to 
four groups of 20 each: sham, RIC, I/R, and RIC+ I/R 
groups.

Myocardial I/R Injury and RIC Treatment

To establish a mouse myocardial I/R injury model, we 
used 8–10-week-old mice. Anesthesia was maintained 
under 2% isoflurane induction (RWD Life Science Inc., 
Shenzhen, China). The limbs of the mice were fixed, 
the left chest of the mice was exposed, and the hair was 
shaved. We selected four or five intercostal openings on 
the left side of the mouse, separated the muscles, identified 
the strongest point of the apex, inserted the mosquito vas-
cular clamp, opened the chest, and applied slight pressure 
on the right index finger to make the mouse heart jump out 
of the chest cavity. The left ventricular descending ante-
rior descending branch was ligated with a 6-0 silk suture 
slipknot. After ligation, the heart was returned to the peri-
cardial cavity, and the chest cavity was closed using two 
slip knots. The wound was sutured; the knot was loosened 
after waiting for 45 min and reperfusion was performed for 
24 h to construct the myocardial I/R model. The detailed 
method was explained previously [19]. During the 45-min 
ischemic period, we used a 3 × 5 tourniquet latex tube to 
ligate mouse legs to block blood flow for 5 min and then 
released for 5 min three times for RIC treatment.

Echocardiography Analysis

Mice were anesthetized with isoflurane to evaluate cardiac 
function 24 h after myocardial I/R, and M-mode images 
were acquired using a Vevo 2100 high-frequency ultrasound 
system (VisualSonics, Toronto, ON, Canada). The data was 
averaged based on the measurements of at least six cardiac 
cycles, which included recording the left ventricular ejection 
fraction (LVEF) and left ventricular fractional shortening 
(LVFS) scores (n>6). The specific operation was performed 
as described previously [19, 20].
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Single‑Cell Systolic and Diastolic Function 
of Cardiomyocytes

Cardiomyocytes were isolated from the model mice using 
a previously described method [21]. The systolic and dias-
tolic functions of primary cardiomyocytes were detected 
using the IonOptix™ system (IonOptix Corporation, 
Milton, MA, USA). The detection buffer, cardiomyocyte 
calcium buffer, comprised 130 mM NaCl, 5.4 mM KCl, 
10 mM HEPES, 1.8 mM  CaCl2, 0.5 mM  MgCl2, and 10 
mM glucose, pH 7.4. Two drops of the buffer were added 
to each slide. The contractile function of cardiomyocytes 
was evaluated by measuring the peak shortening (PS) and 
maximal velocity of shortening (-dL/dt) of cardiomyocytes. 
We measured and averaged the contractile function of 30 
cardiomyocytes per mouse.

Evan’s Blue/Triphenyl Tetrazolium Chloride (TTC) 
Staining

After 24 h of reperfusion, the mice were anesthetized 
intraperitoneally with 2% sodium pentobarbital. The 
chest cavity was opened, the heart was exposed, the ante-
rior coronary artery was retied, and 1% Evan’s blue was 
injected into the left atrial appendage to allow the heart 
to beat freely. The heart was then cut out, washed with 
PBS, and immediately frozen on dry ice. After 30 min, 
the heart was cut into 5-6 short-axis sections on average 
with a blade. Next, 1% 2,3,5-TTC was incubated at 37 °C 
in a water bath for 30 min. Each section was flattened and 
fixed with 4% paraformaldehyde for 2 h. The blue area 
impregnated with Evan’s blue was the non-ischemic area. 
The red area impregnated by TTC was the ischemic area. 
The white unstained area was the myocardial infarction 
site. The area at risk (AAR) included both white unstained 
area and red area (n>4). Image quantification was per-
formed by segmenting the stained areas of each section 
using ImageJ software [19, 22]. Infarct size is expressed 
as the ratio of white unstained area to AAR and presented 
as a percentage.

TUNEL Assay

Myocardial tissues (4–8 mice per group, with two incisions 
at the connective tissue of myocardial infarction) were fixed 
with 4% paraformaldehyde and stained using the One Step 
TUNEL Apoptosis Assay Kit (Beyotime Biotechnology, 
China) according to previous reports [19].

Reactive Oxygen Species (ROS) Measurement

ROS production was evaluated by analyzing the fluores-
cence intensity resulting from dihydroethidium (DHE) 

staining (Invitrogen D11347). Briefly, frozen mice hearts 
were cut into 5-μm sections. The heart sections were 
stained 37 times with 5 μM DHE for 30 min followed 
by staining with DAPI for 10 min and examined using a 
fluorescence microscope (n>4).

Histological Analysis

The myocardial tissue was fixed with 4% paraformalde-
hyde (4–8 mice in each group, with two incisions at the 
connective tissue of myocardial infarction) 24 h after rep-
erfusion. Macrophage infiltration was detected using anti-
mouse F480 (ab25377; Abcam) according to a previously 
described method [20].

Electron Microscopy

Transmission electron microscopy was used to observe 
the ultrastructure of the cardiomyocytes (n=3). Briefly, 
the hearts of mice in each experimental group were 
perfused and fixed with tube-buffered formaldehyde-
glutaraldehyde. The left ventricular myocardium was 
removed from the middle of the ventricle and cut into 
1-mm3 pieces. The blocks were fixed overnight with a 
10:1 liquid/tissue ratio at 4 °C. To further process the 
myocardial mass, it was incubated in 2% sucrose (pH 7.4), 
1% OsO4, and 1.5% K3[Fe(CN)6]·3H2O buffer overnight 
at 22–24 °C. It was then dehydrated with graded ethanol 
and propylene oxide and finally encapsulated with Epon/
Araldite. An RMC-MTXL ultramicrotome and diatom 
diamond knife were used to obtain sections. The images 
were obtained using a CM-120 transmission electron 
microscope (Philips, Netherlands). Each heart sample 
was observed in at least 10 fields.

Western Blot Analysis

Cardiac tissue (n≥4) at the infarct site was harvested in the 
RIPA lysis buffer containing 1 mM phenylmethanesulfonyl 
fluoride. Protein concentration was determined using 
the BCA protein assay kit (Bio-Rad, 5000006JA). Next, 
20-μg, normalized protein samples were separated via 10% 
and 15% SDS-PAGE and transferred to polyvinylidene 
difluoride membranes (Biotech Well). The membranes 
were blocked with 5% bovine serum albumin in TBST for 
2 h and incubated with the following primary antibodies 
at 4 °C overnight: ALDH2 (ab133306; Abcam; 1:1000), 
hypoxia-inducible factor 1-alpha (HIF1α) (36169S; 
Cell Signaling Technology; 1:1000), 4-hydroxynonenal 
(4-HNE) (ab46545, Abcam; 1:3000), sirtuin 3 (5490S; Cell 
Signaling Technology; 1:1000), P62 (ab109012; Abcam; 
1:10000), LC3B (ab192890; Abcam; 1:2000), caspase-3 
(19245S; Cell Signaling Technology; 1:1000), cleaved 
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caspase-3 (9664S; Cell Signaling Technology; 1:1000), 
Bax (14796S; Cell Signaling Technology; 1:1000), 
BCL-2 (3498S; Cell Signaling Technology; 1:1000), and 

β-actin (4970S; Cell Signaling Technology; 1:4000). The 
horseradish peroxidase-conjugated secondary antibody 
was allowed to stand at room temperature (24 °C) for 1.5 
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h. Detection was performed using Immobilon Western 
chemiluminescent HRP substrate (Millipore, Billerica, 
MA, USA). Gel images were captured using an Image 
Quant LAS 4000 Mini (n=6, GE Healthcare, Barrington, 
IL, USA).

Statistical Analysis

Data is expressed as the mean ± standard error of the 
mean. Statistical analyses were conducted using Graph-
Pad Prism 5.01 software. The normality of the data dis-
tribution was tested using the Kolmogorov-Smirnov test. 
The Mann-Whitney-U test was used when the group data 
were not normally distributed or if the group variances 
were unequal. The homogeneity of variance test was per-
formed using Levene’s test. Continuous data with normal 
distribution were assessed by one-way analysis of variance 
(ANOVA) with post hoc test or two-way ANOVA with 
post hoc test (Tukey-Kramer) as indicated [20].

Results

RIC Treatment Ameliorated Myocardial I/R Injury 
in Mice

To investigate the therapeutic potential of RIC in vivo, 
we used the myocardial I/R mouse model. Myocardial I/R 
injury was mimicked by coronary artery ligation for 45 
min, followed by 24-h reperfusion with RIC. SFigure 1a 
shows representative echocardiograms illustrating the 
comparison of mouse hearts after surgery and those in 
the sham group 24 h after treatment with RIC. During 
echocardiography, the heart rates of the mice were 
similar in all groups (SFig. 1b). In the sham groups, it 
was evident that RIC treatment did not change the LVEF 
(SFig. 1c) or LVFS (SFig. 1d). After 24 h of reperfusion, 
echocardiographic parameters were significantly restored 
in mice treated with RIC compared with those in the 
control group, with LVEF values of I/R + RIC group 

(61.89 ± 4.120%, n=10) and I/R group (49.77 ± 3.399%, 
n=10), with p values <0.05 (SFig.  1c). The LVFS 
values were I/R + RIC group (34.73 ± 1.952%, n=10) 
and I/R group (21.00 ± 2.638%, n=10), with p <0.001 
(SFig. 1d). After isolating the mouse cardiomyocytes in 
each group, we used the IonOptix™ Soft-Edge single-
cell contractile function detection system to evaluate the 
functional improvement of RIC in cardiomyocytes after 
I/R at the cellular level. In terms of systolic function, 
PS and -dL/dt in failed cardiomyocytes, after I/R, were 
significantly lower than those in the sham group, and they 
were significantly improved after RIC treatment (SFig. 1e 
and 1f).

Myocardial  infarction size was assessed via 
Evan’s blue/TTC staining, and a small infarction size 
was observed after RIC treatment, as shown by a 
reduced ratio of the white-to-red area (Fig. 1a and b). 
Furthermore, the results of apoptotic protein analysis 
showed that after myocardial I/R, the expression of 
myocardial apoptotic protein Bax and cleaved caspase-3 
increased significantly (Fig. 1c, d, and g). Conversely, 
after RIC treatment, the protein levels of Bax and cleaved 
caspase-3 were significantly decreased (Fig. 1d, e, and 
g). TUNEL staining also showed that RIC significantly 
reduced cardiomyocyte apoptosis (Fig.  1f  and h). In 
addition, we examined the ROS deposition levels in 
the frozen sections using DHE staining. RIC treatment 
signif icantly reduced postoperative injury after 
myocardial I/R (Fig. 2a and c). F480 results also showed 
that RIC significantly reduced macrophage infiltration 
in myocardial tissues (Fig. 2b and d).

ALDH2/SIRT3‑Based Regulation of Autophagy 
and Reduction of 4‑HNE Levels in Mice

ALDH2 is an endogenous protective factor that plays 
an essential role in repairing myocardial I/R injury [12]. 
RIC treatment significantly promoted the protein levels of 
ALDH2 in both sham and I/R hearts (Fig. 2e and f). The 
protein levels of HIF1α and SIRT3 were similar to ALDH2, 
which was downregulated after I/R, and upregulated after 
RIC (Fig. 2f and g). In addition, RIC decreased myocardial 
autophagy after myocardial I/R (Fig.  2e  and i). The 
electron microscopy results showed that the arrangement 
of the myocardium was disordered, and the number of 
autophagosomes increased after I/R (Fig. 2h). Post-RIC 
treatment, the arrangement of the myocardium was improved, 
with reduced number of myocardial autophagosomes 
(Fig.  2h). We also found that RIC attenuated 4-HNE 
induction by myocardial I/R injury, further reducing ROS 
levels and myocardial apoptosis (Fig. 2e and i). Hence, we 
speculate that RIC protects the myocardium from myocardial 

Fig. 1  RIC treatment ameliorates I/R injury in mice. Representa-
tive images of Evan’s blue dye and TTC staining (a). The ratio of 
risk area to left ventricular area in each group (AAR/LV, n>6, b). 
Change in infarction size induced by RIC or without RIC (IA/AAR, 
n>6, b). Western blot of Bax (n=6, d, c), caspase 3 (n=6, d, e), and 
cleaved caspase3 (n=6, d, g) levels in myocardium after I/R treatment 
and RIC treatment. Fluorescence imaging of cardiomyocyte apopto-
sis induced by I/R treatment with RIC. The cell nuclei were stained 
with DAPI (blue). Red represents apoptotic cardiomyocytes (n=6, 
Scale bar=200 μm, f, h). Data are depicted as the mean ± SEM. 
Statistical significance was determined by two-way ANOVA with a 
post hoc Holm-Sidak test; ns, not significant; *P<0.05; **P<0.001; 
***P<0.001; ****P<0.0001

◂
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I/R injury via autophagy by regulating the ALDH2/SIRT3 
signaling pathway and via attenuation of 4-HNE by the 
ALDH2/4-HNE signaling pathway in mice.

ALDH2 Deficiency Attenuates the Protective Effect 
of RIC on Myocardial I/R Injury in Mice

After 24 h of reperfusion, echocardiography examination 
revealed worse LV functions in ALDH2-KO mice than 
in the WT controls, presenting lower EF and FS values 
in ALDH2-KO mice (Fig. 3a, c, and d). Furthermore, we 
used the IonOptix™ Soft-Edge single-cell contractile 
function detection system to evaluate cardiac function. 
The study found that PS (Fig. 3e) and -dL/dt (Fig. 3f) in 
the ALDH2-KO group were worse than those in the WT 
group. In addition, RIC significantly improved I/R-induced 
myocardial dysfunction in the WT group but not in the 
ALKDH-KO group (Fig. 3).

Evan’s blue/TTC staining and TUNEL staining showed 
that in both the control and RIC groups, the area of 
myocardial infarction and myocardial apoptosis in the 
ALDH2-KO group increased significantly (Fig. 4). This 
further proved that the myocardial protective effect of RIC 
could be attenuated by ALDH2 deficiency (Fig. 5a–d). In 
addition, ROS and F480 staining showed that RIC could 
reduce ROS levels and myocardial inflammation after I/R 
in WT mice; however, the therapeutic effect was attenu-
ated in the ALDH2-KO group (Fig. 5e–g). Furthermore, 
ROS and myocardial inflammation in the ALDH2-KO 
group increased significantly after I/R compared with that 
in the WT group (Fig. 5e–g).

The above results show that RIC treatment reduced 
the area of myocardial infarction in the WT group 
and decreased myocardial apoptosis and ROS levels; 
however, there was no significant improvement in the 
ALDH2-KO group (Figs.  4 and 5). In summary, our 
results show that RIC can protect mouse myocardium 

from I/R injury; however, ALDH2 deficiency can attenu-
ate this protective effect.

RIC Exhibits Cardioprotection After Myocardial I/R 
Injury

Western blotting revealed that RIC can cause transient 
ischemia in the lower limbs of mice, induce high protein 
levels of HIF1α, and exert myocardial protection 
(Fig.  6a  and c). However, in the ALDH2-KO group, 
RIC did not induce a high protein level of HIF1α 
(Fig. 6a and c). SIRT3 is one of several nicotinamide 
adenine dinucleotide-dependent histone deacetylases 
that regulates various functions in mammals, including 
aging and metabolism [23, 24]. ALDH2 is a direct SIRT3 
substrate, and its deacetylation increases acetaminophen 
toxic-metabolite binding and enzyme inactivation [25]. 
Under normal circumstances, the deletion of ALDH2 did 
not affect the protein levels of SIRT3 (Fig. 6a and d). 
However, after I/R in the WT group, the protein levels 
of SIRT3 were significantly reduced but significantly 
increased after RIC treatment (Fig. 6a and d). However, 
when ALDH2 was deficient, SIRT3 protein levels in 
the I/R group were significantly decreased, and RIC 
did not increase SIRT3 protein levels (Fig. 6a and d). 
In addition, we found that myocardial autophagy was 
significantly increased after I/R, and RIC inhibited 
myocardial autophagy (Fig. 6a, e, and f). However, when 
ALDH2 was deficient, the regulatory effect of RIC on 
autophagy disappeared (Fig. 6a, e, and f). Furthermore, 
RIC can reduce the induction of 4-HNE after myocardial 
I/R injury. However, the effect of RIC was attenuated by 
ALDH2 deletion (Fig. 6g). In summary, we speculate 
that RIC protects the myocardium from I/R injury via 
the regulation of autophagy by the ALDH2/SIRT3/
HIF1α signaling pathway and attenuates 4-HNE via the 
ALDH2/4-HNE signaling pathway in mice (Fig. 6h).

Discussion

To our understanding, this is the first study to demonstrate 
that RIC can inhibit autophagy via the ALDH2/SIRT3/
HIF1α signaling pathway and attenuate 4-HNE, 
consequently, protecting the myocardium from I/R injury. 
RIC is feasible and straightforward and is expected to 
be a more promising myocardial protection measure in 
clinical applications. Using this strategy, we observed 
a significant improvement in myocardial function after 
I/R injury in mice. In addition, our study demonstrated 
that RIC could attenuate 4-HNE and regulate myocardial 

Fig. 2  RIC protects myocardium from I/R injury through ALDH2/
SIRT3 regulation of autophagy and reduction of 4-HNE levels in 
mice. Representative images of DHE-stained heart sections from 
mice 1 day after I/R. Scale bar =200 μm (a). Relative index of ROS 
fluorescence (n=4, c). Representation of myocardial macrophage 
infiltration (F480, scale bar=240 μm, b) and related statistics (n=4, 
d). Representative western blot of ALDH2, SIRT3, HIF1α, P62, 
LC3II, and 4-HNE levels in mice treated with RIC and control ani-
mals (e). Effects of RIC on ALDH2 (n=6, f), HIF1α (n=6, f), SIRT3 
(n=6, g), P62 (n=6, g), LC3II (n=6, i), and 4-HNE (n=6, i) expres-
sion in I/R mouse model. Transmission electron microscopy (TEM) 
images of the left ventricle. Red arrows mark autophagosomes (h). 
Data are depicted as the mean ± SEM. Statistical significance was 
determined by two-way ANOVA with a post hoc Holm-Sidak test, 
*P<0.05, **P<0.001, ***P<0.001, ****P<0.0001

◂
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autophagy via the ALDH2/SIRT3/HIF1α pathway, reduce 
myocardial infarction area, and inhibit myocardial cell 
apoptosis. This study suggests that RIC plays a vital role 
in cardiac protection after myocardial I/R injury.

Myocardial I/R injury is widely used in the clinical 
treatment of cardiovascular diseases, such as aortic opening 
after cardiopulmonary bypass surgery and coronary artery 
stent implantation. RIC can initiate the endogenous 
protective mechanism of the body by temporary I/R of 
another organ before the onset of myocardial I/R. Previous 
studies have shown that RIC can reduce infarct size, 
protect myocardial function, and improve adverse cardiac 
remodeling in patients with MI [7, 26]. Furthermore, RIC 
can improve the inflammatory response after cerebral 
ischemia and reduce both the risk and symptoms of 
cerebral hemorrhage [27]. As an exogenous intervention, 
RIC is simple and easy to implement. In this study, a mouse 
myocardial I/R model was constructed and treated with 
RIC. It was found that RIC can significantly reduce the area 
of myocardial infarction and myocardial cell apoptosis and 
protect heart function.

RIC could promote the secretion of a variety of humoral 
factors and activate a variety of signal transduction 
pathways, consequently playing a role in myocardial 
protection [28, 29]. Numerous studies have shown that the 
humoral component of RIC includes endogenous opioids, 
endocannabinoids, adrenomedullin, as well as calcitonin 
gene-bound peptide, and miRNAs as a component of 
exosomes [29]. These mediators trigger cardioprotective 
signaling and mediate cardiac repair after I/R [28, 29]. 
A recent study revealed RIC mediated cardiovascular 
protection via regulation of plasma cytokines as well as 
changes in cell surface characteristics of monocytes [30]. 
In addition, RIC can also inhibit Rho-kinase [31], JNK 
activation [32], downregulate STAT3 phosphorylation 
[33], and ERK pathways [34] to attenuate I/R injury. It was 
worth noting that when we studied the cardioprotective 
effect of RIC on I/R, we found that RIC could significantly 
promote ALDH2 protein expression in the myocardium. 
However, when ALDH2 is deficient, the myocardial 
protection of RIC attenuated. This data indicates that 
ALDH2 plays an extremely important role in RIC 
mediated cardio-protection.

ALDH2 is an endogenous cardioprotective factor in the 
mitochondria and is involved in the pathophysiological 
processes of coronary heart disease, heart failure, 
cardiomyopathy, and several other diseases [35–37]. 
Ma et al. performed I/R treatment in WT mice, ALDH2-
overexpressed mice, and ALDH2-KO mice and found that 
the area of myocardial infarction in ALDH2-overexpressed 
mice was significantly decreased, whereas that in 
ALDH2-KO mice was increased [38]. Our research shows 
that after I/R, ALDH2 protein levels were significantly 
decreased, and RIC significantly increased the protein 
levels of ALDH2. Furthermore, we found that RIC also 
upregulated SIRT3. SIRT3 is primarily located in the 
mitochondria and can reduce oxidative stress damage and the 
area of myocardial infarction by activating the anti-oxidative 
stress signaling pathway, thereby protecting the myocardium 
from reperfusion injury [39]. ALDH2 is a direct SIRT3 
substrate, and its deacetylation increases acetaminophen 
toxic-metabolite binding and enzyme inactivation [25, 40]. 
Therefore, we believe that RIC can reduce myocardial I/R 
injury by promoting the protein levels of ALDH2/SIRT3, 
thereby exerting myocardial protection.

Myocardial I/R injury stabilizes HIF1α, the primary 
regulator of the transcriptional response initiated by 
hypoxia [31], and HIF2α [41]. Previous research has shown 
that remote ischemic preconditioning (RIPC) increases 
plasma IL-10 levels and decreases myocardial infarct size 
in WT mice but not in HIF1α-deficient mice [42]. However, 
another study revealed that RIPC-induced cardioprotection 
was preserved in partially HIF1α-deficient mice and in rats 
pretreated with cadmium (HIF-1α inhibitors) [43]. Two 
studies presented controversial conclusions. However, 
the role of HIF-1α in RIC remains unclear. Our results 
reveal that RIC can increase the protein levels of HIF-1α 
and participate in RIC-induced cardioprotection. ALDH2 
can regulate mitochondrial fission and smooth muscle cell 
proliferation via the HIF1α signal pathway [44, 45]. Thus, 
ALDH2 acts as an endogenous cardiac protective factor in 
the mitochondria and can exert myocardial protection by 
regulating autophagy [46].

Mitochondria are the main source of ROS in cells, and 
when ROS exceed their antioxidant capacity, they lead to fatty 
acid oxidation, a process known as lipid peroxidation [47]. 
4-HNE is the most abundant lipid peroxidation product and 
forms adducts with proteins, which affects its biological func-
tion and destroys intracellular homeostasis [48]. The level of 
plasma 4-HNE was increased in patients with heart failure, 
which was negatively correlated with cardiac function [49]. 
ALDH2 is a mitochondrial enzyme that metabolizes ethanol 
and toxic aldehydes, such as 4-HNE [36]. In this study, we 
found that myocardial I/R injury leads to excessive 4-HNE 
levels and has serious consequences in cardiac dysfunction 

Fig. 3  ALDH2 deficiency attenuates the protective effect of RIC on 
I/R injury in mice. Representative images of echocardiography trac-
ing in WT and ALDH2-KO groups after 24 h of reperfusion (a). 
Heart rate (BPM, n>6, b). Left ventricular ejection fraction (LVEF, 
n>6, c). Left ventricular fractional shortening (LVFS, n>6, d). Peak 
shortening (% cell lengthening, n>6, e). Maximal shortening velocity 
(-dl/dt, n>6, f). Data are depicted as the mean ± SEM. Statistical sig-
nificance was determined by two-way ANOVA with a post hoc Holm-
Sidak test; ns, not significant; *P<0.05; **P<0.001; ***P<0.001
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after I/R. The absence of ALDH2 significantly increased the 
protein levels of 4-HNE, which aggravated myocardial I/R 
injury, further revealing that ALDH2 could play a role in pro-
moting 4-HNE metabolism. Conversely, RIC can upregulate 
ALDH2 protein levels, clear excessive 4-HNE levels, protect 
the myocardium, and reduce ROS levels.

Notably, 40% of the East Asian population and 8% of 
the global population carry the ALDH2 mutation, which is 
caused by the replacement of glutamate with lysine at amino 
acid 487 and results in only 15% of the catalytic activity of 
the WT ALDH2 [50–52]. Our present study indicates that 
RIC can protect the myocardium from I/R damage via the 

Fig. 4  RIC reduces myocardial infarction size and apoptosis after 
I/R was attenuated by ALDH2. Representative images of Evan’s 
blue dye and TTC staining (a). The ratio of risk area to left ventric-
ular area in each group (AAR/LV, n=5–7, b) and change in infarc-
tion size induced by RIC or without RIC in the WT and KO groups 
(IA/AAR, n=5–7, b). Fluorescence imaging of cardiomyocyte apop-

tosis induced by I/R treatment with RIC. Cell nuclei were stained 
with DAPI (blue). Red represents apoptotic cardiomyocytes (n=6, 
Scale bar=200 μm, c, d). Data are depicted as the mean ± SEM. 
Statistical significance was determined by two-way ANOVA with a 
post hoc Holm-Sidak test; ns, not significant; *P<0.05; **P<0.001; 
***P<0.001
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Fig. 5  RIC reduces ROS damage and inflammatory infiltration after 
I/R was attenuated by ALDH2. Representative western blot of cas-
pase-3, cleaved caspase-3, and Bax in WT and ALDH2-KO mice 
treated with RIC (a). After I/R, RIC downregulated cleaved caspase-3 
(n=4, b) and Bax (n=4, c) expression, but ALDH2 attenuated this 
effect. Representative images of DHE-stained heart sections from 

mice 1 day after I/R (n=4, Scale bar=200 μm, d, f). Representation 
of myocardial macrophage infiltration (F480, scale bar=240 μm, g) 
and related statistics (n=4, e). Data are depicted as the mean ± SEM. 
Statistical significance was determined by two-way ANOVA with a 
post hoc Holm-Sidak test; ns, not significant; *P<0.05; **P<0.001; 
***P<0.001, ****P<0.0001
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ALDH2/SIRT3/HIF1α pathway and by decreasing 4-HNE 
levels. Furthermore, RIC is highly operable, simple, easy 
to implement, and significant for clinical transformation. 
Therefore, it is expected to become a myocardial protection 
measure with more clinical application prospects.
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