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Abstract
Ischemic diseases are life-threatening, and the incidence increases as people’s lifestyles change. Medications and surgical 
intervention offer limited benefit, and stem cell therapy has emerged as a potential approach for treating ischemic diseases. 
The exosomes secreted by stem cells have attracted more attention because they do not trigger the immune response and 
can be used as drug carriers. The non-coding RNA (ncRNA) carried by exosomes plays a key role in mediating exosome’s 
beneficial effect, which can be further enhanced when combined with nanomaterials to improve its retention time. Here, we 
review the downstream target molecules and signal pathways of ncRNA and summarize recent advances of some nanomateri-
als used to encapsulate exosomes and promote ischemic tissue repair. We highlight the imprinting of exosomes from parent 
cells and discuss how the inflammasome pathway may be targeted for the development of novel therapy for ischemic diseases.
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Clinical Relevance
Ischemic disease is very harmful for human beings. This review 
summarizes the therapeutic effect and mechanism of stem cell-derived 
exosomes on ischemic diseases and expects to provide theoretical and 
technical information for clinical application.
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Introduction

Ischemic diseases such as cardiovascular disease and lower 
limb ischemic diseases resulting from vascular blockage seri-
ously endanger human health, and the incidence gradually 
rises. Myocardial infarction (MI) is caused by the interruption 
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of coronary blood flow and the hypoxic necrosis of myocar-
dial cells, leading to reduced myocardial contractility and 
decreased cardiac output [1, 2]. The lower limb ischemic dis-
ease is caused by arterial occlusion of the lower limbs [3]. 
Cerebral ischemia and renal ischemia are also common tis-
sue ischemic diseases. Although medical therapy and surgi-
cal treatment can alleviate ischemic disease symptoms, these 
approaches cannot regenerate damaged tissue. Stem cells can 
self-renew and differentiate into a variety of functional cells 
upon activation. Stem cell-derived exosomes also play an 
important role in the diagnostic and therapeutic processes of 
ischemia diseases. This review will summarize the effects of 
non-coding RNA (ncRNA) within stem cell-derived exosomes 
on ischemic tissue repair and the underlying mechanisms.
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Exosomes Derived from Stem Cells

Stem cells have self-renewal capacity and can produce more 
than one type of highly differentiated progeny cells. Bone 
marrow mesenchymal stem cells (BMSCs) and induced 
pluripotent stem cells (iPSCs) have many medical appli-
cations. For example, the hematopoietic stem cells in the 
bone marrow have been used to treat leukemia [4]. In many 
animal model studies of MI, BMSCs and adipose-derived 
stem cells (ASCs) have been shown to improve heart func-
tion after infarction. A number of animal studies show that 
after injection of stem cells, the retention time and survival 
rate of stem cells in the body are very low. The therapeutic 
function of stem cells is mainly due to their paracrine effect 
because only a very small number of the injected stem cells 
differentiated into cardiomyocytes [5, 6].

There are many ways that cells can communicate with 
each other, including a direct connection between cells, 
electrical stimulation, extracellular matrix interaction, 
and the release of various chemical substances. The cells 
release extracellular vesicles (EVs) for remote interac-
tion to deliver their messages. EVs carry a variety of 
molecules, including lipids, proteins, DNA, mRNA, and 
ncRNA [7, 8]. It is speculated that the transplanted stem 
cells promote the reconstruction and regeneration of distal 
tissues by releasing EVs [9]. Wang et al. [10] reported that 
percutaneous intracoronary injection of EVs from human 

plasma reduced infarction size in dogs with MI. The ben-
eficial effect was mediated by EV-derived miR-486, which 
inhibits the expression of phosphatase and tensin homolog 
deleted on chromosome ten (PTEN) in cardiomyocytes and 
promote the activation of protein kinase B (AKT), thereby 
preventing apoptosis of cardiomyocytes. Furthermore, 
conjugation of EVs with cardiac homing peptide (CHP) 
effectively improved the retention time of EVs in mouse 
and canine hearts.

The EVs can be divided into exosomes (Exos), 
microvesicles (MVs), and apoptotic bodies (ABs) accord-
ing to cell source and size [11–13] (Fig. 1). MVs are pro-
duced by the sprouting and division of membrane vesi-
cles on the cell surface, with a diameter of 100 ~ 1000 nm, 
which can be shed from the plasma membrane from many 
different types of cells [14]. ABs are membrane vesicles 
with a diameter of 1000 ~ 5000 nm released by apoptotic 
cells [12]. Exosomes are produced through endocytosis by 
living cells [15]. The endocytosed cell membrane forms 
several small vesicles, and the small vesicles fuse to form 
an early endosome, which buds inward to form multive-
sicularbodies (MVBs). MVBs can either fuse with lys-
osomes for degradation or fuse with the cell membrane 
to release the intraluminal vesicles (ILVs) into the cell in 
the external environment, and the secreted ILVs are called 
exosomes [16]. Compared to other EVs, exosomes are the 
smallest, ranging in size from 30 to 100 nm.

Fig. 1   The types of EVs. 
The EVs can be divided into 
exosomes, microvesicles, and 
apoptotic bodies according to 
cell  source and size
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Imprinting of Exosomes from Parent Cells 
and ncRNA

NcRNA is transcribed from DNA but not translated into 
proteins. It performs distinct functions at different stages 
during development. Understanding of the molecules and 
pathways at the RNA level has implications for the diag-
nosis and treatment of disease. Recently, various ncRNAs, 
including miRNA, lncRNA, and circRNA, have been dis-
covered to play an important role in gene transcription 
and translation.

In myocardial infarction (MI), some cells produce 
angiogenic factors, anti-apoptotic factors, mitotic fac-
tors, growth factors, and exosomes, attempting to repair 
the infarcted myocardium at early stage. Exosomes in the 
heart and circulation contain a large number of cardiac-
specific ncRNAs. These ncRNAs can be used as indica-
tors of heart injury and have great diagnostic potential as 
biomarkers of MI. Exosomes derived from cardiac and 
non-cardiac stem/progenitor cells are involved in cardiac 
protection and regeneration. Exogenous ncRNA can be 
rapidly degraded by highly active ribonuclease in plasma, 
but exosome is an ideal carrier for ncRNA because of its 
stable nature and non-immunogenicity [17].

Li et al. proposed the theory of “imprinting of exosomes 
from parent cells” [18]. It means that the components 
within exosomes and the exerted functions are determined 
by the dominant or recessive imprinting of their parent 
cells, which are regulated by the microenvironment sur-
rounding the cells. In addition, some exosome-derived 

ncRNAs or mRNAs may not be functional in the parent 
cells but act on the recipient cell. Therefore, it is important 
to understand how the imprinting of parent cells affects the 
function of exosomes.

Studies have demonstrated that exosomal miRNAs play a 
key role in cell migration, angiogenesis, and immune regula-
tion [19]. The mechanisms whereby lncRNA regulates bio-
logical process is much more complex than that of miRNA 
[20] [21, 22], and the function of exosomal lncRNA in MI 
remains largely unknown. CircRNA acts as a miRNA sponge 
to compete with mRNA for miRNA binding sites in cells, 
thus improving the expression level of target genes [23–25]. 
Recent studies suggest that circRNA plays an important role 
in ischemic diseases, including MI and lower limb ischemia 
[26, 27]. It has been shown that exosome contains more cir-
cRNAs than their source cells, but their function remains to 
be defined [28]

Inflammasome

Inflammasomes are protein complexes of the innate immune 
system (Fig. 2) that mediate the inflammatory responses in 
ischemic tissue injury [29]. The activation of inflammas-
omes leads to the activation of caspase-1 or caspase-11, 
which in turn activates pro-inflammatory cytokines, such 
as IL-1β and IL-18, resulting in pyroptosis. Based on the 
activation of either caspase-1 or caspase-11, inflammas-
omes can be classified as either canonical or non-canonical 
[30]. Canonical inflammasomes include NLRP1, NLRP3, 
NLRC4, and AIM2, which initiate inflammatory responses 

Fig. 2   Classification and 
mechanisms underlying the 
activation of inflammasomes. 
Pingtan represents the inflam-
masome system; double-sided 
embroidery represents both 
sides of inflammasome; the 
balalaika represents the clas-
sical inflammasome NLRP3, 
AIM2, and NLRC4; pipa stands 
for non-classical inflammasome; 
the bridge represents the organ; 
the flow represents the circula-
tion system delivering IL-1 and 
IL-18; Hanshan Temple bell 
represents the sound of healing 
bells
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by activating caspase-1, whereas the non-canonical inflam-
masomes activate caspase-11[31, 32]. Studies suggest 
that exosome-derived ncRNA can prevent the activation 
of NLRP3 signaling pathway [33–36], but its role in non-
canonical inflammasomes require further investigation.

Acute inflammation (M type) is a beneficial process 
that destroys pathogens, removes dead cells, and initiates 
ischemic tissue repair. In contrast, chronic inflammation (N 
type) is a pathological condition that lasts for a long time and 
leads to ischemic tissue damage. Studies suggest that inflam-
mation can be modulated by inflammasomes [37], which are 
potential targets for the prevention and treatment of ischemic 
disease. Drugs targeting IL-1 have entered clinical trials, 
which offered opportunities to treat chronic inflammatory 
diseases. The CANTOS trial demonstrated that a monoclo-
nal antibody (Canakinumab) targeting IL-1β can reduce the 
rate of ischemic disease [38]. The IL-1 clinical trial is an 
important step toward clinical application; however, it also 
showed that canakinumab is associated with an increased 
incidence of fatal infection resulting from off-target effects 
[39]. Recent studies demonstrated that exosome-derived 
circRNA can repair the ischemic tissue by preventing the 
activation of NLRP3 [33, 34]. These findings opened a new 
avenue for treating ischemic diseases.

Repair of Ischemic Tissue Injury by Exosomes 
and Underlying Mechanisms

At present, the research on the repair of various ischemic 
tissues by exosomes is in full swing (Fig. 3).

Repair of MI by Exosomes

The current treatment strategies for MI include drug ther-
apy, percutaneous coronary intervention, and coronary 
artery bypass grafting [40, 41]. Although these treatments 
may improve cardiac function to a certain extent, they can’t 
regenerate the damaged myocardium. With the development 

of novel technology, stem cell-derived exosomes have been 
shown to improve heart function by inhibiting inflammatory 
response, reducing cell death, and preventing fibrosis. There-
fore, the delivery of exosomes is becoming a new option for 
the treatment of MI [42, 43].

Mechanisms Underlying the Action of Exosomal miRNA 
in MI

Many reports indicate that miRNAs in exosomes play a 
huge role in the repair and treatment of MI. Shao et al. [44] 
found that human umbilical mesenchymal stem cell-derived 
exosome (UMSC-Exo) is superior to UMSCs in preventing 
inflammation, cardiac fibrosis, and improving cardiac func-
tion in a rat model of MI. They demonstrated that UMSC-
Exo and UMSCs have similar miRNA expression profiles, 
explaining why UMSC-Exo can replace UMSCs in cardiac 
repair. They further showed that knockout of HLA light 
chain β 2-microglobulin (B2M) in UMSCs by CRISPR/
CAS9 can improve the survival rate of stem cells after trans-
plantation by preventing the activation of CD8+T cells. In 
addition, exosome derived from B2M−UMSC is more effec-
tive in repairing tissue injury. MicroRNA sequencing and 
bioinformatics analysis revealed that Bim is the target of 
miR-24 [45].

Zhao et  al. [46] showed that exosomes derived from 
mouse bone marrow mesenchymal stem cells (BMSC) cul-
tured under hypoxia conditions are enriched with miR-125b, 
which mediates the cardioprotective effect. To improve 
tissue specificity, they conjugated the exosomes with an 
ischemic myocardium-targeted peptide and showed that 
these conjugated exosomes were able to home to injured 
hearts when injected intravenously. They further showed that 
miR-125b inhibits the expression of pro-apoptotic genes p53 
and BAK1 in cardiomyocytes. Pan et al. [47] demonstrated 
that exosomes from adipose mesenchymal stem cells modi-
fied with miR-146a inhibited MI-induced apoptosis, inflam-
mation, and fibrosis by suppressing EGR1 expression.

Fig. 3   Exosomes improve the 
function of ischemic tissues by 
transporting ncRNA
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Mechanisms Underlying the Role of Exosomal lncRNA 
and circRNA in MI

The involvement of lncRNA and circRNA in MI is well 
documented [48, 49], but the mechanisms underlying the 
function of exosomal lncRNA and circRNA were rarely 
discussed.

Lin et al. [50] showed that lncRNA HCGl5 was enriched 
in exosomes from AC16 cardiomyocytes under hypoxia, 
which contributed to apoptosis of cardiomyocytes and 
inflammation via activation of NF-κB /p65 and p38 path-
ways. Furthermore, the overexpression of lncRNA HCGl5 
aggravated MI injury in C57BL/6 J mice. Zhu et al. showed 
that the expression of lncRNA MALAT1 was decreased in 
damaged hears [51]. They injected the exosome into the 
mice treated with D-Gal, and the results showed that the 
exosomes alleviated the adverse effects of D-Gal on ejection 
fraction (EF) and fractional shorting (FS) in mice, and the 
beneficial effect was blocked when lncRNA MALAT1 was 
silenced, suggesting that lncRNA MALAT1 is the mediator 
of the protective effect afforded by the exosomes. Using a rat 
MI model, Li et al. showed that knockdown of circ-0001273 
in exosomes led to impaired cardiac function by promoting 
apoptosis of cardiomyocytes [52].

Repair of Lower Limb Ischemia by Exosomes

Current treatment options of lower limb ischemic injury 
include drug therapy[53], endovascular intervention[54], 
and surgery [55], which can relieve symptoms to a certain 
extent but can’t cure the disease. Stem cell transplantation 
provides a new treatment option for some patients by pro-
moting angiogenesis. But autologous stem cell transplanta-
tion is time-consuming and inconvenient, while allogeneic 
stem cell transplantation is associated with immune rejec-
tion. Therefore, the transplantation of stem cell-derived 
exosomes has emerged as a new alternative treatment of 
lower limb ischemic injury.

Mechanisms of Exosomal miRNA in Treating Lower Limb 
Ischemic Diseases

Using CRISPR/CAS9 technology, Zhang et al. [56] prepared 
UMSCs without human leukocyte antigen light chain β-2-
microglobulin (B2M-UMSCs). The therapeutic potential 
of B2M-UMSCs was tested in a mouse hindlimb ischemia 
model. The results showed that transplantation of B2M-
UMSCs resulted in enhanced perfusion and better running 
ability without causing immune rejection. The therapeutic 
effect was mediated by exosomes. MicroRNA sequencing 
identified miR-24 as the mediator of the beneficial effect. 
They further showed that Bim is the downstream target for 
miR-24.

MiR-126 is a miRNA highly expressed in endothelial 
cells, and it promotes angiogenesis by targeting inhibitors 
of angiogenic pathways. Ranghino et al. [57] found that 
endothelial progenitor-derived exosomes improved blood 
perfusion and neovascularization in a mouse femoral artery 
ligation model. They further showed that the exosomes are 
enriched with miR-126.

The Role of Exosomal lncRNA in Lower Limb Ischemic Injury

It was shown that pharmacological inhibition or genetic 
ablation of lncRNA MALAT1 reduced blood flow recov-
ery and capillary density in a hindlimb ischemia model [58, 
59]. Shyu et al. [60] found that hyperbaric oxygen (HBO) 
can promote neovascularization by upregulating lncRNA 
MALAT1, which counteracts the inhibitory effect of miR-
92a on the expression of KLF2 in endothelial cells. Silence 
of LncRNA DLGAP1-AS1 can inhibit oxidative stress 
and apoptosis and reduce the levels of TNF-α by activat-
ing PI3K/Akt pathway in a rat model of acute lower limb 
ischemia reperfusion [61].

Mechanisms of Exosomal circRNA and NLRP3 in Lower Limb 
Ischemia

Using a mouse hindlimb ischemia model, Yan et al. [34] 
found that the expression of circHIPK3 in ischemic muscle 
was decreased. They showed that UMSC-derived exosomes 
improved muscle perfusion and function, and the effect was 
mediated by circHIPK3.They further showed that circHIPK3 
inhibits inflammasome activation and pyroptosis by downreg-
ulating miR-421, leading to increased expression of FOXO3a.

In a study of skeletal muscle ischemic injury, Wang 
et al. [33] showed that tumor suppressor Rb1 acts as an 
inducer of NLRP3 inflammation. In ischemic muscle, 
the level of miR-29b increases, resulting in decreased 
expression of CDK6 expression and subsequent activa-
tion of Rb1. UMSC-derived exosomes improve blood 
perfusion and muscle motor function by releasing cir-
cRNA cPWWP2A, which inhibits the activity of miR-
29b. This study not only discovered a new therapeu-
tic target regulating NLRP3 inflammasomes but also 
demonstrated that exosomes can treat muscle injury by 
releasing circRNA, which has the potential for clinical 
application (Fig. 4).

Repair of Cerebral Ischemic Injury by Exosomes

Cerebral ischemic diseases are very difficult to treat due 
to the non-replicative nature of neurons and the presence 
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of the blood–brain barrier. There is an urgent need to find 
specific methods and new drugs to repair ischemic neu-
rons. Exosomes are ideal drug carriers for neurological 
diseases due to their ability to penetrate the blood–brain 
barrier [62].

At present, most studies on the effect and the mecha-
nism of exosomes involved in cerebral ischemia repair 
focus on miRNAs, and studies on other ncRNAs are 
relatively few. Zhang et al. conjugated an c(RGDyK) 
peptide to exosomes to target ischemic brain [63, 64]. 
They loaded the exosomes with miR-210 to generate the 
RGD-exo, miR-210, which was then injected intrave-
nously into a mouse model of transient middle cerebral 
artery occlusion (MCAO). They showed that miR-210 
can be detected at the lesion area of the ischemic region. 
They further showed that the expressions of integrin 
β3, vascular endothelial growth factor, and CD34 were 
significantly upregulated, and the survival rate was 
also improved after 14 days treatment. Also using the 
MCAO model, Cai et al. [65] showed that MSC-derived 
exosomes contain miR-542-3p, which can attenuate 
ischemia-induced glial inflammation by inhibiting the 
activity of TLR4. Song et al. [66] found that M2 micro-
glia-derived exosome contains miR-124, which inhibits 
ischemic brain injury and promotes neuronal survival by 
targeting USP14. The results of Chen et al. [67] showed 
that CircSHOC2 in exosomes secreted by ischemia-pre-
conditoned astrocytes inhibited neuronal apoptosis and 
improved neuronal damage by regulating autophagy via 
the miR-7670-3p/SIRT1 axis.

Repair of Renal Ischemic Injury by Exosomes

Stem cell-derived exosomes have been shown to repair 
ischemic renal injury by inhibiting fibrosis, inflammation, and 
apoptosis. Using a rat model of acute renal ischemic injury, Li 
et al. [68] showed that human urine-derived stem cells (USCs) 
can restore renal function by releasing exosomes that contains 
miR-146a-5p, which targets the 3’UTR of IRAK1, leading to 
inhibition of NF-κB signaling pathway. Using a mouse renal 
ischemia reperfusion injury model, Cao et al. [69] demon-
strated that exosomes derived from human umbilical cord mes-
enchymal stem cells (hucMSCs) exhibit tropism to ischemic 
kidney tissue and promote tubular repair by preventing cell 
cycle arrest and apoptosis through the miR-125b-5p/p53 
pathway. Zhang et al. [70] showed that human urine-derived 
stem cell-derived exosomes (USCs -Exos) inhibit hypoxia/
reoxygenation-induced apoptosis of human proximal tubular 
epithelial cells by releasing miR-216a-5p, which activates the 
Akt pathway by targeting PTEN.

Novel Biomaterials Improve Retention 
of Exosomes

The exosomes have a short half-life in vivo, which reduces 
their efficacy in potential clinical treatment. Hydrogel bio-
materials can overcome this problem by forming a micro-
environment similar to the extracellular matrix in the tissue 
and prolonging the retention time of the exosomes. Various 
forms of hydrogels, such as chitosan/silk fibroin hydrogel, 

Fig. 4   MSC-derived exosomes 
repair tissue injury by inhibiting 
NLRP3 expression in ischemic 
lower limb tissues by releas-
ing ncRNA. The universe ring 
represents exosomes, the sea 
monster represents damaged 
tissue, and the soaring dragon 
represents repaired tissue
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chitosan hydrogel, and imine crosslinked hydrogel, have 
been used to encapsulate exosomes and showed better thera-
peutic effects [71, 72] (Fig. 5).

Han et al. [73] found a decreased expression of miR-675 
in damaged muscles, while the expression of transforming 
growth factor-β1 (TGF-β1) and p21 was increased. Injection 
of miR-675 into damaged muscle resulted in reduced expres-
sion of TGF-β1 and p21, suggesting that miR-675 is a modu-
lator of TGF-β1 and p21. Using molecular approaches, they 
showed that TGF-β1 is the downstream target of miR-675, 
and TGF-β1 is an inducer of p21. These findings suggest 
that miR-675 inhibits the damaged process by targeting the 
TGF-β1/p21 signaling pathway. They further demonstrated 
that exosomes containing miR-675 wrapped in silk fibroin 
hydrogel promote blood perfusion of the ischemic hindlimb.

Moreover, Han et al. [74] developed a novel injectable 
self-assembled peptide amphiphile (PA) by adding a cardio-
protective peptide and a matrix metalloproteinase-2 (MMP-
2) degradable sequence to PA (PA-GHRPS). The gelatiniza-
tion ability was further enhanced by adding peptide NapFF 
to form a PGN hydrogel, which was used to encapsulate 
exosomes. The PGN encapsulated exosomes were injected 
into the border zone of infarcted myocardium of rat hearts, 
and the results showed that PGN hydrogel could effectively 
encapsulate the exosome and ensure the stability and contin-
uous release of the exosomes, which significantly improved 
myocardial function by reducing inflammation, fibrosis, and 
apoptosis and promoting angiogenesis.

The hydrogel formed by composite biomaterials such as 
silk fibroin (SF) and silk sericin (SS) is more suitable for 
tissue repair than that formed by a single biomaterial. Han 

et al. [75] investigated the effect of two different extraction 
methods on the ability of the composite hydrogel on tissue 
repair. SF-SS hydrogel was formed by extracting SF and SS 
proteins separately (LiBr dissolution of SF and hot water dis-
solution of SS). In contrast, the SF-SS hydrogel was formed 
by simultaneous extraction (LiBr dissolution of SF and SS 
proteins). The results showed that SF-SS hydrogel was more 
efficient in wrapping UMSC-Exo to promote wound healing 
and angiogenesis.

In addition, Zhao et al. [76] developed photosensitive 
delivery microcarriers (PDMs) for drug delivery. Under 
near-infrared light, the PDMs became shrank and triggered 
the release of drugs such as VEGF to promote angiogenesis. 
It would be interesting to know whether PDMs can be used 
to carry exosomes.

Conclusion

Stem cell-derived exosomes have been used to treat ischemic 
diseases in pre-clinical studies. New materials such as 
hydrogels have been used to improve the therapeutic poten-
tial of the exosome by prolonging its retention time. Many 
of the beneficial effects afforded by exosomes are mediated 
by ncRNAs. So far, most of the studies have been focused on 
miRNA, and there is only limited information on the role of 
lncRNA and circRNA in the literature. Emerging evidence 
suggests that inflammasomes are involved in the inflamma-
tory reaction associated with ischemic tissue injury. Further 
understanding of the mechanisms responsible for the regu-
lation of inflammasomes by exosomal ncRNA will lead to 

Fig. 5   Hydrogel biomateri-
als can improve the retention 
of exosomes and show better 
therapeutic effects on ischemic 
tissues injury
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the identification of a novel therapeutic target for ischemic 
diseases.
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