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Abstract
The aim of this study is to develop an automated deep-learning-based whole heart segmentation of ECG-gated computed 
tomography data. After 21 exclusions, CT acquired before transcatheter aortic valve implantation in 71 patients were reviewed 
and randomly split in a training (n = 55 patients), validation (n = 8 patients), and a test set (n = 8 patients). A fully automatic 
deep-learning method combining two convolutional neural networks performed segmentation of 10 cardiovascular structures, 
which was compared with the manually segmented reference by the Dice index. Correlations and agreement between myo-
cardial volumes and mass were assessed. The algorithm demonstrated high accuracy (Dice score = 0.920; interquartile range: 
0.906–0.925) and a low computing time (13.4 s, range 11.9–14.9). Correlations and agreement of volumes and mass were 
satisfactory for most structures. Six of ten structures were well segmented. Deep-learning-based method allowed automated 
WHS from ECG-gated CT data with a high accuracy. Challenges remain to improve right-sided structures segmentation 
and achieve daily clinical application.

Keywords  Whole heart segmentation · Deep learning · 
Computed tomography · Procedural planning

Abbreviations
3D	� Tridimensional
WHS	� Whole heart segmentation
CT	� Computed tomography
AI	� Artificial intelligence
TAVI	� Transcatheter aortic valve implantation
PV	� Pulmonary veins
LA	� Left atrium
LVC	� Left ventricular cavity
LVM	� Left ventricular myocardium

Ao	� Aorta
CS	� Coronary sinus
SVC	� Superior vena cava
RA	� Right atrium
RVC	� Right ventricular cavity
PA	� Pulmonary artery
ROI	� Region of interest
CNN	� Convolutional neural network
IQR	� Interquartile

Introduction

Tridimensional (3D) cardiac imaging has emerged as a cor-
nerstone in the evaluation and the management of patients 
in contemporary cardiology. As the number of procedures 
dedicated to the treatment of a variety of arrhythmias or 
structural heart diseases is exponentially growing [1–7], 
3D cardiac imaging, providing a precise anatomic descrip-
tion of cardiothoracic structures, now plays a crucial role in 
patients selection and procedural planning [8–11]. Manually 
obtaining an accurate anatomic description of the heart and 
surrounding structures may be a tedious task and may suffer 
from reproducibility issues [12], which highlights the chal-
lenges posed by whole heart segmentation (WHS).
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Recently, artificial intelligence (AI) has also established 
itself as an appealing tool in the analysis of multiple func-
tional and anatomic parameters from imaging data [13–16]. 
Allowing user-free processes and high reproducibility, it 
appears promising for procedural planning, when a descrip-
tion of each cardiac chamber and structure is required. 
Several works evaluating WHS from computed tomogra-
phy (CT) imaging have already been performed [17–21]. 
However, some of these studies were based on multi-atlas 
segmentation, which seems to be less accurate and more 
time consuming than deep-learning-based methods [20]. 
Furthermore, owing to the computing power required for the 
algorithms, to date none of the previously published work 
integrated the automatic segmentation process in a readily 
useable and standalone software, which may impede the use 
of these methods in daily practice, despite the good results 
reported in these studies.

In the present work, we developed and validated a deep-
learning-based WHS segmentation process from a dedicated 
CT database, which was fully integrated in a routinely used 
procedural planning software.

Methods

Data Acquisition

Imaging data used in the present work were ECG-gated CT 
performed during the pre-procedural work-up of patients 
undergoing transcatheter aortic valve implantation (TAVI) at 
our institution. CT of consecutive TAVI recipients between 
May and September 2019 were analyzed. Exclusion criteria 
were image quality not allowing precise manual segmenta-
tion of the structures of interest, either because of artifacts 
or poor image contrast, which was assessed by the expert 
physician performing manual segmentation, and patients 
with prior surgical aortic valve replacement or TAVI. All 
patients gave written informed consent for the procedures 
and anonymous collection of their data, which were prospec-
tively gathered in an electronic database as part of a national 
registry [3]. The present study was not pre-specified, obser-
vational and retrospective. Thus, the institutional review 
board waived specific consent for this study.

CT Acquisition Protocol

All patients underwent a cardiac CT scan for the procedural 
planning of TAVI according to established consensus [8]. 
CT scan was performed on a third generation dual-source 
CT scanner (SOMATOM Force, Siemens Healthcare, Forch-
heim, Germany). No systematic intravenous beta-blocker 
was used before CT scan. A prospective ECG-triggered 
high-pitch CT angiography extending from the carotid to 

the femoral arteries was performed during a single breath-
hold. ECG gating was set on end-systole (30% interval of 
the cardiac cycle) and activated to trigger the acquisition 
on cardiac volume only. Acquisition parameters were as 
follows: collimation 192 × 0.6 mm, gantry rotation time 
250 ms, fixed tube voltage 100 kV, current–time product 
ranging from 342–604 mAs, and spiral pitch factor 3.2. A 
bolus of 90 mL of iobitridol (Xenetix 300, Guerbet, Roissy, 
France) was injected at 4 mL/s, followed by a 40-mL saline 
chaser bolus. An automated bolus tracking system was used 
to synchronize the arrival of the contrast material with the 
initiation of the scan. Cardiac dataset was reconstructed 
using a 181-mm FOV, a 512 × 512 matrix, a Bv40 kernel and 
iterative reconstruction technique (Admire level 3, Siemens).

CT Manual Segmentation Protocol

For each CT, an expert interventional cardiologist with a 
cardiac imaging degree and extensive experience in the field 
of cardiac CT and TAVR performed a manual segmenta-
tion of the heart and surroundings large vessels using the 
Endosize© software (Therenva, Rennes, France), a CE- and 
FDA-marked medical device for planning and sizing of 
endovascular procedures [22]. The following ten structures 
were segmented: pulmonary veins (PV), left atrium (LA), 
left ventricular cavity (LVC), left ventricular myocardium 
(LVM), aorta (Ao), coronary sinus (CS), superior vena cava 
(SVC), right atrium (RA), right ventricular cavity (RVC), 
and pulmonary artery (PA). The segmentation method of 
the different elements has been previously described [20, 
23–25]. LA and RA segmentation included the appendage. 
For the left ventricular myocardium, considering the end-
systolic phase acquired, the frequent LV hypertrophy among 
TAVI recipients, and the procedural planning perspective 
of our work, we decided to include the main papillary mus-
cles, i.e., exclude them from the cavity. The different cavities 
were delineated by identifying the endocardial border [21]. 
LVM mass was calculated as the left ventricular myocardial 
volume derived by the delineation of its endocardial and 
epicardial borders and multiplied with the specific gravity of 
myocardial tissue (assuming a tissue density of 1.05 g/mL) 
[26]. These segmentations were considered as the reference 
ground truth for our deep-learning model.

CT Automatic Segmentation Protocol

The automatic deep-learning-based WHS segmentation 
process was divided into two distinct stages: a localization 
step, which automatically selects the aortic valve to gener-
ate the region of interest (ROI) in the CT volume, and the 
segmentation step.

In the present study, the localization step was performed 
by using a regression convolutional neural network (CNN 
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[27]) based on the SqueezeNet architecture. In contrast 
with classification approaches, during which CNNs detect 
the presence or absence of anatomical target structures 
in each of the orthogonal viewing planes independently 
and then combine them to obtain the coordinates of each 
landmark, here the distance (in mm) between the current 
slice and the slice belonging to the anatomical structure 
is used. After parsing the entire volume, distances can be 
converted to parabolic curves using polynomial regression, 
where the minimum is searched for each axis. The center 
of the aortic valve (defined as the intersections of the three 
commissures) was defined as the anatomical landmark to 
be found. 3D images were converted into three sets of 2D 
images for the axial, sagittal, and coronal axis, respec-
tively, and preprocessed with cropping and padding opera-
tions. For each axis, a regression CNN was trained with the 
2D image slice as input. Specifically, the VGG-16 CNN 
architecture [28] was adapted to output quantitative values 
by modifying the softmax loss layer with a Euclidean loss 
layer. All other weights were initialized from pre-training 
on the ImageNet database (accessed at http://​www.​image-​
net.​org). The three networks were trained separately and 
did not share weights. Convergence was obtained after 100 

epochs. Following this approach, the exact position of the 
aortic valve was estimated. After this automatic detec-
tion of the aortic valve, in the segmentation step, 3D data 
were resized to a 320 × 320 × 320 ROI and resampled to 
0.7 × 0.7 × 1 mm by voxel to include all structures of inter-
est. These preprocessed volumes were then used as the 
input dataset of the Dense V-Net 3D segmentation CNN 
[29]. Briefly, the volume is cropped into voxels batches 
and a succession of convolutional 3D 3 × 3 × 3 kernels, 
dense connections, and batches normalizations are applied 
to extract 3D spatial information from each batch. The 
resultant feature maps are then down-sampled by 2 and the 
operation is repeated 3 times. At the end, the feature maps 
are up-sampled to the original resolution and a softmax 
layer gives the result class for each voxel. Adam optimizer 
was preferred for training with an initial learning rate of 
0.001, along with a loss combining the dice and cross-
entropy coefficients. The output of the network is directly 
a 3D mask with one label for each structure. The network 
was trained for 300 epochs during 6 days on a Nvidia RTX 
2070 GPU. The Niftynet open-source framework (https://​
nifty​net.​io/) was used for the training and the validation of 
the network. The complete workflow of the segmentation 
process is illustrated in the Fig. 1.

Fig. 1   Deep-learning-based whole heart segmentation workflow. A. 
Native sagittal plane; B. Native coronal plane; C. Native axial plane. 
D. SqueezeNet ROI detection regression CNN localizes the center 
of the aortic valve in the entire CT volume allowing its resizing to 

a 320 × 320 × 320 ROI including all structures of interest. E. Dense 
V-Net 3D segmentation CNN performs the multilabel automatic 
segmentation. CNN: convolutional neural network; CT: computed 
tomography; ROI: region of interest
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CT Automatic Segmentation Testing

The dataset was randomly split in a training set (n = 55 
patients, 17,600 slices), a validation set (n = 8 patients, 2560 
slices), and a test set (n = 8 patients, 2560 slices). For testing 
purposes, the segmentation method was integrated in the 
Endosize® software (Therenva, Rennes, France). The auto-
matic segmentations in the test set were obtained directly 
from this routinely used software using a standard 2-GHz 
workstation with 2 GB of RAM to evaluate the clinical 
applicability of our method.

WHS obtained using the deep-learning approach were 
compared with the manually segmented reference from the 
test set. The image-based performance metric was the Dice 
index [30]. Dice similarity score quantifies the voxel-wise 
degree of similarity between the model predicted segmenta-
tion mask and the ground truth and ranges from 0 (no simi-
larity) to 1 (identical). Mathematically, it can be expressed 
as follows:

Statistical Analysis

Continuous variables are presented as mean ± standard 
deviation or median (interquartile [IQR] or full range) 
depending on their distribution, which was assessed using 
the Shapiro–Wilk test. Categorical variables were summa-
rized as numbers (percentages). Dice scores were summa-
rized as medians and quartiles. Comparisons between groups 
were performed with the use of the Kruskal–Wallis and the 
Fisher exact test for continuous and categorical variables, 
respectively. Levels of agreement between the automatic and 
manual segmentations were assessed on the test set with the 
Bland–Altman difference against mean plot. Pearson cor-
relation coefficients of volumes between the manual refer-
ence and automatic prediction were also evaluated. Volumes 
measured by the automatic segmentation were compared 
with the manual segmentation results using the Wilcoxon’s 
signed rank test. Statistical analyses were conducted using 
the Statistical Package for Social Sciences version 25 (SPSS 
Inc., IBM, Armonk, NY).

Results

Population

Between May 15 and September 4, 2019, 107 consecutives 
patients underwent TAVI at our institution. Among them, 
nine had a history of aortic valve replacement whereas 21 

Dice similarity coefficient =
(2 ∙ TruePositive)

(2 ∙ TruePositive + FalsePositive + FalseNegative)

had poor-image quality on their pre-procedural CT and were 
excluded (Supplemental Fig. 1). Moreover, the CT of six 
patients were successfully manually segmented but pre-
sented technical issues (mainly important motion artifacts 
in five patients), which precluded their analysis by the deep-
learning-based algorithm. Therefore, these patients were 
excluded from the study population leaving 71 patients for 
analysis. Baseline characteristics of included patients are 
described in Table 1. Patients from the training and valida-
tion sets were comparable to patients from the test set at the 
exception of a lower body surface area in the test set. The 
3D imaging dataset consisted of 2.064 billion voxels, i.e., 
32.768 million voxels per volume.

Manual and Automatic Deep‑Learning‑Based 
Segmentations

Manual segmentations of the ten labels took a median of 
90 min/patient (range: 57 to 153 min). The performance and 

results of a manual segmentation are illustrated in Fig. 2.
The aortic valve position was detected in less than 2 s in 

a standard workstation thanks to the multi-resolution search 
scheme for each axis. Automatic segmentations of the ten 
labels took a median of 13.4 s (range: 11.9 to 14.9 s) on a 
standard 2-GHz computer with 2 GB of RAM in the test set.

Validation of the Automatic Deep‑Learning‑Based 
Segmentation

The combined overall Dice index for the 10 labels was 0.920 
(IQR: 0.906–0.925). The median Dice scores for Ao, CS, 
LA, LVC, LVM, PA, PV, RA, RVC, and SVC were 0.915 
(IQR: 0.902–0.930), 0.604 (IQR: 0.516–0.652), 0.939 
(IQR: 0.933–0.941), 0.852 (IQR: 0.793–0.867), 0.927 
(IQR: 0.923–0.940), 0.878 (IQR: 0.865–0.888), 0.657 
(IQR: 0.594–0.712), 0.877 (IQR: 0.816–0.901), 0.819 
(IQR:0.763–0.862), and 0.627 (0.408–0.659), respectively 
(Table 2, Fig. 3). Bland–Altman and linear regression plots 
are shown (Fig. 4), with the mean difference and limits of 
agreement between the manual reference and automatic pre-
diction for Ao, CS, LA, LVC, LVM, PA, PV, RA, RVC, and 
SVC being − 0.41 mL (95% confidence interval [CI]: − 20.6 
to 19.7), − 0.40 mL (95%CI: − 1.56 to 0.76), − 1.07 mL 
(95%CI: − 10.4 to 8.2), − 6.63  mL (96%CI: − 16.2 to 
2.9), − 1.76 g (95%CI: − 9.5 to 6.0), 0.53 mL (95%CI: − 9.0 
to 10.1), − 4.67 mL (95%CI: − 9.68 to 0.35), − 0.76 mL 
(95%CI: − 14.6 to 13.1), − 8.17 mL (95%CI: − 18.0 to 1.6), 
and 2.51 mL (95%CI: − 9.9 to 14.9), respectively. Table 3 
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Table 1   Baseline characteristics of the study population

Continuous variables are presented as mean ± standard deviation or median (interquartile range). Categorical variables are presented as num-
ber (percentage). CABG, coronary artery bypass graft; CAD, coronary artery disease; PCI, percutaneous coronary intervention; TIA, transient 
ischemic attack

Characteristics Training set (n = 55) Validation set (n = 8) Test set (n = 8) p value

Age, yrs 81.2 ± 6.3 82.6 ± 6.6 77.9 ± 8.2 0.39
Female sex 31 (56.4) 4 (50.0) 6 (75.0) 0.70
Body mass index, kg/m2 25.2 ± 3.3 26.5 ± 6.0 23.1 ± 4.0 0.44
Body surface area, m2 1.73 ± 0.19 1.79 ± 0.27 1.57 ± 0.10 0.02
Logistic EuroScore, % 11.4 (6.1–16.9) 12.4 (8.7–16.5) 12.6 (6.3–17.3) 0.95
Hypertension 44 (81.5) 8 (100) 6 (75.0) 0.52
Diabetes mellitus 11 (20.0) 2 (25.0) 1 (12.5) 0.88
Atrial fibrillation 17 (30.9) 2 (25.0) 0 (0) 0.23
Significant CAD 22 (40.7) 1 (12.5) 2 (25.0) 0.30
Previous CABG 1 (1.8) 0 (0) 1 (12.5) 0.40
Previous PCI 4 (7.3) 2 (25.0) 2 (25.0) 0.11
Previous stroke/TIA 10 (18.2) 0 (0) 0 (0) 0.27
Peripheral artery disease 7 (12.7) 0 (0) 3 (37.5) 0.10
Chronic pulmonary disease 12 (21.8) 2 (25.0) 1 (12.5) 1.00
Left ventricular ejection fraction, % 57.5 ± 13.2 57.4 ± 14.6 62.0 ± 11.2 0.73
Aortic mean gradient, mmHg 53.1 ± 16.3 53.3 ± 22.8 55.2 ± 10.1 0.31
Aortic valve area, cm2 0.70 ± 0.14 0.83 ± 0.26 0.68 ± 0.16 0.61

Fig. 2   The SegInteractive tool in the Endosize® software (Therenva, Rennes, France) allowing the manual whole heart segmentation
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summarizes manual and automatic volumes and mass meas-
urements. The automatic segmentation predictions corre-
lated poorly with the manual reference for SVC (r = 0.49, 
p = 0.27), marginally better for CS (r = 0.77, p = 0.02), and 
significantly better for all other structures. Correlation coeffi-
cients were 0.97 (p < 0.001) for Ao, 0.98 (p < 0.001) for LA, 
0.99 (p < 0.001) for LVC, 0.99 (p < 0.001) for LVM, 0.96 
(p < 0.001) for PA, 0.90 (p = 0.002) for PV, 0.95 (p < 0.001) 
for RA, and 0.98 (p < 0.001) for RVC (Fig. 4).

Discussion

In the present study, we proposed a deep-learning-based 
method allowing fast and automated WHS from ECG-
gated CT data of TAVI candidates. The chief findings 
of the present study are as follows: (1) the proposed 

deep-learning-based model displayed an overall high level of 
accuracy with a Dice score of 0.92. (2) There were discrep-
ancies in the model’s accuracy according to the considered 
structure. Especially automatic segmentation of CS, PV, and 
SVC were less accurate. (3) The automatic segmentation and 
manually obtained reference of volumes and mass correlated 
and agreed well for most structures. (4) The computing time 
of the model, fully integrated in a standalone routinely used 
software, was very limited (median: 13.4 s) which represents 
a first step towards a potential implementation in routine 
practice.

WHS remains a challenging task for which emerging 
deep-learning methods appear as innovative and appeal-
ing tools, especially from a computational cost standpoint, 
compared with previously described methods [12, 17, 20]. 
Zhuang et al. reported the results of a worldwide challenge 
of multimodality WHS [20]. In this work, twelve algorithms 
from twelve different teams were evaluated for the automatic 
segmentation of seven cardiac structures (Ao, LA, LVC, 
LVM, PA, RA, and RVC) from CT and magnetic resonance 
imaging data. For the CT dataset, composed of 60 cardiac 
CT volumes with only 20 for training, the best Dice score 
was 0.908 ± 0.086 and was obtained with a mean 104-s com-
puting time on an Intel i7-4820 K 32-GB CPU with a Nvidia 
GTX TITAN X 12-GB GPU. Similarly to the proposed 
model in the present work, the best algorithm in this chal-
lenge used two separate CNNs to first localize the ROI in the 
volume and then perform the pixel-wise segmentation using 
a volumetric kernels equipped 3D CNN. Another interest-
ing contribution to the field recently came from Baskaran 
et al. who trained, validated, and tested in a 70:20:10 split 
dataset of 166 CT, a U-Net-inspired, deep-learning model 
[21]. The authors identified five cardiac structures: LA, 
LVC, LVM, RA, and RV. They reported an overall Dice 

Table 2   Accuracy of the model evaluated by the Dice score for the 
whole heart segmentation and for each structure

Median (Q1–Q3) Range

Overall 0.920 (0.906–0.925) (0.900–0.926)
Aorta 0.915 (0.902–0.930) (0.877–0.938)
Coronary sinus 0.604 (0.516–0.652) (0.403–0.722)
Left atrium 0.939 (0.933–0.941) (0.916–0.947)
Left ventricular cavity 0.852 (0.793–0.867) (0.781–0.895)
Left ventricular myocardium 0.927 (0.923–0.940) (0.887–0.942)
Pulmonary artery 0.878 (0.865–0.888) (0.852–0.913)
Pulmonary veins 0.657 (0.594–0.712) (0.567–0.781)
Right atrium 0.877 (0.816–0.901) (0.799–0.918)
Right ventricular cavity 0.819 (0.763–0.862) (0.740–0.872)
Superior vena cava 0.627 (0.408–0.659) (0.534–0.807)

Fig. 3   Box plots of the overall and specific Dice scores. Ao, aorta; CS, coronary sinus; LA, left atrium; LVC, left ventricular cavity; LVM, left 
ventricular myocardium; PA, pulmonary artery; PV, pulmonary veins; RA, right atrium; RVC, right ventricular cavity; SVC, superior vena cava
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score of 0.925 (IQR: 0.887 to 0.948) for the identification 
of these structures by their model with Dice score for LA, 
LVC, LVM, RA, and RV being 0.934, 0.938, 0.920, 0.915, 
and 0.927, respectively. They demonstrated a good correla-
tion and agreement between volumes and mass predicted 
by the model compared with their manual ground truth in 
a test set encompassing 17 patients with 1477 images. The 
mean computing time was 13.13 s/patient but the authors 
did not report the characteristics of the workstation they 
used for this work. In the present study, we attempted to 
increase the number of substructures segmented by adding 

surroundings vessels (Ao, CS, PA, PV, and SVC) consider-
ing their potential usefulness for the procedural planning 
of structural interventions. Our overall Dice score of 0.920 
(IQR: 0.906–0.925) is comparable with values reported in 
these previously published state-of-the-art works. Nonethe-
less, we demonstrated significant discrepancies according to 
the segmented structures, i.e., the model was not sufficiently 
accurate for small structures such as CS, PV, and SVC and 
was marginally less accurate for right-sided structures and 
the LVC. Several reasons may explain these observations. 
First, we used CT data obtained during the pre-procedural 

Fig. 4   Linear regression (A) and Bland–Altman (B) plots of model correlation and agreement with manual annotation. Ln, natural logarithm; 
other abbreviations as in Fig. 3
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work-up of TAVI recipients, for which acquisition param-
eters intend to optimize the contrast in the aorta and periph-
eral vascular structures. This may explain the sub-optimal 
results obtained for right-sided structures. Similarly, mix-
ing of the non-contrasted blood from the inferior vena cava 
and the contrast-saturated blood from the SVC results in an 
inhomogeneous enhancement of the RA and beam hardening 
artifacts, which contribute to a decreased visualization of 
surrounding structures (CS, SVC, RVC). Second, our TAVI 
recipients population was older and likely sicker than the 
population of Baskaran et al., which was in average 20 years 
younger. Interestingly, Baskaran et al. reported worse pre-
diction for the LVC in patients older than 65 years [21]. 
As we wanted to evaluate the feasibility of automatic WHS 
in routine practice, in contrast with this previous study, we 
did not exclude patients with elevated heart rate or atrial 
fibrillation. As expected among TAVI candidates, more than 
one-fourth of our population suffered from atrial fibrillation, 
which negatively affects CT images quality and is a known 
contributor to sub-optimal results of deep-learning-based 
WHS [20]. Furthermore, one-fifth of our population har-
bored chronic pulmonary diseases, which may also affect 
image quality, especially among patients who cannot suf-
ficiently stand apnea. Despite these limitations, we believe 
that the population of the present study accurately repre-
sents current structural heart interventions candidates there-
fore allowing a precise evaluation of the potential clinical 
impact of our model. Third, regarding LVC, we elected to 
include the papillary muscles into the LVM label in con-
trast with previous studies [20, 21] and usual echocardiog-
raphy guidelines [23], yet in line with magnetic resonance 
imaging measurements guidelines [24]. The interventional 
perspective we have set our work in motivated this choice. 
Indeed, accurate knowledge of any obstacle operators could 
meet when maneuvering or deploying a device into a cardiac 
chamber may be crucial to the procedural success. Thus, it 
makes sense to consider the main papillary muscles as myo-
cardium to provide an appropriate description of the LVM 
shape and mass. From a segmentation standpoint, it likely 

complicated the automatic delineation of the LVC border, 
which was far less predictable than when papillary muscles 
are included in the LVC. In keeping with this point, CT data 
of the present study were acquired in systole, in patients 
with varying degrees of cardiac remodeling induced by their 
aortic stenosis, which may have resulted in different patterns 
of left ventricular hypertrophy, heterogeneously affecting the 
global geometry of LVC. These elements might have signifi-
cantly participated in degrading the results of the automatic 
WHS explaining the lower Dice score values observed for 
LVC in the present study. However, on the contrary, a seg-
mentation based on image density as the present one may 
be easier when the papillary muscles are not considered as 
a part of the ventricular cavity. Moreover, the systolic acqui-
sition resulted in a lower LVC volume involving a reduced 
number of voxels. Therefore, any small difference between 
the manual and deep-learning-based segmentation has larger 
consequences upon the Dice score measurement than those 
expected from the measurement of LVC in a diastolic phase. 
This size consideration also applies for other small struc-
tures such as CS or PV. Fourth, regarding the PV, they usu-
ally exhibit a large degree of anatomical variation from one 
patient to another [31], which may explain the sub-optimal 
performance of our model to identify these structures.

Nevertheless, we reported excellent correlations between 
manually obtained and deep-learning predicted volumes for 
most structures. Although statistically significant absolute 
differences in volume measurement for the LVC, PV, and 
RVC were observed, the mean differences of measurement 
for all structures were low and would likely be clinically 
irrelevant. It is noticeable that the small size of our test set 
makes it vulnerable to the presence of outliers. However, the 
width of the 95%CI of the limits of agreement in the present 
study is in the range of those reported by Baskaran et al., 
which were themselves comparable or markedly lower than 
previously reported limits of agreement in deep-learning 
studies [21].

Clinical applicability of these deep-learning-based 
segmentation methods is crucial to whether they are to 

Table 3   Comparison of 
volumes (mL) and masses 
(g) measured by the manual 
reference and predicted by 
the automatic model for each 
structure

Structure Manual segmentation Automatic segmentation p value

Aorta (mL) 133 (122–148) 137 (123–148) 0.78
Coronary sinus (mL) 2.39 (1.94–2.82) 2.68 (2.13–3.48) 0.10
Left atrium (mL) 88 (69–106) 86 (72–101) 0.67
Left ventricular cavity (mL) 29 (17–42) 34 (20–51) 0.01
Left ventricular myocardium (g) 135 (129–177) 140 (129–178) 0.26
Pulmonary artery (mL) 60 (51–73) 58 (50–77) 1.00
Pulmonary veins (mL) 12 (10–18) 18 (15–23) 0.02
Right atrium (mL) 83 (63–100) 84 (62–102) 0.67
Right ventricular cavity (mL) 47 (31–50) 53 (38–59) 0.01
Superior vena cava (mL) 15 (7–21) 12 (8–15) 0.40
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ultimately achieve widespread use. To the best of our knowl-
edge, no recently published papers have mentioned the inte-
gration of such work in a readily useable system. Indeed, to 
provide optimal results, most of the published algorithms 
require powerful computing hardwares [20], which may 
not represent the majority of workstations available in the 
current daily medical environment. Before the advent of 
deep-learning approaches, computation times were never 
below 10 min. Using a dedicated hardware, Baskaran et al. 
reported an impressive processing time of 13 s/patient [21]. 
Furthermore, the mean computing time of the ten algorithms 
from the work by Zhuang et al. was also rather low at 312 s 
(range: 0.22 s to 21 min, 104 s for the most accurate model), 
with the use of dedicated workstations with such powerful 
GPUs [20]. The median computing time of our algorithm 
was only 13.4 s on a routinely used workstation, i.e., not 
equipped with a powerful hardware dedicated to research 
purposes. This point is of paramount importance for future 
clinical integration of the method. The current quickness 
of the algorithm also suggests that further work may easily 
achieve a refinement of the accuracy-computing time trade-
off, which would maximize the former while keeping the 
latter in a range compatible with a minimal disruption of 
clinical workflows. This good tradeoff was achieved thanks 
to our two-stage segmentation process, which had the benefit 
to keep relevant structures into a limited region of interest. 
With the prior aortic valve localization, a high resolution can 
be kept for precise 3D segmentation while restraining overall 
computation time into an acceptable range. The choice of the 
Dense V-Net architecture was also driven by this objective, 
while other segmentation network architectures (e.g., V-Net 
architecture) are recognized to be more precise but much 
more time consuming.

Limitations

A number of this study’s limitations have been discussed 
above. First, CT were acquired during the pre-procedural 
work-up of TAVI recipients using a dedicated protocol 
in accordance with an international expert consensus [8]. 
Whether the feasibility and performance of our algorithm, 
especially for the identification of right-sided structures, 
significantly differ according to the CT acquisition pro-
tocol or the underlying pathology will be addressed by 
our future works on a larger, more diverse database. In 
keeping with this point, this analysis was performed at a 
systolic phase in accordance with current guidelines for 
the measurement of aortic annulus. Future works will also 
have to determine the performances of our algorithm at a 
diastolic phase. Second, the training and validation sets 
of 63 patients encompassed a largely sufficient number of 
images to train a medical image deep-learning system to 

reach high accuracy [32]. However, this choice of keep-
ing a large amount of data for model training limited the 
test set to 8 patients, which makes it vulnerable to outliers 
and likely resulted in larger 95%CI for the limits of agree-
ment between the automatic and manual segmentations. 
Third, the manual segmentation was performed by a single 
expert. Fourth, a significant proportion of patients were 
excluded from this “pilot” study because of image quality, 
which precluded either manual or automatic segmenta-
tion, potentially raising generalizability issues. Finally, 
the localization step uses the intersection of the three aor-
tic commissures to detect the center of the aortic valve, 
which may represent a limitation in case of bicuspid aortic 
valves. However, it should be emphasized that the locali-
zation step of the present algorithm is somewhat coarse, 
essentially used to crop an area of interest within the entire 
volume. Thus, it is unlikely that this aspect of our algo-
rithm played a significant role in the results. Overall, this 
work is only the first step towards clinical application of 
our model. Aside from improving the accuracy-computing 
time tradeoff, further identification of structures such as 
cardiac valves remains a challenging task and an unmet 
need, which should be overcome to increase our model 
applicability in this transcatheter therapies era.

Conclusion

We developed a deep-learning-based segmentation 
method, which was fully integrated in a routinely used 
software supporting its potential clinical application. The 
method allowed fast, automated WHS from ECG-gated 
CT data with an overall high accuracy on a voxel level and 
demonstrated excellent correlations and adequate agree-
ments compared with manual measurements for most 
segmented structures. However, further work is needed to 
improve right-sided and small structures segmentation, as 
well as to include other structures of interest (e.g., valves).
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