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Abstract
The global incidence of coronary artery diseases (CADs), especially myocardial infarction (MI), has drastically increased in
recent years. Even though the conventional therapies have improved the outcomes, the post-MI complications and the increased
rate of recurrence among the survivors are still alarming. Molecular events associated with the pathogenesis and the adaptive
responses of the surviving myocardium are largely unknown. Focus on exosome-mediated signaling for cell-cell/matrix com-
munications at the infarct zone reflects an emerging opportunity in cardiac regeneration. Also, cardiac tissue engineering provides
promising insights for the next generation of therapeutic approaches in the management of CADs. In this article, we critically
reviewed the current understanding on the biology of cardiac exosomes, therapeutic potential of exosomes, and recent develop-
ments in cardiac tissue engineering and discussed novel translational approaches based on tissue engineering and exosomes for
cardiac regeneration and CADs.
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Abbreviations
AAA+ ATPases associated with diverse

cellular activities
ADAM10 Disintegrin and metalloproteinase

domain-containing protein 10
ARF6 ADP ribosylation factor 6
CABG Coronary artery bypass graft
CAD Coronary artery diseases
CPCs Cardiac progenitor cells
CTE Cardiac tissue engineering
CVDs Cardiovascular diseases
ECM Extracellular matrix
ESCRT Endosomal sorting complex required

for transport
EVs Extracellular vesicles
ICAM1 Intercellular adhesion molecule 1

ILV Intra-luminal vesicles
IZ Infarct zone
LFA1 Lymphocyte function-associated antigen 1
LV Left ventricle
MI Myocardial infarction
SNAP Soluble N-ethylmaleimide-sensitive

factor attachment proteins
SYLT4 Synaptotagmin-like 4
TGN Trans-Golgi network
Tsg101 Tumor susceptibility gene 101

Introduction

Coronary artery diseases (CADs), especially myocardial in-
farction (MI), are the leading cause of mortality throughout
the globe and in every ~ 40 s, one MI case is reported in the
USA. Also, ~ 720,000 peoples have a new cardiac event and
~ 335,000 patients suffer from recurrent attacks every year [1].
The diagnosis of MI is mainly based on the combination of
electrocardiographic (ECG) findings and serum biomarkers,
including troponin, creatine kinase, and others [2]. The mo-
lecular pathogenesis for acute MI has been attributed to
coagulative necrosis of the myocardium [2]. The advance-
ments in cellular and molecular biology have improved our
understanding of the pathogenesis ofMI at cellular, molecular,
and genetic levels. The dynamic alterations in cell biology and
the structural and functional changes in the key biomolecules
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associated with the myocardium collectively contribute to the
pathobiology of MI. The role of oncosis (series of cellular
events following an injury leading to cell death), apoptosis,
autophagy, and necrotic cell death and the central role of
mitochondria-mediated ischemic injury response, reperfusion
injury, and myocardial conditioning have been unveiled [3].
However, the exact molecular events associated with the path-
ogenesis and the adaptive responses of the surviving myocar-
dium are largely unknown.

The pathology of cardiac tissue, especially at the infarct
zone (IZ) (area in the heart tissue which is at the maximum
risk of damage after MI), following MI was reported to be
aggravated by the persistent immune response leading to left
ventricular remodeling and subsequent heart failure [4, 5].
Remodeling of left ventricle (LV), extra cellular matrix
(ECM) disorganization, thinning of LV wall, and scarring
are the major clinical conditions associated with MI. The con-
ventional treatment strategies include coronary artery bypass
graft (CABG), intravascular stenting and pharmaceuticals
such as statins, thrombolytic drugs, angiotensin-converting
enzyme (ACE) inhibitors, and beta-blockers. Even though
these therapies attenuate the symptoms, the regeneration of
the IZ is still challenging [6, 7]. In addition, the structural
and functional remodeling associated with cardiac ECM fibro-
sis has been the major histological hallmark of MI and subse-
quent heart failure. The molecular mechanisms underlying the
formation of pathologic ECM is largely unknown, and the
therapeutic strategies specifically targeting the myocardial re-
generation following the fibrosis at IZ have not been reported
[8]. It has been estimated that approximately 50 g cardiac
muscle become dysfunctional following MI resulting in the
irreversible loss of ~ 1 billion cardiomyocytes. Also, the in-
herent cardiac repair mechanisms are insufficient to replenish
the lost cardiomyocytes and to regenerate cardiac ECM at the
IZ, thereby leading to chronic impairment and subsequent
end-stage cardiac failure [9]. In this article, we critically
reviewed the current understanding of the cellular and molec-
ular communications associated with MI and shed light to the
advancements in translational approach to rejuvenate the IZ.

Infarct Zone: the “Playground” for Cardiac Repair

MI is a localized event of left ventricle which leads to the
activation of systemic and localized inflammatory responses.
The inflammation results in the increased inflow of acute
phase proteins, pro-inflammatory mediators, immune cells,
and stem cells that communicate with each other to stabilize
the IZ which is initiated by the adhesion of myeloid cells and
subsequently to scar tissue formation [10]. Furthermore, the
tissues that generate inflammatory cells, such as bone marrow
and spleen, are activated following the MI via cytokine sig-
naling [10]. The repair responses at the IZ are orchestrated
with a cascade of biochemical events which involve an

inflammatory phase followed by reparative phase. The bal-
ance between these two phases is critical for the proper
healing, and disturbances in these phases result in increased
cell loss, defective scar tissue formation, contractile dysfunc-
tion, infarct expansion, and chamber dilation [11]. The key
events associated with cardiac repair, as reported in the litera-
ture [12–24], are given in Tables 1, 2, and 3. However, the
actual cellular and molecular mechanisms underlying the in-
flammation and LV remodeling are largely unknown.

Recent findings revealed that the serum of MI patients is
capable of eliciting anti-inflammatory effects without altering
the electrical integrity of the heart thereby protecting the IZ
expansion. However, the ventricular fibrillation associated
with MI transforms healthy cardiomyocytes towards pro-
inflammatory phenotype [10]. These findings suggest a pos-
sible communication among the resident cells such as
cardiomyocytes, cardiac fibroblasts, endothelial cells and res-
ident stem cells, and the recruited cells such as immune cells
and stem cells. However, the cell-cell and cell-ECM commu-
nication at the IZ are yet to be unveiled.

Exosomes: the Key Regulator for Cell-Cell
and Cell-ECM Communication

The communication between/among various cell types and
ECM is significant in regulating physiological and patholog-
ical responses. Among several modes of biological communi-
cations, the exosome-mediated signaling constitutes an impor-
tant pathway for cell-cell/ECM interactions. The involvement
of exosomes has been identified in the pathology and healing
responses associated with several diseases including cardio-
vascular diseases (CVDs) [25–28]. The exosomes are capable
of delivering and engulfing several signaling molecules to and
from adjacent/distant cells and ECM suggesting their active
involvement in biological responses [29]. Moreover, the mo-
lecular content of exosomes varies in response to biological
stimuli such as alterations in O2 content, nutrient status, and
various stresses [30].

Exosomes are extracellular vesicles (EVs) released from
the cells to the surrounding biological fluid including plasma,
milk, saliva, sweat, tear, semen, and urine [31]. The exosomes
are homogeneous vesicles of 50–100 nm diameter formed by
the fusion of endosomes with the plasma membrane. Also, the
cells release larger heterogeneous vesicles with size up to
2 μm called microvesicles that are formed due to budding or
shedding of cellular membrane [32]. Similar to microvesicles,
the exosomes carry cargo to deliver either to adjacent or re-
mote locations within the body [31]. The contents of
exosomes include genetic materials such as mRNA,
miRNA, and traces of DNA and proteins such as growth fac-
tors, mediators of gene expression including the transcription
factors and cytokines [33]. The exosomes exhibit diverse
functions [34–46], as shown in Fig. 1. The exosomes are
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decorated with biomarkers such as Alix, CD3, CD9, CD63,
CD81, CD146, and HSP70 which may vary depending on the
type and status of the cells that have been exploited for their
detection and quantification [31].

Since the classical definitions to distinguish exosomes and
EVs are unavailable and due to the close similarities between
the both, the terminology of “exosomes” used in this article is
applicable to “EVs” as well. Because, the published literature
employed both terms, exosomes and EVs, for versatile tissue
regenerative strategies.

Biogenesis

Exosomes are derived from endosomes as inward budding of
endosomal membrane resulting in the formation of intra-
luminal vesicles (ILV). Depending on the signals, the ILVs
are degraded in lysosomes or fused with plasma membrane

for extracellular release as exosomes [25, 47]. The biogenesis
and loading of exosomes are tightly regulated by the
endosomal system mediated by trans-Golgi network (TGN)
which maintains the dynamicity of the recycling of multiple
receptors. This facilitates the incorporation of the contents in
the exosomes to reflect the physiological status of the cell
[25]. The exosome biogenesis pathways differ depending on
the content, composition, and architecture of the secreted
exosomes which can be either endosomal sorting complex
required for transport (ESCRT) pathway or ESCRT-
independent pathway [48]. ESCRT pathway is based on pro-
tein sorting to endosomal membrane and inward budding
whereas ESCRT-independent pathway is based on lipid mi-
crodomains, lipid rafts, and/or tetraspanins [48–51].

ESCRT exists as four multi-protein complexes designated
as ESCRT-0, ESCRT-1, ESCRT-2, and ESCRT-3, and the ac-
cessory proteins such as Alix and VPS4 (vacuolar protein

Table 1 The biological and immunological events associated with inflammatory phase of the remodeling of IZ following MI

Inflammatory phase

Biological events Cellular response References

Hypoxia Ischemia [12]

Ischemia Insufficient supply of O2 and nutrients to IZ distal to the occlusion site, necrosis,
apoptosis, and autophagic death of cardiomyocytes and parenchymal cells

[12]

Loss of vascular integrity WBC infiltration [13]

Reperfusion Reactive oxygen species (ROS) generation, complement activation [14]

Oxidative stress Mitochondrial dysfunction, cell, and ECM damage [15]

Activation of damage associated
molecular patterns (DAMPs)

DAMPs bind to PRRs of immune cells and surviving myocardial parenchymal
cells to trigger sterile inflammation

[16]

Secretion and activation of
chemokines/cytokines

Upregulation of IL-1, TNF-α, IL-6, and IL-18 and others amplify inflammation via
downstream MAPK and NF-κB signaling, extend inflammation to surviving
parenchymal cells which express the receptors for these cytokines, and acilitating
the recruitment of more immune cells

[11]

Table 2 The cellular events
associated with inflammatory
phase of the remodeling of IZ
following MI

Cells Inflammatory response References

Cardiomyocytes Necrotic and surviving cardiomyocytes stimulates inflammatory
responses, DAMP activation, and ROS generation

[11]

Endothelial cells Promotes the infiltration of immune cells and stem cells to IZ [17]

Neutrophils DAMP signaling, secretion of inflammatory mediators, and ECM
degradation

[11]

Monocyte
subpopulations

Early-phase pro-inflammatory Ly6Chi monocytes activates via MCP-1 re-
ceptor to trigger phagocytosis and ECM degradation and inflammation,
where the late-phase anti-inflammatory Ly-6Clo monocytes act via
CX3CR1 to facilitate myofibroblast accumulation, angiogenesis, and
ECM deposition

[18]

Lymphocytes Subpopulations of CD4+/CD8+ T-cells, Foxp3+ regulatory cells (Tregs),
invariant natural killer (iNK) T-cells, and γδT-cells aid in wound healing

[11]

Fibroblasts DAMP signaling and cytokine secretion, ECM synthesis, and fibrosis [19]

Mast cells Perivascular mast cells release TNF, histamine, and tryptase to
trigger inflammation

[11]

Macrophages Two subsets: pro-inflammatory M1 and anti-inflammatory M2 populations [20]

Dendritic cells Mo/Mϕ, CD11c+ dendritic cells activate scarring and angiogenesis [21]
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sorting- associated protein 4) bind to these complexes.
ESCRT-0, ESCRT-1, and ESCRT-2 complexes are mainly in-
volved in sequestering the ubiquitinated proteins at the
endosomal membrane whereas ESCRT-3 facilitates the mem-
brane budding and the scission of ILVs [52, 53]. The oligo-
merization of the exosomal components initiates the forma-
tion of membrane domains, which stabilizes and grows be-
yond a critical size to bud off. Also, the tension between
liquid-ordered and disordered domain boundaries has been

considered to be the driving force underlying the biogenesis
of exosome [54].Moreover, the ESCRTcomplexes are mainly
associated with cargo processing and loading. The involve-
ment of chaperons such as Hsc70 (heat shock cognate 70) is
also associatedwith the incorporation of cytosolic constituents
to the exosomes in most cell types [55].

Tumor susceptibility gene 101 (Tsg101) is associated with
ESCRT-1 complexes with ubiquitinated cargo proteins and
activates ESCRT-2 which in turn initiates the oligomerization

Fig. 1 Schematic diagram
showing the general functions of
exosomes

Table 3 The cellular and
biochemical events associated
with reparative, proliferative, and
maturation phases of the
remodeling of IZ following MI

Reparative and proliferative phase

Biochemical events Pathological effects References

Suppression of
inflammation

Decrease in pro-inflammatory cytokines, hypoxia, acidosis,
and neutrophil density and increase in anti-inflammatory
cytokines, M2 macrophages, lipid-derived pro-resolving
mediators, and pro-fibrosis mediators

[11]

Fibroblast activation and
scarring

Transdifferentiation of cardiac fibroblasts to the synthetic
phenotype called myofibroblast

[22]

ECM remodeling Formation of mechanically weak provisional matrix
comprising
fibrin and fibronectin is formed at IZ which matures by
collagen deposition

[23]

Maturation phase

Biochemical events Pathological effects References

Scar maturation ECM cross linking, deactivation of reparative cells,
withdrawal of fibrogenic growth factors, clearance of
matricellular proteins, and reduction in ECM
synthesis and myofibroblast density

[24]
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and subsequent formation of ESCRT-3 complex. The
ubiquitination was originally considered for the sole tag for
proteasomal degradation of proteins. However, the functional
role of ubiquitination in sorting the membrane proteins in the
TGN for lysosomal targeting has been established [56]. Also,
the site of ubiquitin linkage determines the fate of tagged
protein. For instance, ubiquitination at Lys-48 drives the pro-
teins for proteasomal degradation whereas Lys-63 linked
ubiquitin chains are targeted to membrane bound vesicles
such as exosomes [57]. The active ESCRT-3 complex recruits
deubiquitinating enzymes to remove ubiquitin tag from the
cargo. More than 95 deubiquitinating enzymes have been
identified in human genome which are either Zn-
metalloproteases or cysteine protease [58]. For example,
ubiquitin-specific peptidase 8 (USP8) is a cysteine protease,
mainly found in cytoplasm and endosomes of several cell
types, which degrades Lys-48, Lys-63, and Lys-6 linked ubiq-
uitin chains [59]. The ESCRT-3 complex is then disassembled
by AAA+ (ATPases associated with diverse cellular activities)
following the sorting of cargo proteins in ILVs [60, 61].

Alix, a vacuolar protein sorting factor, interacts with
Tsg101 and activates ESCRT-mediated ILV formation [62].

Also, Alix interacts with CD63 tetraspanin along with the
transmembrane proteins syndecan and syntenin to induce the
budding of exosomes [48]. For instance, the exosomal secre-
tion of transferrin receptor occurs via its interaction with Alix,
however independent of ubiquitination [63]. However, the
sorting and loading of proteolipid protein in the exosomes of
oligodendritic cells do not require either Alix or Tsg101 [49].
These studies suggest the existence of versatile mechanisms
(ESCRT-dependent and ESCRT-independent) for exosome
proteins in different cell types. The major molecular events
associated with exosome formation and release are depicted in
Fig. 2.

Regulation of Exosome Release

The release of exosomes is operated via two mechanisms:
inducible or constitutive depending on the cell sources [64].
The constitutive secretion pathway mainly depends on Rab
GTPases whereas inducible secretion is regulated by various
cellular activities [65]. Cellular stimuli such as increased Ca2+

influx, DNA damage, extra cellular ATP, hypoxia, infection,
and immune stimulation have been identified to be the trigger

Fig. 2 ESCRT assembly, cargo
loading, and exosome formation:
The exosome formation initiates
by the assembly of ESCRT
complex in the endosomal
membrane. The ubiquitinated
cargo is processed by the
sequential interaction between
ESCRT-0-2 which in turn recruits
and assembles the ESCRT-3 and
the adapter proteins such as Alix,
VSAP4, and Hsc70.
Transmembrane proteins such as
syndecan and the protein associ-
ated with cargo loading such as
syntenin also form the part of
ESCRT-3 complex. ESCRT-3 is
responsible for the budding of the
vesicle from endosome
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for exosome release [65]. Gupta and Knowlton reported that
mild hypoxia triggered doubling of exosome release by the
cardiomyocytes within 2 h [66]. Moreover, the release of
exosome has been reported to be influenced by p53-
mediated genes and also on lipid mediators such as diacyl-
glycerol [25]. Molecular mechanisms underlying the exosome
release are unexplored arena in exosome biology and warrants
further investigations.

The transport, docking, and fusion of exosomes with the
plasmamembrane are driven by the co-ordination of cytoskel-
etal components, tethering factors, Rab GTPases, SNAP (sol-
uble N-ethylmaleimide-sensitive factor attachment proteins),
and SNARE (receptors for SNAP). The SNARE family of
proteins such as YKT6, VAMP7, VAMP3, and syntaxin-1a
is critical for membrane fusion during the formation of
exosomes [67]. Among the 60 identified Rab proteins,
Rab11, Rab27, Rab35, and Rab22a have been identified to
be associated with the regulation of exosome release [67].
Interestingly, the Rab proteins which are not directly involved
in exosome biology also contained in the ILVs which warrants
further research [68]. In addition, ARF6 (ADP ribosylation
factor 6) activates its effector enzyme phospholipase D2
(PLD2) to interact with syntenin and Alix which in turn facil-
itates exosome release [69]. Also, the hypoxia triggers the
exosome release via hypoxia-inducible factors (HIF): HIF-
1α and HIF-2α [67]. In addition, the recent findings revealed
that IFN-1 slows down the exosome release by activating the
degradation of Tsg101 [70].

Along with the SNARE, the cytoskeletal proteins such as
actin and microtubules, molecular motor proteins such as

kinesins and myosins, and molecular switches (small
GTPases as mentioned above) are also involved in the release
of exosomes [36]. The Rab GTPases act via their downstream
effector molecules. For instance, the silencing studies revealed
the active involvement of two effector molecules, SYLT4
(synaptotagmin-like 4) and exophilin 5, in Rab27-mediated
exosome release [71]. Observations from several models re-
vealed the existence of versatile stimuli and diverse mecha-
nisms for exosome synthesis and secretion [36]. For example,
the depolarization of plasma membrane triggers the rapid se-
cretion of exosomes by the neural cells, and the cross-linking
of CD3 in T-cells stimulates release of exosomes in a similar
manner [72, 73]. Alterations in the intracellular Ca2+ concen-
tration also act as trigger for the release of exosomes [74]. The
major signals responsible for exosome release are depicted in
Fig. 3.

Exosome-Cell Communication: a “Molecular Dialect”

The exosomes were originally identified as a disposal system
for cellular garbage from the cells having poor lysosomal ac-
tivity. Later, the physiological roles of exosomes have been
unveiled which are mainly mediated via cell-cell communica-
tion and signaling [65]. The exosomes usually communicate
in a juxtacrine manner by receptor-ligand interaction (cell-to-
exosomes or vice versa) and subsequent activation of intracel-
lular signaling. The fragments of degraded exosomal mem-
brane proteins act as ligands for cell surface receptor to facil-
itate the internalization of exosomes to deliver the cargo
resulting in the activation of downstream signaling in the

Fig. 3 Factors influencing the
release of exosomes: the stimuli
such as increased Ca2+ influx,
DNA damage, extracellular ATP,
hypoxia, infection, and immune
stimulation activates the release of
exosomes. The p53-mediated
genes trigger exosome release.
Rab GTPases, SNAP, and
SNARE are critical for membrane
fusion during the formation and
release of exosomes. ARF6 acti-
vates its effector enzyme PLD2 to
interact with syntenin and Alix to
facilitate the release of exosome
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recipient cells [65, 75]. Intercellular adhesion molecule 1
(ICAM1) from the surface of exosomal membrane of dendrit-
ic cells interacts through lymphocyte function-associated an-
tigen 1 (LFA1) of antigen-presenting cells and T-lymphocytes
for their uptake [75, 76]. Similarly, the involvement of several
receptors and ligands such as CD51, CD61, CD11a, CD54,
CD9, CD81, lactadherin, and CD91 (the receptor for several
heat shock proteins) and the lipid molecule phosphatidylserine
has been identified in multiple cell types [77–79].

The proteolytic processing of transmembrane is also possi-
ble within the intracellular sites including exosomes and
microvesicles. The degradation fragments of such proteins
trigger the exosome release and signaling [65]. For example,
the neural adhesion molecule L1 and CD44 undergo proteo-
lytic processing inmicrovesicles by the ADAM10 (disintegrin
and metalloproteinase domain-containing protein 10) which
are released by the exocytosis. Similar mechanism has been
reported for CD46 and tumor necrosis factor receptor 1
(TNFR1) [65, 80, 81]. Furthermore, proteins such as
galactin-5 and -9 were reported to be associated with the sig-
naling of exosomes by macrophages and CD4+ T-cells [36].

The internalization of exosomes is the ideal mechanism for
the delivery of exosomal contents, especially the genetic ma-
terials, to the target cell. The fusion of exosomes with the
plasma membrane of the recipient cell depends on the physi-
ochemical status of the membrane. For example, the fluidity
of exosomes and plasma membrane is closely similar at pH 5
and this acidic pH has been considered to be ideal for fusion
whereas in neutral pH, the membranes become rigid which
hurdles fusion [65, 82]. Phagocytosis, macropinocytosis, and
endocytosis are the other mechanisms adopted for exosome-
mediated communication [79, 83].

The understanding regarding the biology of exosomes is
necessary to explore the interplay of the pathological/
regenerative mediators at the IZ. Also, it is reasonable to spec-
ulate that the basic mechanism of exosome release and func-
tion would be similar irrespective of the difference in cell/
tissue types, despite the tissue-specific molecular mecha-
nisms. The specific signaling pathways and molecular medi-
ators associated with the IZ-exosomes are largely unknown;
however, the published literature on this aspect is limited
which warrants further research. Based on the current under-
standing of exosome biology, the extrapolation of the general
principles of exosome transit with respect to the diverse cel-
lular milieu at the IZ could unveil the molecular mechanisms
underlying the cardiac tissue regeneration.

Cardioprotection at the Infarct Zone: “the Exosomes
in Action”

As discussed above, the membrane-bound vesicles fall into
three main categories: exosomes, microvesicles, and apoptotic
bodies. Exosomes are endosome-derived vesicles released

through the fusion of multivesicular bodies with the plasma
membrane. Microvesicles (~ 20 nm to 2 μm) arise by the
direct budding of plasma membrane whereas the apoptotic
bodies (~ 50 nm to 5 μm) emerge due to the blebbing of
apoptotic cells. Majority of studies used the term “exosomes”
to define the isolated vesicles as no current technique, other
than by size, is available to distinguish between the exosomes
and microvesicles [84]. These vesicles play potential roles in
the pathogenesis and healing responses of CVDs. For exam-
ple, the increased contents of platelet-derived vesicles and
tissue factor-loaded microvesicles have been associated with
familial hypercholesterolemia as these vesicles possess
procoagulant and atherogenic activities [85]. In addition, the
endothelial vesicles contribute to the dysfunction of endothe-
lium and subsequent CADs [86]. The increased pool of
leukocyte-derived vesicles in atherosclerotic patients suggest
their potential use in the diagnosis of early-stage atheroscle-
rotic alterations [87]. Moreover, the role of vesicles in
microcalcification and plaque rupture in MI pathology has
been unveiled [88]. The apoptotic bodies are formed in the
later stage of apoptosis which are engulfed by phagocytes and
smooth muscle cells [89]. However, the signaling pathways
mediated by apoptotic bodies in the pathogenesis of CVDs
remain unexplored.

The functional role of exosomes in cardiac repair following
MI has gained prior attention to CVD researchers. The
exosomes released from red blood cells (RBCs), white blood
cell (WBC) sub-types, platelets, and endothelial cells carry
biological information of regenerative, diagnostic, and thera-
peutic potential for coronary heart diseases (CHDs) [90].
Also, the exosomes derived from human atherosclerotic
plaques affect inflammation, cell proliferation, thrombosis,
calcification, and vascular responses which impact the sever-
ity of MI [90]. In addition, the exosomes released at the vicin-
ity of IZ may carry the regenerative mediators; however, the
information regarding regenerative exosomes is obscure. The
screening of such regenerative components, the identification
of the sources of regenerative exosomes, and the determina-
tion of appropriate signals which triggers the synthesis and
release of regenerative exosomes could open immense trans-
lational opportunity in regenerative cardiology. However, ex-
tensive research is warranted to translate the regenerative
exosomes to therapeutic arena. This section reviews the cur-
rent developments in exosome biology and their potential
therapeutic aspects for taming the IZ.

Cardiosomes and Cardiac Tissue-Derived Exosomes

The cardiomyocytes at the IZ have been reported to secrete
exosomes which are collectively referred as “cardiosomes”
which possess significant regenerative potential [25]. The ma-
jor sources of exosomeswith cardiac regeneration potential, as
reported in the literature, is displayed in Table 4.
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The secretion of cardiosomes from neonatal rats was in-
creased during hypoxic insult in which HSP60 was identified
to be the major content of those hypoxic exosomes [91].
Extracellular HSP60, a mitochondrial chaperone, has been
considered as DAMP (damage-associated molecular
patterns) which acts via TLR4 receptors [92]. HSP60 exhibits
immunomodulatory and pro-inflammatory functions; howev-
er, it is still in debate [93], and its role in cardiac regeneration
is largely unknown. Similarly, the exosomes containing tumor
necrosis factor-α (TNF-α) were elevated at the IZ following
MI which is released in response to hypoxia mediated by HIF-
1α signaling, and elevated level of TNF-α results in the death
of cardiomyocytes at the IZ [94]. Interestingly, a population of
exosomes with TNF receptor (TNFR) has been identified in
human plasma which modulates TNF-α-mediated cell loss
and inflammation [95].

Recent reports revealed the cardioprotective effects of
exosomes released from cardiac telocytes and cardiac pro-
genitor cells by preventing the apoptosis of cardiomyocytes
and improving the cardiac function following MI [96]. The
electron micrographs of left ventricular cardiomyocytes
from human patients displayed increased exosomes sug-
gesting their possible role in cardiac rejuvenation.
However, the cardiosomes varied in their size (40–
300 nm), electron microscopic pattern (electron dense or
electron lucent) , and contents [97] . Major i ty of
cardiosomes express flotillin and caveolin-3 on their sur-
face [98]. Interestingly, the exosomes of border zone
cardiomyocytes exhibit cup-shaped architecture embedded
within the sarcomeres [99]. Moreover, the exosomes origi-
nated from the cells of IZ release their contents to general
circulation targeting the cells at remote locations and may
serve as next-generation biomarkers for MI [100].

Generally, the micro niche of parental cells influences
the quality and the contents of released exosomes. For in-
stance, the HL-1 cardiomyocytes treated with TGF-β2 and
PDGF-BB displayed considerable alterations in the quality,
quantity, and the content of the released exosomes. The
fibroblast cells which received TGF-β2/PDGF-BB-stimu-
lated exosomes displayed alterations in their expression
profile [101]. Also, the naïve exosomes released from pa-
rental cells at the IZ exert strong protective/regenerative

potential on the recipient (surviving) cells [102].
However, the identification and manipulation of naive
exosomes are challenging owing to the versatility of their
contents and biological effects. On the other hand,
exosomes can be effectively modified to be used as delivery
vehicles for CVD drugs [103]. These findings suggest that
the cardiosomes play a significant role in driving the phe-
notypic switch of cardiac fibroblasts at the IZ. However, the
literature on cardiosomes is limited and further research is
warranted to understand their translational and diagnostic
significance. Based on the information obtained from other
cell types, it is logical to speculate that the exosomes re-
leased from the surviving/dying/stressed cardiomyocytes
modulate the molecular signaling to transform non-
c a r d i omyocy t e c e l l p opu l a t i on s t o f unc t i on a l
cardiomyocytes and to improve the cardiac function.

Stem Cell-Derived Exosomes

The MSC-derived exosomes possess the potential to regen-
erate the injured cardiac tissue by preventing cell death and
promoting the angiogenesis to restore the blood flow.
Timmers et al. [104] reported that the intravenous admin-
istration of MSC-conditioned medium significantly re-
duced the IZ more than 50% in swine and rat models of
MI. The animals which received the conditioned medium
exhibited improved cardiac function and minimal oxida-
tive stress suggesting the therapeutic potential of MSC-
derived exosomes [105]. Moreover, the hostile microenvi-
ronment at the IZ following MI stimulates the release of
exosomes from bone marrow-derived dendritic cells
(BMDCs). These exosomes significantly improved the car-
diac function in MI mice following left coronary ligation
[106]. Such exosomes, released from IZ, are taken up by
CD4+ T-cells in the spleen and trigger the downstream
signaling to enhance the expression and release of various
cytokines and activate the Treg cells for cardioprotection
[106, 107].

The molecular transit of exosomal mediators released at the
IZ facilitates the cardiac repair by inducing angiogenesis, cell
proliferation, and prevention of cell death by apoptosis, necro-
sis, and pyroptosis [108]. For instance, the MSC-derived

Table 4 Major sources of
exosomes with cardiac
regeneration potential

Exosomes Source Function

Cardiosomes Cardiomyocytes Cardiac regeneration and immunomodulation

Stem cell-derived
exosomes

Various stem cells Prevention of apoptosis, angiogenesis, antioxidant
response, cell proliferation, and cardioprotection

Circulatory exosomes Circulating leukocytes
and platelets

Pro-coagulation, vaso-relaxation, and
inhibition of autophagy

Cardiac tissue-
derived exosomes

Cardiac telocytes,
cardiac fibroblasts

Immunomodulation, cardioprotection,
and cell differentiation
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exosomes delivered at the IZ significantly reduced the fibrotic
reactions [108]. The experimental evidences demonstrate that
the exosomes released from the cardiac progenitor cells
(CPCs) in the damaged heart improves the cardiac function.
However, the contents of exosomes largely depend on the
pathological/physiological status of CPCs which warrants
thorough screening [109]. The cardiosphere-derived cells se-
crete miR-146a enriched exosomes to confer cardioprotection
from MI [110]. Minghua et al. [111] demonstrated the
cardioprotective effects of exosome-derived miR-24 from
the plasma of experimental rats which acts by silencing the
expression of the pro-apoptotic protein Bim.

Circulatory Exosomes

Adrastic increase in the circulating vesicles has been observed
in human plasma following acute MI which was associated
with the obstruction of micro vessels [112]. However, those
circulating exosomes exhibited pro-coagulation potential and
promoted vaso-relaxation by inhibiting endothelial NO path-
way [113, 114]. Moreover, the ischemia and activation of
platelets at the IZ stimulate the release of exosomes from
endothelial cells, platelets, and leukocyte subpopulations
[67 ] . Moreove r, t he hypox i a - cha l l enged H9c2
cardiomyoblasts released miR30a via exosomes which func-
tion to inhibit autophagy by targeting HIF-1α [115]. Also,
similar increase in exosomes was observed in pericardial fluid
following MI that contained clustrin which, in turn, facilitates
epithelial-to-mesenchymal transition in epicardial cells [67].
On encountering such exosomes, the expression profile of
epicardial cells was altered with the co-expression of smooth
muscle actin (SMA) and c-Kit (stem cell biomarker) [116].
Also, the clustrin-containing exosomes have proven their po-
tential to increase angiogenesis and to improve cardiac func-
tion [116, 117].

The level of miR-208a in the circulating exosomes has
been correlated with cTnI levels post-CABG surgery suggest-
ing its diagnostic potential [118]. Similarly, miR-192, miR-
194, and miR-34a have been considered as prognostic bio-
markers, in which miR-34a is highly expressed at IZ follow-
ingMI and is incorporated to the exosomes of cardiomyocytes
and fibroblasts [119, 120]. Similarly, the macrophage-derived
exosomes carry miR-155 which prevents the cardiac regener-
ation following the MI and the exosome-mediated transfer of
miR-155 to cardiac fibroblasts inhibits their proliferation,
thereby accelerating inflammation [121]. Interestingly, the
macrophages receive miR-155-enriched exosomes from en-
dothelial cells and interferes with the polarization switch of
macrophages (retains M1 status) [122]. In addition to miR-
155, pro-inflammatory miRNAs such as miR-19, miR-21
miR-146, and miR-223 were also increased in macrophage-
derived exosomes during CHDs [123].

Cardiac Tissue Engineering: a New Avenue
for Exosome Application

The cardiomyocytes are terminally differentiated cells with
limited ability for self-regeneration which warrants the need
of novel therapeutic strategies for rejuvenating the injured
heart following MI [124, 125]. The advancements in implant
biology and biomaterials science have paved ways for the
design and development of several cardiac implants including
artificial valves and left ventricular assist devices which
helped to prolong the life of cardiac patients. However, their
limited life span, high risk of thrombosis and infections, and
adverse immune reactions hurdle the performance of cardiac
implants [126, 127]. Hence, the heart transplantation forms a
viable option for the management of end-stage cardiac com-
plications. However, the limited availability of donor hearts
for transplantation and the post-transplant complications de-
mand for effective alternative approaches with minimal side
effects. In addition, the repair strategies such as cell delivery
have been examined by several researchers; however, the lack
of 3D biomimetic microenvironment, imbalanced oxygen ten-
sion at the IZ, reactive oxygen species (ROS), and hyperacti-
vation of immune responses (especially due to the hyper se-
cretion of matrix metalloprotease (MMPs) and pro-
inflammatory cytokines) result in the failure of such ap-
proaches [128–131].

Cardiac tissue engineering (CTE) emerged as a potential
alternative to replace/regenerate the damaged heart tissue
[132, 133]. CTE is based on multidisciplinary approaches by
adopting the principles of cell biology, biomaterials science,
engineering, and medicine; however, it is still in infancy
[134]. Biomaterial scaffolds form an inevitable part of CTE
in which biocompatible polymeric materials (natural and syn-
thetic) have been extensively employed [7]. Among the ver-
satile polymeric biomaterials, hydrogel sub-sets have been
widely employed owing to their superior biomimetic charac-
ters. The diverse qualities of CTE hydrogels were detailed in
our recent publications [127], [133, 135–138]. However, the
application of hydrogel-based biomaterials for exosome-
mediated CTE and cardiac regeneration remains unexplored
and the published literature regarding the same are unavail-
able. This section throws light to the concepts and possibilities
mainly based on the biomaterials scaffolds which could offer
promising opportunities for exosome-mediated CTE to accel-
erate cardiac regeneration.

Currently, very few clinical trials based on exosomes have
been registered, mostly for cancer applications, and the infor-
mation regarding exosome-based therapy for MI is unavail-
able in the literature [139, 140]. However, the understanding
of exosome biology is advancing, and exosome-based thera-
peutic strategies are expected to be launched in the near future.
Also, the information regarding hydrogel-mediated exosome
delivery is limited in the literature. Interestingly, the
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hydrophilic polymers stabilize exosomes by interacting with
the side chains extending from exosomes by imparting phys-
ical and hydrogen bonding with the polymers in aqueous so-
lution. PEG (polyethylene glycol) has revealed promising ef-
fects of stabilizing membrane-bound vesicles, and PEG dis-
plays the benefit of wide range of molecular weight, FDA
approval, and anti-fouling nature [141]. These properties of
PEG can be effectively utilized for the fabrication of exosome-
loaded hydrogel scaffolds for CTE. Hydrophilic polymers
such as PVA (polyvinyl alcohol) and naturally available
heteropolysaccharides such as alginate, OPP (O-palmitoyl
pullulan), chitosan, and hyaluronic acid can also be utilized
for designing exosome-loaded CTE hydrogels [142].

Recently, Han et al. demonstrated the successful delivery of
exosomes using silk fibroin hydrogels to treat age-induced
vascular dysfunction. The study provided a universal strategy
for using silk fibroin to deliver therapeutic exosomes for mul-
tiple diseases including CHDs [143]. Schneider et al. assessed
the secretome of chondrocytes encapsulated in PEG hydrogels
and revealed the ability of the hydrogels to preserve the
secretome under diverse culture conditions [144]. Li et al.
reported a cell-free tissue engineered bone substitute by com-
bining exosomes derived from humanMSCs with poly(lactic-
co-glycolic acid) scaffolds. The bone construct accelerated the
restoration of critical-sized calvarial defects in mouse model
[145]. Similarly, Zhang et al. showed that exosomes loading
enhanced the osteoinduction potential of β-TCP (tricalcium
phosphate) which act by activating PI3K/Akt signaling in hu-
man bone marrow MSCs [146].

Limited information is available regarding the exosome-
loaded biomaterial scaffolds for cardiac tissue engineering/
regenerative applications suggesting that exosome-mediated
CTE is still in its infancy. Unfortunately, very minimal infor-
mation is available for other diseases also. However, based on
the available information, it can be confirmed that the
exosomes possess immense therapeutic potential for taming
the IZ and the combination of such exosomes with CTE strat-
egies would provide better clinical outcomes. Simultaneous
incorporation of therapeutic exosomes, signaling mediators,
and cells for IZ regeneration would facilitate to establish a
proper communication between loaded exosomes with loaded
cells, loaded exosomes with host cells, exosomes released
from loaded cells with the host cells, and the exosomes re-
leased from the host cells with the loaded cells. The transit of
these exosomes at the bio-interface between the implant and
IZ would accelerate the regeneration of the surviving heart
tissue to re-establish a functional myocardium. The hypothet-
ical communication among exosomes from diverse cell
sources at the interface is displayed in Fig. 4.

Future Perspectives

Recent research highlights the therapeutic potential of
cardiosomes released from the injured/infarcted heart and the
exosomes from several cell sources to regenerate the IZ by
facilitating the juxtacrine/paracrine communications.
However, there are several unaddressed challenges that war-
rant further research before arriving at a conclusion. The

Fig. 4 The transit of exosomes at
biomaterial-infarct zone (IZ) in-
terface: The hypothetical CTE
strategies to establish a proper
communication of exosomes of
versatile origin at the biomaterial-
IZ interface. The exosomes of
therapeutic potential loaded to the
biomaterial scaffold interact with
the loaded cells and the host cells,
exosomes released from loaded
cells interact with the host cells
and the cells seeded onto CTE
scaffold, and the exosomes re-
leased from the host cells interact
with the loaded cells to accelerate
the regeneration of a functional
myocardium at the IZ
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information regarding the specific cell types initiating the sig-
naling at IZ, the diversity in their sources, quality and quantity,
fate, targets and potential downstream signaling, effect on cell
reprograming, recruitment and differentiation of stem cells to
the IZ, remote signaling, and regulation of exosome signaling
is currently unavailable. Moreover, the practical challenges
including their smaller size, difficulty to study their effects
under physiological conditions, dynamic release profile, dose,
off-target effects, tracking, and inefficiency of purification and
quantification techniques hurdle the translational applications
of exosomes in the management of CVDs.

Even though the exosomes offer an effective cell-free ther-
apeutic strategy, reproducibility in harvesting and purification
and maintenance of their sterility would require further stan-
dardization for goodmanufacturing practices (GMPs) for ther-
apeutic interventions. Also, the dosage regimen and route of
administration remain debatable. Most of the animal studies
on the therapeutic effects of exosome were conducted by the
administration of exosomes immediately following the induc-
tion of MI, which is not practical in human clinical scenario.
In addition, the long-term effects of exosome-based therapeu-
tic strategies and the metabolism of exosomes warrant further
research.

In general, the exosome-mediated effects are influenced by
multiple factors, most of which are not fully elucidated. On
the other hand, there is a multifold increase in cardiosome
research aiming to unveil the cell-cell, cell-ECM, and
tissue-tissue communications, to identify novel biomarkers
for MI, to understand the pathology/regenerative mecha-
nisms, and to discover potential candidates for translational
cardiology. Furthermore, the advent of CTE has given new
avenues for the therapeutic applications of exosomes; how-
ever, this emerging field of medicine is still in infancy.
However, the multidisciplinary approaches to combine CTE
and therapeutic exosomes for their sustained release at the IZ
would facilitate better communications within/among the
seeded/host cells which in turn accelerate the healing re-
sponses and prevents the infarct expansion. The functional
applicability of exosomes in the re-establishment of electrical
and mechanical circuits using CTE scaffolds in the surviving
myocardium following MI remains as an unattended area of
research in cardiac regeneration. Nonetheless, significant
progress has been achieved in the area of therapeutic
exosomes for cardiac applications during the recent years
which would pave multiple ways for the development of
exosome-based therapeutic strategies for cardiac tissue engi-
neering and regeneration.
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