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Abstract
Despite primary percutaneous coronary intervention (PPCI) and the availability of optimal medications, including dual antiplate-
let therapy (DAPT), most patients still experience major adverse cardiovascular events (MACEs) due to frequent recurrence of
thrombotic complications and myocardial infarction (MI). MI occurs secondary to a massive loss of endothelial cells (ECs),
vascular smooth muscle cells (VSMCs), and cardiomyocytes (CMs). The adult cardiovascular system gradually loses the ability
to spontaneously and regularly regenerate ECs, VSMCs, and CMs. However, human cells can be induced by cytokines and
growth factors to regenerate human-induced pluripotent stem cells (hiPSCs), which progress to produce cardiac trilineage cells
(CTCs) such as ECs, VSMCs, and CMs, replacing lost cells and inducing myocardial repair. Nevertheless, the processes and
pathways involved in hiPSC-CTC generation and their potential therapeutic effects remain unknown. Herein, we provide
evidence of in vitro CTC generation, the pathways involved, in vivo transplantation, and its therapeutic effect, which may
provide novel targets in regenerative medicine for the treatment of cardiovascular diseases (CVDs).
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Introduction

Myocardial infarction (MI), which causes the irreversible
death of heart muscle secondary to a prolonged lack of oxygen
supply, contributes to major morbidity and mortality world-
wide [1]. In spite of primary percutaneous coronary interven-
tion (PPCI) and the existence of optimal medications, such as
dual antiplatelet therapy (DAPT), most patients will experi-
ence a major adverse cardiovascular event (MACE) due to the

frequent recurrence of thrombotic complications [1]. MI oc-
curs secondary to the development and rupture of atheroscle-
rosis (As) plaque. The formation of As plaque is closely relat-
ed to the massive impairment of endothelial cell (ECs) and the
proliferation of vascular smooth muscle cell (VSMCs) [1].
Studies have shown that the adult cardiovascular system grad-
ually loses the ability to spontaneously regenerate and accel-
erate the replacement of ECs, VSMCs, and cardiomyocytes
(CMs) [2].

EC dysfunction promotes the expression of adhesion mol-
ecules, including intercellular adhesion molecules-1 (ICAM-
1) and vascular adhesion molecules-1 (VCAM-1), resulting in
the recruitment of monocytes/macrophages, as well as
subendothelial migration, which accelerates thickening of
the intima media and As formation [3, 4]. VSMCs secrete
extracellular matrix (ECM), collagen (I, II), and elastin, which
increases necrotic core thickness and enhances stability of the
AS plaque [5, 6]. However, continuous VSMC death reduces
ECM, collagen (I, II), and elastin secretion, while increasing
the susceptibility of plaque rupture. In addition, macrophage-
derived foam cells in the plaque continuously secrete
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degrading cytokines, such as matrix metalloproteinase-2,13,
which degrade the necrotic core and promote plaque rupture
[7, 8].

Recent studies have reported that human cells can be in-
duced in response to cytokines, including interleukin-1β,
transforming growth factor-β (TGF-β), fibroblast growth fac-
tor (FGF), etc., to regenerate human-induced pluripotent stem
cells (hiPSCs), which can progress to produce cardiac
trilineage cells (CTCs), including ECs, VSMCs, and CMs
[9]. Transplantation of hiPSCs-CTCs provides a favorable mi-
croenvironment for pre-existing cells to proliferate and en-
hances cell replacement and repair, which protect against the
myocardial damage after MI [9]. The processes and pathways
associated with hiPSC-CTC generation and therapeutic effect,
however, still remain unexplained [10]. Herein, we provide
evidence for the in vitro generation of CTCs, pathways in-
volved, in vivo transplantation, and therapeutic effect in MI.
Understanding these processes may provide a novel therapeu-
tic strategy for the treatment of MI and other forms of cardio-
vascular disease (CVD).

HiPSCs Stimulants and Pathways

HiPSCs-ECs

TGF-β and bone morphogenetic protein (BMP) are multi-
functional polypeptide cytokines belonging to the
transforming growth factor superfamily that regulate the
ESC and hiPSC transformation process during cardiac repair
in adults [11]. Activated TGF-β and BMP bind to TGF-βRI/II
and BMPR, respectively, transducing intercellular signaling to
the smad2,3 dimer complex, which binds to smad4 and forms
a trimer that translocates into the nucleus to stimulate tran-
scription factors, including snail and twist1 (Table 1) [11].
Stimulation of snail or twist maintains iPSC and ESC
stemness genes, promoting sustainability of stem cell mor-
phology [12]. During the generation of CTCs from hiPSCs,
suppression of TGF-β, snail, or twist enhances the expression
of EC, VSMC, and CM markers [11, 12]. For instance,

administration of SB431542, a TGF-β inhibitor, suppresses
ESC genes and increases EC generation, adhesion molecule
expression, and cell-to-cell adhesion, leading to tube forma-
tion [12, 13].

Furthermore, ESCs treated with IL-1β and IL-8 signifi-
cantly increase EC markers, adhesion molecule expression,
and EC generation [14]. In addition, fibroblast growth factor
(FGF) and vascular endothelial growth factor (VEGF)-A, hor-
mones from the growth factor family, induce cell proliferation,
differentiation, angiogenesis, and cardiac repair [15].
Activation of FGF-2 and VEGF-A binds to FGFR and
VEGF-AR, respectively, which further stimulates Akt and
PI3K-dependent phosphorylation of IκB-NFκB complex in-
ducing cell differentiation [16]. Activation of Akt was found
to increase the survival of amniotic fluid-derived mesenchy-
mal stem cells (AFMSCs) which increased cardioprotective
effec t ive and express ion of CMs markers af te r
intramyocardial transplantation [17]. FGF2, VEGF, and
BMP4 were shown to synergistically induce generation of
ECs from hiPSCs and ESCs via upregulating the Akt/PI3K
pathway, which elevates vasculogenesis in mice [18].

Moreover, the activation of insulin-like growth factor
(IGF)I/IGFIR axis binds to αvβ3 integrin to form IGFI-
IGFIR-αvβ3 complex that activated Akt/PI3K pathway and
increased ECs production from hiPSCs [19]. HiPSCs treated
with IGFI exhibited elevated hiPSC-EC generation and repli-
cation via activation of Akt/PI3K, which facilitated vascular-
ization and directly improved cardiac performance after MI in
swine [10, 20]. Activation of IL-1β, IL-8, and TNF-α has also
been found to significantly increase EC generation from
iPSCs in an Akt-dependent manner [14, 21], leading to mi-
crovascular network formation in type 1 diabetes mellitus
(T1D) patients [22, 23].

Wnt-1, a highly evolutionarily conserved proto-oncogene
involved in sinoatrial node (pacemaker) formation during em-
bryonic development, stimulates nuclear translocation of β-
catenin, which binds to the T cell factor/lymphoid enhancer
factor (TCF/LEF) transcription factor to induce stem cell dif-
ferentiation [24]. In inactivated cells, β-catenin is degraded
through its phosphorylation by polyposis coli (APC), Axin,

Table 1 Key signaling pathways that contribute to HiPSC transformation into cardiac trilineage cells

Stem cell Stimulants Signaling pathway Transcription factor Derived cell Reference

ESCs, iPSCs TGF-β, Wnt, Notch, IL-1β Smad, Wnt/β-catenin,
Notch, Akt/PI3K

Snail, TCF/LEF, NFκB ECs [95–101]

hUSCs, BM-MSCs VEGF-A, FGF-2 Akt/PI3K NFκB, Snail, Sox2, Nkx2.5, GATA4 VSMCs, CMs [29, 31, 56, 57]

ESCs FGF-10, IGF-I, Notch, Akt/PI3K, Notch NFκB, Snail, Sox2, Nkx2.5, GATA4 CM, ECs [14, 41, 42, 71–73,
77, 78]

[34, 35, 102] [36]

EcCs FGF-2, IGF-I Akt/PI3K NFκB, Snail, Sox2, Nkx2.5, GATA4 CM [103, 104]

AFMSCs
HAPSCs

TGF-β, Activin-A Smad Snail, Sox2, Nkx2.5, GATA4, Oct4 ECs, CM [40–42]
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and kinase glycogen synthase kinase-3β (GSK-3β),
abolishing β-catenin nuclear translocation, TCF/LEF activa-
tion, and stem cell differentiation [25]. While activated Wnt-1
has been found to bind frizzled (FZD) and low-density lipo-
protein receptor-related protein-5/6 (LRP-5/6), which en-
hances APC, Axin, and GSK-3β recruitment to the cell mem-
brane and promotes β-catenin stability, nuclear translocation
and TCF/LEF activation lead to stem cell differentiation [24,
26]. Studies have demonstrated that Wnt-1/β-catenin stimula-
tion in hiPSCs promotes EC markers and adhesion molecule
expression, which enhance hiPSCs-ECs generation and repli-
cation [27–29].

HiPS-VSMCs

Activation of the TGF-β/smad2/3/4 pathway upregulates
VSMC markers, including calponin and transgelin
(SM22-α), and VSMC generation [30]. Furthermore,
hiPSCs-ECs generated by Wnt-1/β-catenin exhibit
multipotent capabilities, leading to VSMC generation [29],
cardiac-specific gene expression, and CM generation in bone
marrow mesenchymal cells (BM-MSCs) [31]. In addition,
activated angiotensin II (Ang II), a hormone that acts as a
vasoconstrictor, interacts with the Ang II type 1 (AT1) recep-
tor to promote stem cell differentiation through two pathways
[32]. First, Ang II promotes cell differentiation via the Akt/
PI3K/NFκB pathway or by accelerating phosphorylation of
JAK and STAT3, which triggers the expression of transcrip-
tion factors, including NF-κB, and increases generation of
VSMCs [32, 33]. In addition, Notch signaling also significant-
ly upregulates VSMC generation [34, 35], which promotes
arteriogenesis in adult mouse heart [36]. Moreover, triggering
Notch signaling in iPSCs facilitates CM generation and im-
proves MI outcomes in mice [37–39].

HiPS-CMs

Recent reports have indicated that AFMSCs treated with
TGF-β increase expression of CMs markers which are
proceeded to CMs generation [40]. Furthermore, activin-A, a
member of the TGF-β superfamily, binds to type II activin-A
receptors (ActRII-A), which in turn stimulate type IB activin-
A receptor (ALK4), and triggers smad signaling to induce CM
generation [41, 42]. Combined activation of activin-A, BMP4,
and FGF-2 induces both EC and CM generation in hair
follicle-associated pluripotent stem cells (HAPSCs) [43, 44].
Furthermore, IFN-γ activation in iPSCs-MSCs upregulates
expression of cTnT and promotes CM generation [45].

Wnt-1/β-catenin activation in response to administration of
CHIR99021, a GSK3β inhibitor, promoted CM generation
and self-renewal by maintaining continual expression of
Oct-4 and Sox2 in ESCs [46, 47]. Wnt-1/β-catenin also in-
creased cardiac-specific gene expression and CM generation

in BM-MSCs [31]. Notch signal transduction patterns that
regulate embryonic endocardium compartmentalization were
shown to be relevant in a hiPSC generation technique and in
adult cardiac repair [48]. Furthermore, impaired Notch signal-
ing led to neonatal congenital cardiomyopathy [49, 50].
Stimulation of Delta-1 (Dll1), a Notch activator, leads to
Notch cleavage by γ-secretase to produce the notch intercel-
lular domain (NICD), which translocates into the nucleus,
binds to recombination signal binding protein for immuno-
globulin kappa J region (RBPJK/CSL/Su(H)), and recruits
coactivator mastermind-like (MAML) to form a protein com-
plex [51]. The NICD-RBPJK-MAML complex directly acti-
vates target genes, including basic-helix-loop-helix (bHLH)
peptides, leading to cellular transformation [50–52]. In addi-
tion, Notch signaling facilitates CM marker expression and
CM generation in iPSCs [37–39], as well as promoting
cardiogenesis [53] (Fig. 1).

In summary, activation of the appropriate cytokines and
pathways actually promotes CTC generation from iPSCs.
Although the use of hiPSCs for the treatment of MI and other
forms of CVD was previously a myth, transplantation of
hiPSCs in animal myocardium has demonstrated a novel and
promising therapeutic strategy for the amelioration of MI,
suggesting that hiPSC-CTC generation and transplantation
may represent a potential therapeutic strategy for the
treatment of CVDs, though the exact effects remain to be
clarified (Table 1).

HiPSC-CTC Transplantation and MI Repair

Endothelial Cells

ECs line the inner layer of the cardiovascular system and
maintain homeostasis by preventing clotting and thrombosis.
Impairment of EC function promotes the development of AS
[4] and MI [54]. Recent studies have demonstrated ECs gen-
erated from stem cells improve cardiovascular function [14].
For instance, human urine-derived stem cells (hUSCs) sub-
jected to vascular endothelial growth factor-A (VEGF-A)
responded by increasing expression of EC markers, including
Ve-cad and CD31, molecules that support cell-to-cell adhe-
sion and tubule network formation [55–57]. One study con-
firmed that hiPSCs-ECs maintain barrier integrity, permeabil-
ity, and homeostasis more effectively compared to primary
ECs [58]. In addition, hiPSCs-ECs adequately regulate throm-
bosis and prevent MI [58, 59]. Previously, intramyocardial
transplantation of hiPSC-ECs (1 × 106) was shown to signifi-
cantly reduceMI size and improve survival rate within 14 days
in adult mice [27]. Furthermore, combined intramyocardial
transplantation of hiPSC-ECs, hiPSC-VSMCs, and hiPSC-
CMs provided a favorable microenvironment for pre-
existing CTC proliferation, which promoted MI repair within
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4 weeks in swine [10]. Moreover, intramyocardial transplan-
tation of induced expandable cardiovascular progenitor cells
(ieCPCs) upregulated vessel-like structure formation and sig-
nificantly reduced scar size in the heart after 2 weeks of ther-
apy in MI mice [9]. In addition, to generation of ECs from
hiPSCs, ESCs and intramuscular injection of hiPSCs-ECs el-
evated vasculogenesis and LVEF, while reducing MI size
10 weeks after cell transplantation in mice [18].
Transplantation of hiPSCs-ECs further increased the expres-
sion of cardiac-specific markers cTnT, Nkx2.5, etc. [10, 27],
suggesting that hiPSCs-ECs may enhance the replication of
CMs to facilitate rapid recovery after MI. These data suggest
that EC generation and administration may represent a
strategy to instigate proliferation of pre-existing VSMCs
and CMs to reduce cardiac abnormalities, particularly in
response to MI.

Vascular Smooth Muscle Cells

VSMCs are a component of the arterial medial layer that
maintain vessel integrity by controlling diameter due to their
contraction and relaxation potential in response to vasoactive
stimuli [60]. Excessive proliferation and migration of VSMCs
accelerate AS plaque development and stability, while ectopic
loss of VSMCs enhances AS plaque rupture, thrombus re-
lease, arterial occlusion, and MI, suggesting that maintaining
appropriate VSMC proliferation can stabilize or prevent AS
[61, 62] and MI [63]. Similar to EC generation, VSMCs can
be generated from other cells [64]. A neural crest cell line
exposed to TGF-β and activin-A induced calponin, SM-γ-
actin, SM myosin heavy chain (SMMHC), and VSMCs
markers, proceeding to VSMC generation [64]. Interestingly,
while combined treatment of BMP-2,7 and activin-A
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Fig. 1 Schematic representation of signaling pathways involved in iPSC
transformation into MCs and trilineage cells: adhesion of Dll1 to Notch
leads to its cleavage and dissociation from the cell membrane. γ-
Secretase induces further cleavage of Notch to NICD. NICD binds to
RBPJK/MAML to form the NICD-RBPJK/MAML complex, which
translocate to the nucleus to instigate expression of snail, Klf4, α/β-
MHC, bHLH, and Nkx2.5. In addition, TGF-β, BMP4, and activin-A
adhere to TGF-βRI/TGF-βRII, BMP4, ActRII-A, respectively, leading to
stimulation of smad2,3 to form a complex with smad 4. The smad2,3,4
complex translocates into the nucleus, activating snail, twist, GATA4,
Sox2, α/β-MHC, etc. Additionally, Wnt binds to FZD/LPR5/6, leading
to abrogation of β-catenin degradation by APC, Axin, and GSK3β,
which enhances the stability and nuclear translocation of β-catenin to

stimulate expression of TCF/LEF, GATA4, and Oct4. Furthermore, Ang
II, FGF-2,10, IGF-I, IL-1β, IL-8, VEGF-A, and TNF-α adhere to AT-1,
FGF-2,10R, IL-1βR, IL-8R, VEGF-AR, and TNF-αR, respectively, to
transmit signaling to Akt, PI3K, and MAPK. The stimulation of MAPK
leads to phosphorylation of IκB-NFκB, which degrades IκB and allows
NFκB nucleoplasmic translocation to activate FoxO3a, GATA4, Sox2,
Oct4, and Nkx2.5. Moreover, Ang II/AT-1 activation phosphorylates
JAK, which further phosphorylates STAT3. P-STAT3 translocates to the
nucleus to stimulate transcription factors including FoxO3a, GATA4,
Sox2, Oct4, and Nkx2.5. Activation of these transcriptional factors by
the abovementioned stimulants promotes iPSC transformation to generate
MCs and cardiac trilineage cells



exhibited antagonistic effect by failing to promote neural crest
cell differentiation to VSMCs, combined treatment of BMP4
and activin-A promoted higher levels of VSMCs [64–66],
suggesting that BMP-2,7 and activin-A coactivation may ter-
minate VSMC generation while BMP4 and activin-A
coactivation increases VSMC production. Another study af-
firmed that neonatal skin fibroblasts exposed to TGF-β in-
creased generation of VSMCs, which exhibited appropriate
contraction and successfully formed tissue rings [67].
Intramyocardial transplantation of mesp1-cardiac progenitor
cells (mesp1-CPCs) accelerated VSMC proliferation and
neovasculogenesis, restored blood flow to infarcted areas,
and reduced MI after 3 months of therapy in mice [68].
These findings indicate that hiPSCs may promote vascular
repair by inducing VSMC proliferation and replacement.
Therefore, administration of hiPSCs-VSMCs into the infarct
area of the heart in ischemic infarct patients may represent a
therapeutic strategy for the treatment of MI.

Cardiomyocytes

CMs are cardiac muscle cells responsible for generating con-
tractile force to enhance blood distribution and control of
rhythmic beating of the heart. CMs fail to replicate or regen-
erate in the adult human heart, leading to reduced cardiac
output [69]. However, CMs can be generated from hiPSCs
and transplanted into the heart to induce cardiac repair [70].
Exposure of iPSCs to FGF-10 accelerated the expression of
cardiac-specific transcription factors, such as Nkx2.5, and pro-
moted the generation of CMs [71, 72]. Exposure of epicardia
cells to FGF-2 and TGF-β separately promoted CM produc-
tion, while costimulation with FGF-2 and TGF-β strongly
terminatedCMgeneration [73, 74], suggesting an antagonistic
effect between TGF-β and FGF-2 during cell differentiation.
Furthermore, hypoxia inducible factor 1α (HIF-1α) upregu-
lated CM generation by increasing Notch signaling in intersti-
tial pluripotent stem cells (IPSCs) and ESCs [75]. However,
HIF-2α activation increased β-catenin protein expression,
cardiac protein expression, and CM generation [76], indicat-
ing that HIF-1α stimulates CM generation through Notch sig-
naling but that HIF-2α induces CM generation via Wnt/β-
catenin signaling.

Moreover, ESCs treated with IGF-I activated CM
markers, including α-MHC, α-actinin, and troponin I,
which were stabilized and propagated to CMs upon ac-
tivation of insulin-like growth factor binding protein-4
(IGFBP4) [77, 78] and improved cardiac performance
and attenuated MI upon hiPSC intramyocardial trans-
plantation in swine [10, 20]. In addition, intramyocardial
transplantation of iPSCs-MSCs (2 × 108) promoted neo-
vascularization, cTnT expression, and pre-existing CM
replication, resulting in improved LVEF within 8 weeks
after therapy in MI pigs [45, 79].

Recent reports indicate that intramyocardial transplantation
of hiPSCs-CMs (0.5 × 106) prevents MI and improves LVEF
with 2–4 weeks of therapy in mice [70]. Additionally, trans-
cutaneous echo-guided injection of hiPSCs-CMs (1.4 × 106)
enhanced pre-existing CM proliferation and dead CM replace-
ment, which improved LVEF in MI mice after 7 weeks of
treatment (Fig. 2) [9, 10, 48, 80]. Collectively, these data
prove that triggering various genes in different pluripotent
stem cells upon transplantation may generate CMs that can
be used for MI treatment in vivo (Table 2).

Pros and Cons

CTC generation and transplantation have revealed both ad-
vantages and disadvantages. Electrophysiological and con-
tractile functions of the cardiovascular system are highly im-
portant to maintain optimal functionality. HiPSCs-CTCs have
been found to induce appropriate electrophysiological and
contractile roles in cardiovascular system. For instance, Ca2+

plays a crucial role in VSMC and CM contractility. Reduced
Ca2+ sensitivity promotes vascular abnormalities and
arrythmia. Interestingly, HiPSCs-CTCs showed increased
and appropriate biophysical properties of the ionic currents
INa, ICaL, IK1, which include the genes SCN5A, CACNA1C,
CACNA1D, KCNQ, and KCNH2, as well as upregulated Na+,
Ca2+, and K+ sensibility [81], preventing MI after iPSC-CM
transplantation in mice [82].

Moreover, hiPSCs-CTCs express higher level of
plasmalogen phosphatidylethanolamines that promote lipid
metabolism [83]. In addition, hiPSCs-CTCs have shown in-
creased levels of GLUT1, GLUT3, GLUT4 and insulin secre-
tion, which elevate glucose uptake and metabolism, while
reducing reactive oxygen species (ROS) production and accu-
mulation, inflammation, and vascular abnormalities [84–86].
Recently, studies have shown that hiPSCs-CTCs exhibit sig-
nificant roles in homeostasis, resulting in appropriate adhesion
molecule expression and decreasing inflammatory responses
that lead to improved MI and extended lifespan in animals
[87].

Furthermore, hiPSCs-CTCs exhibit optimal responses to
drugs. HiPSCs-CTCs rapidly reduce oxidative stress after ad-
ministration of cardioprotectant 312 (CP-312), an antioxidant
response marker [88, 89]. Researchers have successfully gen-
erated cardiomyocytes from patients with congenital long QT
syndromes (LQT2), and transplanted LQT2 hiPSCs-CMs
responded appropriately to clinically relevant pharmacologi-
cal treatment [90].

Nonetheless, therapy using iPSCs has raised significant
concerns due to their capability to promote immunodeficien-
cy, tumor occurrence, or teratomas. HiPSCs-CTCs may be
recognized as foreign cells, which may trigger an immune
response, indicating that immunosuppression will be
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Table 2 iPSC transplantation, dosage, delivery method, duration, subject, and therapeutic effect

Author Cell transplant Dosage Delivery method Duration Subject Effect

Maltabe et al. (2016) hiPSCs-ECs 1 × 106 Intramyocardial injection 14 days Mice Decrease MI

Ye et al. (2014) hiPSCs-ECs,
VSMCs,
and CMs

2.0 × 106 Intramyocardial transplantation 4 weeks Swine ECs proliferation and improved MI

Zhang et al. (2016) ieCPCs 1 × 106 Intramyocardial transplantation 2 weeks Mice Decrease MI, increase neovascularization

Harding et al. (2017) hiPS-ECs 1 × 106 Intramyocardial transplantation 10 weeks Mice Vasculogenesis, LVEF and declined MI

Yu et al. (2016) mesp1-CPCs 0.1 × 106 Intramyocardial transplantation 3 months Mice Improved MI, neovascularization, LVEDV,
and LVESV

Sebastiao et al. (2019) iPS-MSCs 2 × 108 Intramyocardial transplantation 8 weeks Pigs Improved LVEF and MI

Tachibana et al. (2016) hiPSCs-CM 0.5 × 106 Intramyocardial transplantation 2–4 weeks Mice Improved MI, increase LVEF

El Harane et al. (2018) hiPSCs-CM 1.4 × 106 Transcutaneous echo-guided
injection

7 weeks Mice improved MI and increase LVEF

Zhang et al. (2016) iPS-MSCs 3.0 × 105 Intramyocardial injection 3 weeks Mice Improved MI, nanotube formation, LVEF

Table 3 Pros and cons of current
strategies in theMI treatment field Pros References Con References

1 Good electrophysiology [81] Immunosuppressed [91]

2 Good permeability [58] Genetic alteration [92]

3 Appropriate response to inflammation [87] Tendency of tumorigenesis [92]

4 Good contractility [81]

5 Good biophysical properties [82]

6 Appropriate response to drug [90]
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Fig. 2 Diagrammatic illustration of MC and cardiac trilineage cell
generation: exposure of iPSCs to stimulants, including TGF-β, Notch,
Wnt-1, IGF-1, BMP4, etc., enhances generation of cardiac trilineage
cells. When iPSCs are programmed to undergo EC generation, Ve-cad
and CD31 markers are expressed. Successful generation of ECs is shown
by subsequent expression of adhesion molecules, such as ICAM-1 and

VCAM-1, which promote vasculogenesis and vascular repair. In addition,
iPSC differentiation into VSMCs results in expression ofmarkers, such as
SM22α and SM-γ-actin. VSMCs increase coronary angiogenesis and
vascular repair. Additionally, iPSCs transform into CMs by expressing
cardiac markers, such as α/β-MHC, TnC, TnI, and TnT, which increase
cardiac cell proliferation, cardiac repair, and cardiogenesis



necessary during therapy [91]. It has been reported that inef-
ficient differentiation or purification techniques of iPSCs may
lead to the development of cancer after transplantation.
Previously, generation of iPSCs was based on genetic modifi-
cations. However, this method has been shown to be inappro-
priate and less clinically relevant. More recently, fluorescently
activated cell sorting (FACS)-based techniques, including mi-
tochondrial specific fluorescent dyes or hiPSC-CTC marker
selection, nongenetic iPSC production, and isolation tech-
niques, which do not stimulate tumorigenesis after transplan-
tation, are applied [92–94]. Data indicate that in spite of the
beneficial roles of hiPSC-CTC therapy, there are still disad-
vantages to overcome, such as immunosuppression and ten-
dency toward tumor development, that need to be addressed
(Table 3).

Conclusions

Studies have revealed a loss of CTCs in humanMI. Therefore,
the replacement of lost cardiovascular cells to prevent MI has
become important from a therapeutic perspective. Researchers
have reported that hiPSCs can be reprogrammed to generate
CTCs through complex processes and pathways. Recent stud-
ies have shown that transplanted hiPSC-derived CTCs im-
proved MI outcome in both mouse and swine models [9,
10], although the actual pathways involved in hiPSC differen-
tiation remain unclear. The present study explains the path-
ways associated with the generation of CTCs through activa-
tion stimulants, such as TGF-β and BMP-4/smad signaling,
which activate snail and twist transcription factors. Other cy-
tokines, such as IL1β, FGF, VEGF-A, Ang II, etc., stimulate
CTC production via Akt, PI3K, and transcription factors, such
as NFκB, snail, Oct4, Nkx2.5, α/β-MHC, etc. Moreover,
hiPSCs provide an adequate microenvironment that promotes
the replication of pre-existing cells to allow replacement of
dead cells, preventingMI. It is clear that hiPSC transplantation
promotes rapid cardiac repair more so than contemporary sur-
gical and pharmacological therapy, suggesting that adaptation
and encouraging of hiPSC therapy may minimize CVD-
related mortality worldwide. Nonetheless, more testing guides
for hiPSCs therapy in human must be encouraged in random-
ized clinical trials, including sequential, multiple assessment,
randomized control trials, and cohort studies. Moreover, pro-
viding a tracking system for transplanted cells to assess pro-
liferation rate to avoid overproliferation and tumor develop-
ment may prove useful. In addition, regular monitoring of
patients receiving hiPSC immunity to prevent complete im-
munodeficiency may enable termination of opportunistic in-
fections and other complications.
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