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Abstract

Diabetic cardiomyopathy (DCM) or diabetes-induced cardiac dysfunction is a direct consequence of uncontrolled metabolic
syndrome and occurs worldwide. However, the underlying cellular and molecular mechanisms remain poorly understood.
Recently, exosomes have attracted considerable interest for their use as efficient, targeted, and non-immunogenic delivery
systems for biological molecules or pharmacotherapies. This review will summarize the fast-developing field of the regulation
and function of exosomes in DCM, affording valuable insights and therapeutic opportunities in combatting diabetes-related

cardiac disorder for modern human health.
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Introduction

Diabetes mellitus (DM), presenting as a metabolic dysfunc-
tion, is a disorder in which either the insulin secretion of pan-
creatic [3 islet cells is impaired (type 1 diabetes mellitus,
T1DM), insulin resistance is present (type 2 diabetes mellitus,
T2DM), or there is a combination of the two. Currently, the
uncontrolled rapid growth of DM represents a global burden.
It is well established that patients with DM, in particular
T2DM, are more than twice as likely to develop cardiovascu-
lar complications, including atherosclerosis, stroke, and coro-
nary artery disease [1]. Except for large vessel injuries, heart
failure occurring in diabetic patients with microangiopathy,
referred to as diabetic cardiomyopathy (DCM), is also the
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leading cause of death in diabetic patients [2]. Currently, nu-
merous molecular mechanisms have been proposed to con-
tribute to the development of DCM following various animal
models of T1DM and T2DM, including altered insulin signal-
ing, oxidative stress, inflammation, apoptosis/necrosis, au-
tophagy, mitochondrial dysfunction, lipotoxicity, impaired
Ca%t handling, fibrosis, increased fatty acid utilization, and
miRNAs [3—-8]. These potential mechanisms have been wide-
ly proposed and studied, and some interventions have sug-
gested beneficial effects on associated pathological features
of DCM in clinical patients [3, 5, 7]. However, some mecha-
nisms, such as miRNAs and autophagy, remain unclear and
need further investigation. Thus, a crucial need remains to
delineate the basic mechanisms of DCM and to translate
promising strategies to clinical interventions.

Extracellular vesicles (EVs) are small vesicles (50 nm to
2 um) released from the surface of diverse cell types into
different body fluids including plasma, saliva, milk, tears, se-
men, and urine [9]. EVs include nanovesicles, microvesicles,
and apoptotic bodies, which are produced by different cells
and mechanisms. The term “exosome” was first used to de-
scribe submicron-sized lipid vesicles released from cells in
1981 [10]. Exosomes (50—100 nm), initially thought to be
small nanovesicles by which maturating sheep reticulocytes
discard obsolete cellular components [11], now viewed as a
homogenous population of EVs that are released by numerous
cell types including cardiomyocytes, cardiac fibroblasts, en-
dothelial cells, inflammatory cells, and resident stem cells [12]
upon fusion of multivesicular bodies with cell membranes
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[13]. Growing evidence has shown that exosomes play essen-
tial roles not only in human physiology and homeostasis but
also in the pathogenesis of human diseases including DCM by
carrying different molecules including lipids, mRNA,
miRNA, membrane-bound proteins, and other regulatory
RNAs [14, 15]. Exosomes are therefore regarded as a prom-
ising therapeutic approach for DCM.

In this review, we provide an introduction to DCM and
review existing research on the role of exosomes in DCM,
thus identifying potential future research themes and highlight
the potential therapeutic strategies for DCM.

Diabetic Cardiomyopathy

DCM in humans is characterized by abnormal diastolic func-
tion along with subtle changes in systolic function such as
reduced longitudinal fiber contractility. Pathologically, DCM
is associated with endothelial dysfunction, myocyte hypertro-
phy, necrosis, apoptosis, and increased deposition of fibrosis
in the interstitial regions [16]. Actually, in the early stage of
diabetes, high-glucose levels in the bloodstream can result in
endothelial dysfunction and microvascular rarefaction, and
impaired endothelial cells (ECs) can lead to cardiomyocyte
apoptosis and myocardial contractile disorder. Moreover,
damaged cardiomyocytes in turn further deteriorate insuffi-
cient myocardial angiogenesis, finally giving rise to heart fail-
ure. Therefore, intermediators mediating the crosstalk be-
tween cardiomyocytes and ECs in hyperglycemia are of sig-
nificant importance [17].

Exosomes and Diabetic Cardiomyopathy

Exosomes Released from Diabetic Cardiomyocytes
Induce Detrimental Effects

Studies have recently shown that exosomes can induce either
detrimental or beneficial effects on myocardium, depending on
the contents enclosed [18, 19]. A study by Wang et al. demon-
strated that exosomes released from diabetic cardiomyocytes
(induced by a streptozotocin (STZ)-mediated type 1 diabetes
model in vivo and a high glucose-induced cardiomyocyte inju-
ry model in vitro) carry detrimental components that are able to
initiate a cascade of cardiovascular complications, including
ventricular dysfunction, cardiac fibrosis, and cardiomyocyte
apoptosis [20]. Neighboring cells, such as ECs, receive these
detrimental effect signals, leading to impaired angiogenesis.
HSP20, a chaperone protein from the heat-shock protein
(HSP) family that plays an essential role in cellular intrinsic
defense, may induce the production of exosomes in
cardiomyocytes by directly targeting Tsg101 [20]. Moreover,
GW4869, an inhibitor that blocks the release of exosomes from

cardiac cells in vivo, preserved cardiac function and endothelial
angiogenesis in a STZ-induced type 1 DCM model [20]. In
addition to T1DM, exosomes released from cardiomyocytes
in adult Goto-Kakizaki (GK) rats, a commonly used animal
model of T2DM, also exhibited impaired angiogenesis by
inhibiting EC proliferation, migration, and tube-like formation.
Exosomes derived from diabetic cardiomyocytes were trans-
ferred to ECs, leading to upregulation of miR-320 and down-
regulation of IGF-1, HSP20, and Ets2 [21].

In addition to impaired cardiac function and vascular for-
mation, exosomes released from diabetic cardiomyocytes also
have injurious effects on embryonic development. Research
by Shi et al. documented that exosomes released from heart
blood in diabetic pregnant mice (induced by intraperitoneal
injection of STZ) induced a systemic and significant develop-
mental deficiency, especially increased risk of congenital heart
defects (CHDs). By using a combinatory application of la-
beled exosomes and nanoscale gold particles, exosomes were
confirmed to cross the maternal- fetal barrier as shown by their
presence in the fetus and placenta. More importantly,
exosomes derived from a diabetic pregnant mice could cause
a high incidence of embryonic deformity by tail vein injection
into a normal pregnant mice. RNA-sequencing analysis of
exosomal miRNA in a diabetic pregnant mice demonstrated
that 218 miRNAs were significantly differentially expressed;
126 miRNAs were upregulated, and 92 miRNAs were down-
regulated from their levels in wild-type mice. Among these
miRNAs, miR-122-5p, miR-192-5p, miR-99a-5p, miR-328-
3p, miR-423-3p, and miR-133a-5p were significantly in-
creased, and miR-423-5p, miR-23a-3p, miR-320-3p, miR-
146a-5p, miR-221-3p, miR-30c-5p, and miR-350-3p were de-
creased in diabetic exosomes [22]. Interestingly, miR-320 ex-
pression was found to be downregulated in serum-derived
exosomes in a TIDM rat model, while a study by Wang et
al. demonstrated that cardiomyocytes exert anti-angiogenic
effects in a T2DM rat model through exosomal transfer of
miR-320 into ECs, which suggested that exosomes from dif-
ferent sources or in different environments have diverse
functions.

Detrimental Exosomes Can Be Reversed by Mediators
in DCM

As demonstrated in a study by Wang et al., HSP20 was re-
sponsive to both acute and chronic hyperglycemia in mouse
hearts, suggesting that decreased HSP20 contributes to differ-
ent developmental stages of DCM. Of interest, the deleterious
exosomes released from cardiomyocytes in diabetic hearts can
be converted to protective exosomes in a transgenic mice with
cardiac-specific HSP20 overexpression, thus restoring cardiac
function under hyperglycemic conditions. Myocardial overex-
pression of HSP20 induced both qualitative and quantitative
alterations in the composition and number of the exosomes
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secreted by cardiomyocytes. The altered exosomes were de-
tected to contain cellular protective proteins, including phos-
phorylated Akt, SOD1, and survivin, which could be deliv-
ered to ECs, therefore promoting myocardial angiogenesis
and alleviating oxidative stress, fibrosis, and apoptosis in the
diabetic hearts [20]. Therefore, it would be interesting to char-
acterize the molecular changes induced in HSP20 transgenic
cardiomyocytes under diabetic conditions in depth and define
what mediates the switch from releasing detrimental
exosomes to beneficial ones. In addition, HSP20 is reported
to be directly inhibited by miR-320 at the posttranscriptional
level [21]. As miR-320 was found to be increased in a T2DM
rat model, the exosomal miR-320-HSP20 signaling pathway
can be regarded as a novel target for the treatment of cardiac
injury induced by hyperglycemia (Fig. 1).

Exercise has been described as a “polypill,” mitigating
obese or diabetic complications [23, 24]. Exercise can also
diminish cardiac dysfunction in diabetic patients, but the un-
derlying molecular mechanisms still remain unknown [25,
26]. Recently, a study by Chaturvedi et al. demonstrated that
compared to the db/db mouse group (T2DM model mice),
there was a robust release of exosomes through budding into
the lumen of the vessels in the db/db exercise group [27].
Furthermore, Safdar A et al. pointed out that the content of
circulatory EVs, including exosomes, increases in an
intensity-dependent manner in response to endurance exercise
[28]. An underlying analysis confirmed that exosomes derived
from exercised cardiomyocytes downregulated the levels of

Hyperglycemia

MMP9 by upregulating miR-29b and miR-455 and prevented
the downstream detrimental effects of MMP9 that lead to car-
diac fibrosis and myocyte uncoupling [27]. However, the role
of exosomes in exercise has not been shown and needs to be
investigated further in future research.

Furthermore, in addition to the reversal of the detrimental
effects of exosomes in pathological myocardium by exoge-
nous mediators, beneficial paracrine effects of exosomes from
unstimulated rats or humans can also be reversed. A recent
study by Davidson et al. showed that plasma exosomes from
non-diabetic mice could protect rat hearts from ischemia
/reperfusion (IR) injury both in vitro and in vivo. Moreover,
exosomes directly protected primary cardiomyocytes against
IR injury in vitro through the interaction of HSP70 with sar-
colemmal TLR4 by activating the ERK1/2 and P38/ MAPK
cardioprotective pathways and phosphorylation of HSP27, a
member of the highly cytoprotective family of HSPs.
However, plasma exosomes from GK rats were found to have
lost the ability to activate cardioprotective signaling pathways
without affecting exosome production and morphology. Of
interest, cardioprotective signaling can be activated in
cardiomyocytes from diabetic rats using exosomes from
non-diabetic animals [29]. We speculate that diabetes and hy-
perglycemia could impair cardioprotective signaling roles that
have been ascribed to exosomes, and exosomes in
unstimulated rats or humans exert a continual “tonic” benefi-
cial effect on the heart that may be modified in response to
stress such as high glucose.
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Exosomes: a Novel Biomarker and Therapy for DCM?

Currently, exosomes have attracted considerable attention for
their potential use as efficient, targeted, and non-immunogenic
delivery systems, either as biomarkers or therapeutics for dis-
ease [30, 31]. Increased numbers of exosomes can be ob-
served in patients with atherosclerosis, insulin resistance,
T2DM, myocardial infarction, and stroke. Moreover, the pro-
tein or RNA cargo, especially miRNAs, of exosomes offer
additional potential not only as biomarkers in disease but also
as vehicles for delivering activated substances [32-35]. The
heart is a terminally differentiated organ, meaning that there is
little division of cardiomyocytes in response to injury. Stem
cell-derived exosome therapy has been intensively investigat-
ed in cardiac regeneration [36]. A study by Lai et al. reported
that exosomes released from human embryonic stem cell
(ESC)-derived mesenchymal stem cells (ESC-MSCs) could
protect against myocardial IR injury both in vitro and in vivo
[37]. The protective effects were sustainable, as shown by
improved cardiac function after 28 days [38]. Furthermore,
an increase in the activity of kinases Akt and GSK3«/3 was
detected 1 h after exosome administration until the following
day, and these kinases are reported to be cardioprotective [38].
In another study by Yu et al., exosomes released from MSCs
overexpressing GATA4 preserved cardiac contractile function
and reduced infarct size after direct injection into rats at the
time of infarction. The mechanisms were attributed to in-
creased levels of miR-19a by inhibition of PTEN, which di-
rectly increased the activation of Akt and ERK [39]. However,
little research has focused on exosomes as therapy for DCM;
therefore, EC-derived exosomes may appear advantageous for
preventing the evolution of DCM or ischemic complications
of diabetes.

Challenges in Exosome Research and Future
Prospects

With T2DM reaching epidemic proportions and cardiovascu-
lar disease (CVD) being the major cause of death worldwide,
novel therapeutic strategies are urgently needed to provide cell
and tissue repair systems to the myocardium. Exosomes are
proposed to play an important albeit variably described role
not only in cardiac physiology and homeostasis but also in the
pathogenesis of major CVD. However, currently, research ex-
amining the role of exosomes in DCM is still in its infancy.
Emerging work, especially that involving the three underlying
challenges facing scientists, is ongoing.

First, growing attention is now being focused on exosome-
mediated cell-cell communication, which has been largely
overlooked previously. Exosomes can mediate local and sys-
temic cell communication through interacting with surround-
ing cells by horizontal transfer of information, such as

proteins, mRNAs, and miRNAs, and are well known to in-
duce physiological changes in recipient cells [9, 40].
Exosomes from a specific cell of origin can selectively bind
and be internalized by certain target cell types [41]. However,
mechanisms by which individual exosomes interact with re-
cipient cells are unknown. Furthermore, in the therapeutic
potential of exosomes investigations, reducing the side effects
of therapies has been widely concerned. This unanswered
question needs to be urgently solved in the future.

Second, as the research by Wang et al. demonstrated, in-
jection of therapeutic exosomes retained long-lasting func-
tional effects for 6 weeks, suggesting that exosomes can trans-
mit durable information between cardiac cells in DCM [20].
However, the precise distribution and half-life of individual
exosomes delivered from an external source is still an unex-
plored question yet to be elucidated.

Third, as mentioned above, circulating exosomes can be
used as functional biomarkers or mediators transmitting active
RNAs or proteins. However, there are several blood and vas-
cular cell types including inflammatory cells, platelets, ECs,
and erythrocytes in the circulation, and the contribution of
different cell types to the protection observed with plasma
exosomes remains debated within the cardiovascular research
community.

Fourth, no clear characterizations and markers are
available for exosomes from different cell types.
Currently, exosomes-associated proteins such as CD9,
CD63, CD81, TsglO1 (tumor susceptibility gene 101),
Alix (apoptosis-linked gene 2 interacting protein X),
and Hsp70 (heat shock 70kda protein) are commonly
used as markers to further verify exosomes [42], al-
though recent studies suggest that some of these markers
are not specific for exosomes as previously thought [43].
It should be addressed that, due to their endosomal ori-
gin, many exosomes do express similar membrane
markers [44] which makes it difficult to identify cell
types of origin. Profiling of the contents of exosomes
may potentially be informative in the identification of
specific biomarkers.

Fifth, detection of the role of exosomes in vivo is compli-
cated by difficulties in labeling endogenous exosomes, tracing
their dynamic movement, and defining target cells without
interfering with their function. Recently, significant progress
has been made in imaging single exosomes by a Cre-loxP
system. This system can fluorescently trace Cre-reporter cells
that have taken up exosomes released by Cre recombinase-
expressing cells in vivo and in vitro [45]. However, the devel-
opment of techniques to detect the function and location of
specific exosome subpopulations in vivo is ongoing.
Therefore, in future studies, exosome regulation and function
in vivo need to be further explored, which may one day pro-
vide novel-therapeutic opportunities in combatting the heavy
burden of DCM.
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