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Abstract Heart failure with preserved ejection fraction
(HFpEF) is a heterogeneous clinical syndrome that may ben-
efit from improved subtyping in order to better characterize its
pathophysiology and to develop novel targeted therapies. The
United States Precision Medicine Initiative comes amid the
rapid growth in quantity and modality of clinical data for
HFpEF patients ranging from deep phenotypic to trans-omic
data. Tensor factorization, a form of machine learning, allows
for the integration of multiple data modalities to derive clini-
cally relevant HFpEF subtypes that may have significant dif-
ferences in underlying pathophysiology and differential re-
sponse to therapies. Tensor factorization also allows for better
interpretability by supporting dimensionality reduction and
identifying latent groups of data for meaningful summariza-
tion of both features and disease outcomes. In this narrative
review, we analyze the modest literature on the application of
tensor factorization to related biomedical fields including
genotyping and phenotyping. Based on the cited work includ-
ing work of our own, we suggest multiple tensor factorization
formulations capable of integrating the deep phenotypic and
trans-omic modalities of data for HFpEF, or accounting for
interactions between genetic variants at different omic hierar-
chies. We encourage extensive experimental studies to tackle
challenges in applying tensor factorization for precision med-
icine in HFpEF, including effectively incorporating existing

medical knowledge, properly accounting for uncertainty, and
efficiently enforcing sparsity for better interpretability.
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failure with preserved ejection fraction .Machine learning .
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Introduction

Heart failure is a common andmorbid condition affecting over
5.7 million Americans [1] and defined by fatigue, shortness of
breath, and exercise intolerance. Heart failure is typically di-
vided into two subtypes: heart failure with preserved ejection
fraction (HFpEF) and heart failure with reduced ejection frac-
tion (HFrEF). Patients in these groups tend to have different
demographics, comorbidities, and responses to therapy.
Several large, randomized controlled trials in patients with
HFrEF have shown therapeutic benefit for a range of neuro-
hormonal medications and intracardiac devices; however,
large clinical trials have not demonstrated similar clinical ben-
efit in patients with HFpEF [2, 3]. The heterogeneity in the
pathogenesis and in the clinical phenotypes of HFpEF may
have contributed to lack of large, positive clinical trials [4].

Recent studies have identified the centrality of chronic
systemic inflammation in the pathogenesis of HFpEF [5].
Patients with HFpEF tend to be older females with several
comorbidities, including obesity, hypertension, diabetes,
coronary artery disease, chronic obstructive pulmonary
disease, and chronic kidney disease. The combination of
older age and these comorbidities may contribute to the
systemic inflammation that in turn affects multiple signal-
ing cascades and organ systems, including the heart,
lungs, skeletal muscles, and kidneys [4]. The culmination
of these pathways leads to different manifestations of the
clinical syndrome of HFpEF, including unique combina-
tions of comorbidities, changes in cardiac remodeling and
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mechanics, biomarker profiles, and clinical symptoms [3,
4, 6]. Understanding these combinations may be informa-
tive to the design of future trials testing targeted therapeu-
tic approaches.

Unsupervised machine learning has been previously
used to identify clusters, or Bphenogroups^, of patients
with HFpEF using demographic and physical character-
istics and laboratory, electrocardiographic, and echocar-
diographic data [7]. Layering in genetic data may eluci-
date the mechanistic underpinnings of different HFpEF
phenotype groups or even lead to additional refinement
in the classification of patients with HFpEF. Prior stud-
ies have demonstrated genetic differences in cardiac ge-
ometry and mechanics [8–10], risk for new onset heart
failure [11, 12], and mortality after heart failure diagno-
sis [13]. Additionally, linking epigenetic signatures to
specific HFpEF phenotypic subgroups may provide ad-
ditional mechanistic understanding of pathogenesis and
identify future targets for therapy [14]. Identifying meth-
odologies for a trans-omic approach, including with de-
tailed phenotypic data, is therefore essential to better
subtyping patients with HFpEF and identifying the
mechanistic underpinnings of the syndrome.

Precision medicine aims to utilize information from
multiple modalities—including phenotypic, genomic, and
environmental measurements—to develop an individual-
ized and comprehensive view of a patient’s pathophysio-
logic progression, to identify unique subtypes of the pa-
tient, and to administer personalized therapies [15].
Existing efforts are often based on only a selected set of
biomarkers. The rapid growth of phenotypic, genetic,
medication prescription, and environmental data for
HFpEF patients poses technical challenges for subtyping
them, due to the large volume of data, diversity of data
types, and uncertainty from noise and missing data.
However, the rapid growth of multiple data modalities,
when linked to the right patients, may provide a prismatic
view of the patients’ pathophysiologic evolution and of-
fers a basis for meaningful subtyping of these patients.
Figure 1 shows multiple data modalities for HFpEF pa-
tients, including deep phenotyping and trans-omic data.
One of the example datasets with linked evaluation on
multiple modality measurements is the Multi-Ethnic
Study of Atherosclerosis (MESA) dataset [16], which is
curated by a medical research study involving more than
6000 men and women from six communities in the USA.
In particular, over 6000 patients in MESAwere genotyped
using Affymetrix 6.0, in addition to routinely collected
laboratory tests and exam measurements. In addition, the
advent of RNAseq and epigenetic data will likely offer
trans-omic evidence to HFpEF patient subtyping and
identify individualized therapy targets. We will use the
scenario of MESA dataset containing both a high density

of phenotypic variables and genome-wide genetic variants
as an illustrative example in this review.

The Problem of Complex, Multimodal Data
in Precision Medicine

The lack of positive, large-scale HFpEF clinical trials may be
due to distinct systemic and myocardial signaling in HFpEF
(compared to HFrEF) and the underlying heterogeneity of
HFpEF. A precision medicine approach, leveraging multiple
modalities and sources of information, including deep pheno-
typing and trans-omic data, may better define subtypes of
HFpEF that are more homogeneous in their responses to spe-
cific targeted therapies. With the rapid development of next-
generation sequencing and sophisticated phenotyping tools
such as comprehensive cardiovascular imaging, the linked
data for HFpEF patients from various modalities are becoming
increasingly complex, defined as follows:

& Data complexity: the data objects themselves are becom-
ing more complex. They are becoming larger in scale and
higher in dimension (e.g., millions of genetic loci identi-
fied by whole genome sequencing). The features (espe-
cially phenotypic features) are usually heterogeneous,
sparse, and time-evolving.

& Relation complexity: the relationships betweenmultiple mo-
dalities of electronic health record (EHR) data are becoming
more complex. Such relationships can link RNA expression
to phenotypic abnormalities or link epigenetic signature
changes (e.g., DNA methylation, histone modifications) to
upregulation or downregulation of genes (e.g.,α-MHC gene
and SPR-Ca2+ ATPase gene). Relations also hold between
features in the same measurement modality. For example,
some phenotypic variables can be grouped into echocardio-
graphic measurements (e.g., global longitudinal strain, left
ventricular end-diastolic volume) or electrocardiogram
(ECG) parameters (e.g., PR interval, QRS-T angle).

Recent advances in machine learning have opened avenues
towards more effective mining and modeling from EHRs to
facilitate translational research [17]. However, clinicians often
regard existing machine learning models as hard-to-interpret
black boxes. Traditional machine learning algorithms usually
treat phenotypic variables as independent features instead of
exploring clinically meaningful groups of phenotypic vari-
ables that together can characterize HFpEF subtypes (e.g.,
younger patients with moderate diastolic dysfunction and rel-
atively normal BNP as a distinct HFpEF archetype [7]). It is
also difficult for conventional machine learning algorithms to
model patient physiologic temporal progressions for disease/
syndrome subtyping. Patients are often monitored in physio-
logical time series in which vital measurements and laboratory
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test values fluctuate as time progresses (e.g., there is signifi-
cant intra-person variation in blood pressure measurements
due to setting, method ofmeasurement, time of day, and health
status). The fact that these physiologic time series are sampled
at irregular time intervals and may contain missing data fur-
ther complicates complexity of feature modeling. Intuitively,
the temporal trends, and in general relations as features, are
more expressive and informative, but their extraction is often
difficult and often involves manual work such as pre-
specifying rules or patterns [18] and matching against clinical
time series [19]. In contrast, independent measurements (e.g.,
individual blood pressure measurements) have been widely
used because they are simple to extract and have robust statis-
tical properties. However, these independent measurements
are less informative and interpretable than relational features.
In fact, modeling relational features are usually ignored by
machine learning algorithms that mostly adopt a flat patient-
by-feature matrix view (patients as rows and features as col-
umns). Because of complexity, the data required to capture
HFpEF characteristics, the traditional vector- or matrix-
based representations (e.g., nonnegative matrix factorization
[20], topic modeling [21]) are not flexible enough to capture
all the degrees of freedom contained in the data. Although
theoretically one can add interactions as additional features

or embed graphical models to account for feature interactions,
the problem quickly becomes intractable for large feature di-
mensionality (e.g., at the genome scale). Our previous re-
search in cancer subtyping and intensive care unit (ICU) mor-
tality prediction shows that using the relational features and
independent raw features jointly can take advantage of both in
order to improve the interpretability and accuracy of the ma-
chine learning model [22–24].

Tensor Factorization: a Potential Solution
for Multimodal Data in HFpEF

Tensor modeling has emerged as a promising solution for the
computational challenges of precision medicine. A tensor is a
multidimensional array where each modality spans one axis
(denoted as a mode in tensor terminology). In matrix repre-
sentation, one may have to concatenate multiple data modal-
ities into a single second dimension of the matrix, thus
disallowing explicit representation of interactions among
these modalities. Tensors, as natural generalizations of vectors
and matrices, are becoming increasingly popular for
representing multimodality data. Figure 2 shows the tensor
for modeling interactions among patients, phenotypic
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Fig. 1 Illustration of electronic health record data sources from multiple modalities including deep phenotyping and trans-omics data. T2DM Type 2
diabetes mellitus
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measurements, and genetic variants. Various tensor factoriza-
tion models with such parsimonious structures and accompa-
nying computational tools have been integral in the analysis
and process of big tensor data (see Kolda et al. [25] and
Cichocki et al. [26] for further reading). These factorization
models not only reduce dimensionality but also help discover
latent groups in each data modality and identify group-wise
interactions. In addition, specifically designed tensor factor-
izations can also integrate additional domain-specific prior
knowledge to constrain the tensor structure [27, 28].
Following our illustrative MESA dataset, Fig. 2 shows a vi-
sualization of two types of factorization—Tucker [29] and
CANDECOMP/PARAFAC (CP) [30]—in order to integrate
the phenotypic and genetic measurements and model their
relations for the subtyping of HFpEF. The Tucker factoriza-
tion [29] (top panel in Fig. 2) decomposes the data tensor χ
into three factor matrices specifying groups in each mode and
a core tensor G specifying levels of interaction between the
groups from different modes. In general, the number of groups
in each mode is less than the dimensionality of that mode, and
the core tensor G can be regarded as a compression of χ. The
CANDECOMP/PARAFAC (CP) factorization [30] (bottom
panel in Fig. 2) decomposes X as a weighted sum of rank-1
sub-tensors, each of which is the outer product (S,
Sijk = αiβjγk) of a patient factor vector (α), an intervention
factor vector (β), and a biomarker factor vector (γ). The

weights λr , r = 1… R indicate relative importance of sub-ten-
sors. When interpreting the Tucker factorization regarding
HFpEF subtyping, the factor matrix A corresponds to HFpEF
subtypes, the factor matrix B corresponds to groups of pheno-
typic variables that characterize HFpEF subtypes, and the factor
matrix C corresponds to groups of genetic variants that charac-
terize HFpEF subtypes. With CP factorization, the factor vectors
αi ’s correspond to HFpEF subtypes, the factor vectors βi ’s
correspond to groups of phenotypic variables that characterize
HFpEF subtypes, and the factor vectors γi’s correspond to groups
of genetic variants that characterize HFpEF subtypes. Compared
to Tucker, the structural hypothesis of CP requires the same
number of groups for each mode. The simplified structures in
CP allow easier linkage from phenotypic variable groups and
genetic variant groups to HFpEF subtypes (simply linking those
that are in the same sub-tensor). On the other hand, the structural
flexibility by Tucker factorization may offer more accurate data
fitting but typically requires more intensive computation [23]. In
practice, care needs to be takenwhen trading offmodel flexibility
with simplified interpretation and computation [31].

When modeling HFpEF patients subtyping using tensor
factorization, certain types of features can in fact display a
hierarchical structure. Although genetic variants, such as sin-
gle nucleotide polymorphisms (SNPs) and copy number var-
iations (CNVs), are the most primitive components in trans-
omic features, other trans-omic data such as epigenetics and
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Fig. 2 Tensor modeling and factorization schemes for identifying
HFpEF subtypes using phenotypic variables and genetic variants as
modes. The data tensor X models the interactions among modes
including patient, phenotypic variables, and genetic variants. The factor
matrix B in Tucker factorization or the length-P factor vectors βi’s in CP

factorization correspond to groups of phenotypic variables that
characterize HFpEF subtypes. The factor matrix C in Tucker
factorization or the length-V factor vectors γi’s in CP factorization
correspond to groups of genetic variants that characterize HFpEF
subtypes. LV left ventricle
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pathways can arguably provide invaluable information. It is
widely acknowledged that viewing SNPs and CNVs as inde-
pendent features and fitting them to linear models lose critical
information such as the interaction between proteins encoded
by the affected genes [32, 33]. Decades of trans-omic research
have resulted in evidence of protein interaction, transcription
factor regulation and signaling, and other molecular pathways.
Much of the data are curated and archived as public databases
such as STRING [34], KEGG [35], InterPro [36], Aceview
[37], and Pfam [38]. These databases provide information
sources for regulatory or interaction pathways involving genes
affected by SNPs or CNVs. Thus, we can build a tensor that
account for higher-order relations between SNPs and CNVs as
follows. For a particular patient, we scan through genetic var-
iants, such as SNPs or CNVs, and use interval tree search [39]
to identify relevant genes whose chromosomal regions contain
those of the genetic variants. Next, we query the pathway
databases to identify pathways or gene sets that involve the
identified genes. Then, the tensor entry, indexed by the pa-
tient, the pathway, and the genetic variant, is increased by the
genotype of the variant (0, 1, or 2 corresponding to none,
single-allelic, or bi-allelic variant). The SNPs and CNVs
may be of high dimensionality; thus, one may need to aggre-
gate the SNP and CNV counts according to the affected genes
to avoid impractically large tensor. The tensor constructed this
way falls into the category of subgraph augmented tensor, and
in particular, pathways or gene sets can be precisely represent-
ed as graphs or subgraphs. Pathways as a mode of the tensor
help to put the genetic variants in the context of functional
relations between genes. Genetic variants help to link corre-
lated pathways in order to render a comprehensive view of the
HFpEF pathophysiology (Fig. 3). Our previous research
showed that subgraph augmented tensor can be efficiently
factorized and the groups of pathways, which functionally link
the related genetic variants, can be linked to patient groupings
[23].

The tensor formulations in Figs. 2 and 3 are alterna-
tive schemes that focus on exploring the interactions
between different feature types and exploring hierarchi-
cal structures of features of the same type, respectively.
Both Tucker and CP factorization seem to have broader
adoptions in non-genomic biomedical fields, perhaps
due to the relative ease of imposing probabilistic and
other regularizations. Although CP produces summation
of rank-1 sub-tensors (Fig. 2) and leads to simplified
interpretation, Tucker provides a more flexible and
sometimes more realistic factorization by allowing vary-
ing number of groups in different modalities. The
choice between these two alternatives depends on data
availability, outcome to track, and focus of hypothesis
and opens questions in the clinical domain of HFpEF
that deserves extensive experimental studies and charac-
terizations. Although to our knowledge no prior research

studies have applied tensor factorization to subtype HFpEF
patients, a substantial body of research on applying tensor
factorization to handle multiple modalities of biomedical data
has emerged over the past decade. We refer the reader to
general reviews [40, 41] for tensor modeling application in
biomedical domains. Below, we provide a more detailed
discussion on the applications of tensor modeling in
cardiovascular medicine.

In cardiovascular disease, prior studies have investigated
the interactions between heart failure-related diagnoses and
administered medications to heart failure patient groupings.
Ho et al. [42] studied the problem of heart failure onset pre-
diction with clinically meaningful sub-tensors. They build a
patient-diagnosis-procedure tensor and derive patient clusters
on specific diagnoses and medications by applying CP while
enforcing sparsity constraints. In a follow-up study, Ho et al.
[43] investigated the Centers for Medicare and Medicaid
Services (CMS) claims data to predict high-cost (above 75th
percentile) beneficiaries by using phenotypes within chronic
diseases including hypertension, arthritis, heart failure, and
diabetes as features (generated by tensor factorization). They
build a patient-diagnosis-procedure tensor and apply CP-APR
factorization to decompose it as summations of rank-1 bias
tensors and rank-R interaction tensors with sparsity con-
straints on the factor matrices of interaction tensors, in order
to explicitly account for interactions among groups of the
same modality. Wang et al. [44] studied the problem of
predicting the onset risk of patients with heart failure. They
applied tensor modeling to generalize sparse logistic regres-
sion to multiple modalities on EHR data, such as comorbidity
diagnosis codes and medications, and called their model
High-Order Sparse Logistic Regression (HOSLR). They re-
ported that HOSLR not only achieved good prediction accu-
racy on newly diagnosed heart failure but also discovered
interesting predictive patterns capturing the interaction be-
tween diagnosis and medications. Wang et al. [28] studied
the problems of detecting sub-phenotypes of hypertension,
type 1 and 2 diabetes, and heart failure based on EHR data.
Their tensor formulation incorporated medical knowledge via
customized regularization terms. Medical knowledge guid-
ance is a subset of columns in the target factor matrix, and
the resultant factor matrix is required to be close to the target
on the pre-specified subset of columns. They also constrained
that the columns of the factor matrix should be close to
pairwise orthogonal to ensure distinct phenotypes.

Applying Tensor Factorization to HFpEF: Potential
Challenges

The advent of precision medicine initiatives in HFpEF,
coupled with the welcome growth of new modes of data in
cardiovascular medicine, produces not only opportunities but
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also challenges when moving towards tensor modeling.
Although tensor factorization naturally integrates multiple
modalities or hierarchies of features, common factorization
schemes such as Tucker and CP usually lack the ma-
chinery to incorporate existing medical knowledge as
probabilistic priors or to evaluate extracted and grouped
relations as clinical evidence from a Bayesian perspec-
tive (e.g., posterior probability and confidence interval).
Confidence intervals and prior and posterior probabili-
ties are the most basic primitives for statistical decision
making, but few tensor-based approaches have adopted
them in clinical decision support. Our preliminary data
show that mining and grouping relation subgraphs lead
to improved accuracy and better interpretability in diag-
nostic reasoning but call for a Bayesian formulation to
incorporate existing medical knowledge, provide

confidence estimation, and further improve prediction
accuracy to practical level [22, 23].

To account for uncertainty, multiple authors proposed proba-
bilistic Tucker and/or CP factorizations to incorporate priors on
tensor structural parameters. Those priors can specify depen-
dence between environmental exposures and SNP level differ-
ences [45], or probability of gene sequence conditioned on the
composing nucleotides and chromosomal positions [46, 47]. In
addition, probabilistic CP was shown to improve EEG classifi-
cation accuracy when missing data is present [48]. The above
Bayesian formulations allow incorporating existing medical
knowledge as probability priors and reliably estimating the pos-
terior probabilities and confidence intervals of any findings from
the model. In Tucker factorization in Fig. 2, the vectors
{β1… βM} in the factor matrix B that correspond to phenotypic
subtyping criteria and outcome risk predictors can be used to
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Fig. 3 The tensor model for hierarchical genetic pathway analysis to
subtyping HFpEF patients. In the figure, we show the pathway features
and genetic variant features as separate modes. The left-hand side is the
tensor modeling. The right-hand side is the Tucker factorization results,
which include a core tensor and three factor matrices. The factor matrix A

is the patient and patient group matrix, B the pathway and pathway group
matrix, and C the variant and variant group matrix. The core tensor tens
or G captures the interactions between the patient groups, pathway
groups, and variant groups
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integrate existing medical knowledge. We can select a subset
β1…βM

0
� �

where M′ <M. Upon initialization, the existing
knowledge that comes from diagnosis guidelines or other clinical
guidelines is encoded in a guidance vector βm∈ β1…βM

0
� �

where positive entries indicate relevant feature dimensions. For
example, we can have a guidance vector corresponding to a
HFpEF subtype of Bobese, diabetic patients with a high preva-
lence of obstructive sleep apnea who have the worst left ventricle
(LV) relaxation^, where the disease-related entries are set to pos-
itive values (e.g., close to one) and the remaining entries are zero.

The efficient enforcement of sparsity constraints represents
another challenge in applying tensor factorization to HFpEF
patients. In tensor factorization, it is desirable to have sparse
factor representations for improved interpretability. In the case
of using CP tensor factorization to integrate phenotypic vari-
ables and genetic variants, we need sparse phenotypic factor
vectors and sparse genetic variant factor vectors so that each
time we specify a group interaction (i.e., only a small subset of
phenotypic variables and a small subset of genetic variants are
linked). To achieve this goal, Morup et al. proposed a sparse
nonnegative Tucker decomposition approach by using a spe-
cially designed penalty to regulate number of nonzero entries
in the factor vectors [49]. However, it is computational expen-
sive due to sparse optimization after factorization. More re-
cently, the approach called Tensor Truncated Power (TTP)
[50] shows promise compared to sparse Tucker tensor factor-
ization by incorporating an efficient truncation step in the
iteration step of computation of factors. More work still needs
to be done in order to generalize this approach to accommo-
date Bayesian tensor factorization under Tucker or SP
schemes.

Conclusion

HFpEF is a heterogeneous clinical syndrome that may benefit
from improved subtyping in order to inform the design of
future clinical trials and to identify responders to therapies.
Modern medicine has accumulated multiple modalities of
clinical data for HFpEF patients ranging from deep phenotyp-
ic to trans-omic data. Precision medicine with phenotypic and
trans-omic data from multiple domains appears to be feasible
and may result in meaningful, clinically relevant HFpEF sub-
types with significant differences in the underlying etiology,
pathophysiology, and risk of adverse outcomes. By integrat-
ing the multiple modalities of data for HFpEF, by properly
accounting for interactions between genetic variants at differ-
ent omic hierarchies, by integrating existing medical knowl-
edge as priors, and by utilizing Bayesian inference to provide
uncertainty estimates, tensor factorization is a promising ma-
chine learning technique that could be helpful for HFpEF
subtyping and contribute to the development of novel targeted

therapies. However, applying tensor factorization for preci-
sion medicine in HFpEF faces a number of challenges, includ-
ing effectively incorporating existing medical knowledge,
properly accounting for uncertainty, and efficiently enforcing
sparsity for better interpretability. The successful application
of tensor factorization for the development of precision med-
icine approaches in the diagnosis and treatment of HFpEF is
contingent on answering all these challenges.
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