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Abstract The past 20 years has witnessed the development of
technologies designed to measure changes in the expressed
human genome, including the levels of RNA transcripts, pro-
teins, and metabolites. Gene expression profiling, or the mea-
surement of RNA transcripts, allows investigators to obtain a
snapshot of a subject’s current physiological state and may be
used to assess disease likelihood. In this review, we provide an
overview of recent work using peripheral blood gene expres-
sion to assess coronary artery disease (CAD) and discuss the
best approaches for developing and validating tests utilizing
such gene expression signatures.
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Abbreviations
CAD Coronary artery disease
MI Myocardial Infarction
SNP Single-nucleotide polymorphism
RT-qPCR Real-time quantitative polymerase

chain reaction
PBMC peripheral blood mononuclear cell
RNAseq RNA sequencing

Introduction

Over the past 20 years, tremendous gains have been made in
understanding the structure and function of the human ge-
nome [1]. Advances in technology have allowed investigators
to interrogate genes, transcripts, proteins, and metabolites at
the genome-wide level, with innovation progressing at a rapid
pace [2]. Due to the prominent genetic nature of cancer, on-
cology has led the implementation of genomic-based medi-
cine and is the initial focus of the precision medicine initiative
recently announced by the President of the USA [3, 4]. The
near-term goals of this initiative are to utilize molecular sig-
natures to develop targeted tumor therapies and to better un-
derstand mechanisms underlying drug resistance, including
the development of new tumor cell models to aid in these
tasks. A longer-term goal is to collect biological, clinical,
and environmental data from one million volunteer subjects
using electronic medical records and mobile health devices,
allowing investigators to look beyond cancer and apply preci-
sion medicine to other diseases. Coronary artery disease
(CAD) is one such disease that should benefit greatly from
this initiative, as a firm foundation has already been
established in the development of molecular- and genomic-
based tools for the diagnosis and treatment of CAD [5].

Although it has been long known that familial history is a
good predictor of CAD risk, and population-based studies
such as the CARDIoGRAM consortium have independently
replicated a moderate number of CAD-associated loci, these
single-nucleotide polymorphisms (SNPs) only account for
~10 % of CAD heritability and have relatively low effect sizes
[6]. Using systems biology and network-based approaches to
incorporate existing SNPs and biomarkers with novel variants
and other genomic markers that may be discovered in large
studies such as those outlined in the precision health initiative
may provide novel insights into complex disorders such as
CAD [7, 8]. Gene expression profiling, which measures
changes in gene transcript levels in response to alterations in
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biological state and can provide a dynamic measurement of a
patient’s current physiological condition, holds great promise
as platform that can be utilized in precision health. In this
article, we review what has already been accomplished using
peripheral blood gene expression profiling to assess CAD and
discuss the best approaches for developing and validating
such signatures.

Peripheral Blood Gene Expression Studies in CAD

It has long been known that the cellular and molecular basis of
atherosclerotic plaque development has a strong systemic in-
flammatory component involving cells of both the innate and
adaptive immune systems [9, 10]. The deposition of oxidized
lipids into the vascular bed initiates the process with subse-
quent responses by endothelial, vascular smooth muscle cells,
and circulating immune cells. A large body of evidence sup-
ports the role of monocytes/macrophages in the development
and progression of CAD [10], and it has been recently dem-
onstrated that neutrophils also play a key role in CAD pro-
gression and plaque instability [11, 12]. Work in recent years
has also highlighted both an athero-protective and atherogenic

role for the adaptive immune system in the development of
atherosclerosis [13]. In sum, strong evidence supports a role
for multiple immune cell types in the development and pro-
gression of CAD and suggests that gene expression profiling
in peripheral blood is a viable approach for monitoring the
presence and progression of CAD.

To date, a number of studies have been published examin-
ing whole blood gene expression profiling as a method to
identify subjects at risk for CAD (Table 1) [14–18]. Compar-
ison of significant genes has shown limited overlap (Fig. 1)
[14, 16]; there are a number of reasons for why this might be.
Lack of concordance in clinical phenotype can be a major
contributor to intra-study differences. In two studies, control
populations did not have angiographic evidence supporting
disease absence, which could result in decreased power to
detect CAD associations [15, 16]. Disease definitions varied
between studies, as did patient populations. Different exclu-
sions were applied to patients with a previous history of MI or
CAD, as well as other conditions whose presence might con-
found CAD signals; diabetes and rheumatoid arthritis have
each been shown to influence the expression of genes associ-
ated with CAD [18, 19] as has the use of steroids or immuno-
suppressive drugs [20–23]. A variety of gene expression

Table 1 Peripheral blood gene expression studies in coronary artery disease

Study Cases
(n)

Controls
(n)

Endpoint Number
of genes
detected

Sample
method

Expression
platform

Technical
replication
by RT-
qPCR

Biological
replication
in
independent
sample set

Sinnaeve
et al. [14]

120 121 Cases, >50 % stenosis by invasive coronary
angiography; controls 0 % stenosis
(clinical site read)

160 PAXgene Affymetrix Partiala Partiala

Taurino
et al. [15]

12 12 Cases: severe CADb 365 PAXgene Illumina Yes No

Joehanes
et al. [16]

188 188 Cases: CHDc 35/269d PAXgene Affymetrix Yes No

Wingrove
et al. [17]

27 14 Cases, >70 % stenosis in one major coronary
vessel or 50 % stenosis in ≥2; controls 0 %
stenosis by invasive coronary angiography
(clinical site read)

526 CPT/PAXgene Agilent Yes Yes

Elashoff
et al. [18]

88 110 Cases: ≥75 % maximum stenosis in one major
vessel or ≥50 % in two vessels; controls:
<25 % stenosis in all major vessels
(clinical site read)

2438 PAXgene Agilent Yes Yes

Elashoff
et al. [18]

99 99 Cases: ≥50 % stenosis in at least one major
coronary vessel; controls: <50 % stenosis
in all major vessels (core lab read,
quantitative coronary angiography)

5935 PAXgene Agilent Yes Yes

a RT-qPCR performed on eight selected genes in 2×20 subjects from the Bmatched men^ cohort, biological validation performed in aortic tissue
b Cases = patients undergoing elective CABG; amount of disease not defined. Controls = reportedly healthy individuals
c Cases = patients with CHD defined as previous history of MI (n=97), coronary artery bypass grafting (n=43), or percutaneous transluminal coronary
angioplasty (n=48). Controls = age-, sex-, lipid-level-matched reportedly healthy individuals
d 35 detected at a FDR of <0.5, 269 using a threshold of p<0.01
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profiling technologies exist (summarized in Table 2) including
multiple microarray platforms, which differed between the
above studies. In addition, independent technical confirmation
and validation of candidate genes in separate cohorts were not
consistently implemented. Lastly, poor agreement between
genome association studies often indicates that true associa-
tions are weak and that individual studies are not well
powered to detect associations; i.e., results of individual stud-
ies may be qualitatively correct, but marker effect size esti-
mates are overstated [24]. In such underpowered studies, sets
of genes that are associated with a given outcome can be
unstable due to their correlative nature, a factor that is
compounded in peripheral gene expression studies where
gene expression patterns can be highly correlated [25, 26].

Pathways for Clinical Test Development

In the previous section, we summarized the results from recent
CAD gene expression studies and highlighted the lack of con-
cordance between studies. Developing a gene expression-
based diagnostic is complex with many critical factors to be
considered. With this in mind, the remaining sections outline
approaches for developing diagnostic tests. Using CAD as an
example, we describe general stages of diagnostic test devel-
opment and offer recommendations that focus on core consid-
erations and common pitfalls.

Developing a diagnostic test requires clarity, particularly
with respect to the clinical outcome, methods for clinical phe-
notyping, existing clinical and molecular prediction models
and confounders, and intended use population. Test develop-
ment is a multistage process starting with initial gene discov-
ery and proceeding through test validation and beyond to post-
validation studies. The stage definitions and boundaries vary
in practice but generally can be defined as follows: (1) gene
discovery, (2) prediction model building, (3) prediction model
testing, (4) test development, and (5) test validation. Each
stage is described below and may include multiple studies
(Fig. 2).

Gene Discovery

Important technical considerations must be addressed prior to
undertaking gene discovery, such as the type of RNA that will
be assessed, how samples will be collected, and which tech-
nology will be used to assess gene expression levels; exam-
ples of these options are summarized in Tables 2, 3, and 4.
Gene discovery itself involves the identification and selection
of informative gene expression markers from a larger candi-
date pool; this pool can represent the content on a real-time
quantitative polymerase chain reaction (RT-qPCR) panel or
microarray or the total sum of detectable transcripts in a bio-
logical sample. Gene discovery studies require a variety of
design considerations such as the disease phenotype and
subphenotypes, study population(s), the disease prevalence
in study population, the state of prior evidence supporting

Fig. 1 Venn diagram showing the overlap of genes in the CAD cohorts.
Due to the use of different array platforms and annotations in the five
coronary artery disease studies described, the diagram likely has missed
shared genes and represents a slight underrepresentation of the true
overlap. In addition, the list of the 365 genes described in Taurino et al.
was not available and thus was not included in the analysis

Table 2 Gene expression platforms

Platform Providers Number of genes assessed Pros Cons

Microarray Illumina, Agilent,
Affymetrix

100 s to >300,000 Throughput Dynamic range, sensitivity, defined
content

RT-qPCR Roche, Fluidigm, Thermo
Fisher

1 to 100 s Sensitivity, specificity,
reproducibility

Throughput, defined content

Single-molecule
imaging

Nanostring 1 to 100 s Sensitivity, nonenzyme based Throughput, defined content

RNAseq Illumina, Ion Torrent 1 to >100,000 Unbiased content, sensitivity,
specificity

Data management/storage
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candidate markers, and the desired power of the study to de-
tect modest or weak associations. Various study designs have
been described in the literature including single step and se-
quential, and various designs have been implemented for
CAD [32–34]. Examples for CAD marker discovery range
from single-center matched and unmatched case-control stud-
ies [14–16] tomultistagedmulticentered prospectively recruit-
ed cohorts [18]. Arguably, the majority of markers thus far
identified as associated with obstructive CAD risk have
shown only modest to weak effect sizes. Consequently, two
statistical pitfalls of marker discovery are important to note—
multiple testing artifacts and winner’s curse.

Multiple Testing Data sets used for gene discovery are com-
monly characterized by large initial gene sets and smaller
sample sizes and are commonly examined using various sta-
tistical models (including and excluding covariates, normaliz-
ing and un-normalizing marker expression levels, defining
and redefining endpoints, population subsets, etc.). When
any large number of tests is performed, it is inappropriate to
use traditional single model test thresholds (e.g., p≤0.05) for
significance testing, as many apparently significant observa-
tions occur by chance. Statistical methods exist for multiple
testing corrections [35, 36]; however, these methods are accu-
rate only when the full scope of multiple testing is defined and
when the techniques are applied rigorously. Often, the itera-
tive nature of research makes this challenging; in such cases, it

Fig. 2 Overview of the pathway for new diagnostic research,
development, and commercialization, with key studies (a–f). Research
is characterized by marker discovery, prediction model building, and
testing (a) which may be performed in multiple independent studies (1–
3) or in a single step (4). Development begins with transfer of assays from
research platforms to commercial using technical replication studies (b)

and includes analytical validation and clinical validation (c) which may
continue post-development, to broaden support for diagnostic validity.
Commercialization includes utility studies (e) or commercial registries,
directed at answering questions related to decision impact and patient
health outcomes. Additional studies may be performed to demonstrate
economic benefits of testing (f)

Table 3 Types of RNA

Type of
RNA

Protein
coding

Compartment CAD associations

mRNA Coding Cellular/extracellular Wingrove et al. [17],
Elashoff et al. [18],
Joehanes et al. [16],
Sinnaeve et al. [14],
Taurino et al. [15]

miRNA Non-coding Cellular/extracellular Chen et al. [27],
De Rosa et al. [28],
Fichtlscherer et al.
[29]

lncRNA Non-coding Cellular Jarinova et al. [30],
Liu et al. [31]

Table 4 Collection methods

Type of
tube

Compartment RNA stabilization

CPT Cellular No RNA preservative,
must be frozen

PAXgene Cellular/extracellular Contains RNA preservative,
RT storage

Tempus Cellular/extracellular Contains RNA preservative,
RT storage

Streck Extracellular Contains RNA preservative,
RT storage
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may be simpler for researchers to adopt split-sample designs,
i.e., to use one part of a cohort for unfettered discovery and
hypothesis generation and a separate part for testing a strictly
limited number of candidate hypotheses.

Winner’s Curse It is common for large discovery studies to
identify candidate markers whose statistical significance clus-
ters near statistical rejection thresholds and for the initial find-
ings to replicate poorly in subsequent studies. This phenome-
non is expected when the disease is only modestly or weakly
associated with many markers and where the studies are not
reliably powered to detect such associations. In such cases, a
subset of true disease associations may achieve statistical sig-
nificance but do so by being overestimated, by chance. This
statistical problem of biased effect size estimates, conditional
on statistical significance, is referred to in the literature as the
Bwinner’s curse^ or BBeavis effect^ and is pronounced when
the power of the marker discovery study is low [37, 38]. Con-
sequent failure to confirm an initial finding may thus be due to
a true positive finding being overestimated.

In addition to the above pitfalls, it should be recognized
that known clinical risk factors describe a significant portion
of CAD. For example, increased risk for CAD is associated
with age, sex, smoking, and a variety of patient symptoms
[39]; ignoring clinical predictors, or other clinical variables
such as medicine usage, during gene discovery may yield
markers correlated with different patient strata (Fig. 3). For
example, any biological marker that changes value with pa-
tient age will therefore be associated with all other age-
associated diseases, including CAD. It is important to note
that it is possible to identify gene expression changes associ-
ated with clinical co-factors associated with CAD; identifying
gene expression surrogates for clinical risk factors can be ad-
vantageous when clinical data is incomplete and to measure
physiological responses to either environmental or biological
phenomena, thus adding information beyond clinical data

alone. For example, gene expression signatures have been
identified for age [40–42], smoking [43–45], hyperlipidemia
[46], and hypertension [47], all of which are associated with
CAD risk. Finally, whole blood cell populations may change
in response to disease states. For instance, the ratio of neutro-
phils to lymphocytes (N/L ratio) has been shown to be prog-
nostic for MI [48], and a gene surrogate measurement of the
N/L ratio has been correlated with the presence of obstructive
CAD [18].

Prediction Model Building

The goal of prediction model building is to identify candidate
predictors using a set of candidate genes and a family of pre-
diction functions. Ideally, predictors should be chosen from
families with the best general performance characteristics. In
our experience, however, many families yield similar accura-
cy, and prediction functions are often chosen from families
that are straightforward to interpret such as those where dis-
ease probability is modeled by a linear combination of inde-
pendent variables.

Prediction model building need not be separate from gene
discovery, and many statistical methods (e.g., stepwise regres-
sion, Random Forest, LASSO) can be used to simultaneously
reduce candidate genes and combine them in a predictive
model. However, it is useful to treat gene discovery and model
building as separate steps, as they may proceed sequentially
(e.g., when markers are identified from the literature or by
univariate associations). Even when this is not the case, there
are specific considerations to model development above and
beyond those of gene discovery.

Decisions for predictionmodel building include the follow-
ing: (1) model family selection, (2) gene selection, (3) deter-
mining model constraints, (4) use of clinical covariates in the
model, (5) consideration of population heterogeneity, (6) the
data set used for final model selection, and (7) criteria for
model acceptance. Of these, the most critical are those that
influence model evaluation and acceptance. It is technically
valid to reuse gene discovery data for model building; how-
ever, use of such data can result in models with overstated
performance, as naive reuse of gene discovery data leads to
model overfitting and biased model performance [49]. When
performing gene discovery and model building on the same
data set, statistically valid methods such as cross-validation
and bootstrapping can provide relatively unbiased overall per-
formance estimates [50]. However, these methods only work
when all steps of discovery are nested within the cross-
validation loop [51]. For complex research workflows, it
may be simpler to rely instead on an independent test set to
evaluate candidate model performance.

The importance of evaluating clinical covariates continues
through prediction model building. Clinical covariates or bio-
marker surrogates may be included in the model or distinct

Fig. 3 Illustration of possible relationships between two clinical factors
(patient age and sex), environmental, patient symptoms, markers of
disease risk, and patient disease
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models developed for different covariate strata (e.g., separate
models for separate sexes) to ensure a well-calibrated model.
As such, matched case-control designs may be of limited val-
ue, though unmatched case-control designs may still be nec-
essary for low-prevalence disease applications.

Prediction Model Testing

Disease prediction models are tested to assess diagnostic per-
formance. Testing may occur on the gene discovery cohort
(e.g., using cross-validation) or as a distinct step on a reserved
sample set. In either case, prediction model testing does not
invariably constitute clinical validation.

In many cases, prediction model testing is performed on a
discovery cohort or using a split population design. In such
cases, model performance cannot be known in advance and
the performance testing set cannot be formally powered for
confirmatory testing. In such cases, the focus during predic-
tion model testing is to estimate performance. Split sample set
designs offer the advantage of allowing both for estimation of
performance (e.g., AUC) as well as precision (e.g., confidence
intervals) in the reserved test set. Cross-validation approaches
offer advantages of increased power for marker discovery and
model building at the costs of some bias and difficulty in
characterizing precision of performance estimates.

Many methods used to build prediction models do not re-
quire that individual model terms achieve statistical signifi-
cance. Resulting models may perform well overall, though
their use introduces an element of uncertainty in explaining
or attributing performance. For instance, it may be difficult to
know which terms are positively contributing to the model
accuracy, which are not, and which (if any) are detrimental
to model accuracy. In such cases, it is important to prespecify
the baseline for overall model comparison (e.g., a competing
clinical model or the base clinical terms of the full-disease
prediction model).

Test Development

Diagnostic test development entails the translation of the test
as performed in a research setting into a form and process
amenable to clinical laboratory. Test development encom-
passes the complete system required to run the assay, includ-
ing laboratory instrumentation, reagents, and software
implementing the disease prediction model. Development is
entered after final product requirements are accepted, with
clearly defined design inputs and outputs and should be man-
aged under a quality system. Technical replication, necessary
when assay platforms are changed such as from microarray to
RT-qPCR, can be performed using a subset of samples from
the discovery studies, as the objective is to prove accuracy and
precision of measurements across the assay’s dynamic range
and not diagnostic validity of the test. The principal sample

requirements for test development are that the samples repre-
sent the analytic and clinical ranges observed during discovery
and that sufficient quantity of sample materials remains for
repeat testing.

Test Validation

Test validation is composed of two components: analytical
validation and clinical validation.

Analytical Validation Analytical validation demonstrates
that markers (e.g., analytes or RNA transcripts in the case of
gene expression tests) are correctly measured by the new test.
Analytical validation is performed through a series of studies
designed to confirm test accuracy, precision, limits of detec-
tion or quantitation, robustness against likely interfering sub-
stances, stability of reagents and samples against their defined
limitations of use, and, potentially, the robustness of the pro-
cess to variance in assay conditions [52, 53].

Clinical Validation Clinical validation studies demonstrate
that the diagnostic performance of the test meets predefined
acceptance criteria. Design considerations for such studies,
including sample size calculations for categorical (e.g., diag-
nostic sensitivity and specificity) and continuous endpoints
(e.g., AUC), are complex but well defined in the statistical
literature [54]. As with analytical validation, clinical valida-
tion may appear to recapitulate findings of previous studies.
However, clinical validation serves as a strong claim of diag-
nostic performance. Clinical validation studies have the fol-
lowing characteristics: (1) validation is performed in the
intended use population; (2) the study cohort is independent
of discovery cohorts; (3) diagnostic testing is performed using
the final version of the diagnostic assay(s), with qualified ma-
terials and equipment, executed in the clinical laboratory set-
ting; (4) clinical endpoints and performance claims are
prespecified, with clear null and alternative hypotheses; and
(5) the study is powered to meet the primary objective (or co-
primary objectives, when claims of diagnostic sensitivity and
specificity are desired) (for a more detailed description of
diagnostic accuracy study reporting and evaluation consider-
ations, see Bossuyt et al. and Whiting et al. [55, 56]). Clinical
validation studies are not intrinsically single studies, as it may
be necessary to validate multiple claims (e.g., in different
intended use populations) or to strengthen initial claims
(e.g., by raising the stringency of the null hypotheses). Indeed,
in the case of any new diagnostic test, it may be difficult to
perform the first validation study in the desired intended use
population due to costs and risks of gold standard testing on
all study participants, such as invasive coronary angiography.
In such cases, initial validation studies may be focused on
higher-risk populations [57, 58].
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Beyond Gene Expression

The development and clinical validation of a peripheral blood
gene expression diagnostic test can be challenging although
achievable; the choice of the appropriate platform and adher-
ence to rigorous experimental, clinical, and statistical ap-
proaches is paramount to success. As mentioned previously,
although gene expression profiling in whole blood is a pow-
erful approach, it has inherent limitations especially when ap-
plied to a disease such as CAD where the measurement of the
disease process may be indirect.

To remedy this, the incorporation of other types of bio-
markers, whether they are gene expression based such as the
measurement of circulating RNAs or other types of markers
(genetic, proteomic, metabolite, etc.), should be considered. A
number of studies have examined the interactions between
genetics and gene expression (for a general review, please
see Cookson et al. [59]), and it has been suggested that exam-
ining genetic-gene expression interactions in CAD may be a
powerful approach to further understanding coronary disease
[8]. One example of this approach is illustrated in a study
using the same subject set described in Joehanes et al. [60]
(Table 1). In this study, the investigators identified co-
expression modules that were differentially represented in ei-
ther CHD cases or age- and sex-matched controls and demon-
strated that these differential modules were enriched in CHD
risk expression SNPs (eSNPs), loci known to be associated
with increased CHD risk and also to alter gene expression.
This approach led to the identification genes involved in B
cell activation, immune response, and ion transport, as well as
higher-level regulatory drivers. The same group of researchers
also successfully employed a similar approach to investigate
miRNA-mRNA-SNP interactions in the same set of subjects
[61]. In addition to genetics, the inclusion of other biomarkers
in a systems biology approach may strengthen the perfor-
mance of a diagnostic test for CAD by incorporating orthog-
onal signals that may reflect different biological aspects of the
disease [62].

As the field of genomics continues to develop and mature,
the incorporation of precision medicine into clinical practice
will continue to progress and holds great promise for altering
the diagnosis and treatment of cardiovascular disease.
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