J. of Cardiovasc. Trans. Res. (2015) 8:23-43
DOI 10.1007/s12265-014-9597-x

Genetic Determinants of Arterial Stiffness

Jeongok G. Logan - Mary B. Engler - Hyungsuk Kim

Received: 21 August 2014 / Accepted: 21 October 2014 /Published online: 4 December 2014

© Springer Science+Business Media New York 2014

Abstract Stiffness of large arteries (called arteriosclerosis) is
an independent predictor of cardiovascular morbidity and
mortality. Although previous studies have shown that arterial
stiffness is moderately heritable, genetic factors contributing
to arterial stiffness are largely unknown. In this paper, we
reviewed the available literature on genetic variants that are
potentially related to arterial stiffness. Most variants have
shown mixed depictions of their association with arterial
stiffness across multiple studies. Various methods to measure
arterial stiffness at different arterial sites can contribute to
these inconsistent results. In addition, studies in patient pop-
ulations with hypertension or atherosclerosis may overesti-
mate the impact of genetic variants on arterial stiffness. Future
studies are recommended to standardize current measures of
arterial stiffness in different age groups. Studies conducted in
normal healthy subjects may also provide better opportunities
to find novel genetic variants of arterial stiffness.
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Introduction

Cardiovascular disease (CVD) is the number one cause of
death and accounts for 32.3 % of (or one of every three)
deaths in the USA [1]. Large artery stiffness called arterio-
sclerosis has been identified as an independent predictor of
CVD mortality and morbidity [2—4]. Arterial stiffness is char-
acterized by structural remodeling and functional changes in
the arterial wall. Major changes, typically seen with “physio-
logic” arterial aging, include fragmentation and calcification
of elastic fibers, and increased collagen deposition and colla-
gen cross-linking in the media [5, 6]. Oxidative stress, de-
creased bioavailability of endothelial-derived vasodilators
(e.g., nitric oxide), and low-grade inflammation process have
also been recognized to promote arterial stiffness [7].
Diminished elasticity of arterial walls results in earlier arrival
of wave reflection, and reflected waves that arrive during left
ventricular ejection increase left ventricle afterload, the am-
plification of systolic blood pressure, and pulse pressure [8, 9].
The exposure of small arterioles to high pulsatile pressure
caused by arterial stiffness also explains the microvascular
damage in the brain and the kidneys [10, 11]. Arterial stiffness
has been found to be an independent and consistent predictor
of left ventricular hypertrophy [12], hypertension [13, 14],
myocardial infarction [15] and stroke [16], and cardiovascular
mortality in patients with end-stage renal disease [17, 18].
Despite the tremendous emphasis on the role of arterial
stiffness in the development of CVD, relatively little is known
about the biological mechanisms and pathways underlying the
development of arterial stiffness. Studies on heritability of
arterial stiffness suggest that genes explain a moderate (range
from 23 to 50 %) proportion of the variability in arterial
stiffness. This has been reported from populations in a number
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of studies including: the Framingham Heart Study [19], the
Strong Heart Family Study [20], twin studies [21, 22], and the
Erasmus Rucphen Family study [23]. The influence of a
genetic component in arterial stiffness has been shown to be
independent of well-known cardiovascular risk factors such as
age and blood pressure [20, 23]. Identification of genetic
variations related to arterial stiffness may provide novel in-
sights into its pathophysiology. Moreover, potential preven-
tive measures may be developed to benefit those with a high
genetic risk of arterial stiffness.

Arterial stiffness can be noninvasively assessed by determin-
ing the speed of energy conduction through the arterial wall,
analyzing pulse waveforms, or relating diameter change to pres-
sure change [24]. These methods produce parameters including
pulse wave velocity (PWV), augmentation index (AIx), arterial
compliance, arterial distensibility, elastic modulus, Young’s elas-
tic modulus, and stiffness index [24]. Pulse pressure measured
using a standard sphygmomanometer is also recognized as a
surrogate marker of arterial stiffness in persons aged more than
50 years [25].

In this paper, we reviewed genetic variants that have been
reported for their association with arterial stiffness (Table 1). We
next discussed several potential factors that contribute to the
inconsistent results of the reviewed studies. Lastly, we proposed
the model (Fig. 1) explaining arterial stiffness pathophysiology
with the genes reviewed in this study.tgroup

Method

We performed a PubMed literature search for relevant articles
with no date restriction. The keywords used included single
nucleotide polymorphism (SNP), gene, genetics, association,
arterial stiffness, pulse wave velocity, augmentation index,
distensibility, elastic modulus, and arterial stiffness 3. In order
to make the findings comparable, studies that examined the
associations between combined variables and arterial stiffness
(e.g., haploblock) were excluded. We focused on cross-
sectional association between SNP and commonly used mea-
sures of arterial stiffness. A total of fifty articles that met our
criteria were selected for the review.

Genetic Variants Related to Arterial Stiffness
Renin-Angiotensin-Aldosterone System-Related Genes

Renin-angiotensin-aldosterone system (RAAS) is involved in
blood pressure regulation by sodium-fluid balance and is
known to play an important role in arterial tone [81]. Studies
that have investigated the angiotensinogen gene (4GT) have
frequently examined the Met235Thr (T704C) polymorphism
in exon 2. Although one study with hypertensive subjects
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reported that those homozygous for the threonine allele in
the Met235Thr polymorphism had significantly higher arterial
stiffness [29], this relationship was not found in the Rotterdam
Study [28] or in two other studies with hypertensive subjects
[26, 27].

For the angiotensin-converting enzyme gene (4CE) which
converts angiotensin I to vasoactive angiotensin II, the
insertion/deletion polymorphism of intron 16 has been exten-
sively investigated. Previous studies have shown that the
number of D allele was positively related to the level of
ACE expression in T-lymphocytes [82] and serum levels of
ACE [83]. The 287-bp deletion in intron 16 has been shown to
influence arterial stiffness in both the general population and
diabetic and hypertensive patients [28, 30-33, 35]. However,
the allele related to increased arterial stiffness varied between
general population and patient groups. While those with the D
allele had significantly greater arterial stiffness in general
populations [28, 30, 31], type 2 diabetes [33] and untreated
hypertensive [36] patients with the D allele had less arterial
stiffness. Possibly, the activity of the D allele on arterial
stiffness may be modified in hypertension or diabetes through
its interaction with mechanisms involved in their
pathophysiology.

As for the A1166C polymorphism of angiotensin II
type 1 receptor gene (AGTRI) in the 3’ untranslated
region, the C allele is related to increased arterial stiff-
ness in hypertensive patients [27, 35, 37], in contrast to
the A allele which is related to higher arterial stiffness
in more severe hypertensive patients (50 % in grade 3
hypertension) [38]. In two studies with normotensive
White subjects [35] and the random general population
[40], arterial stiffness measured by carotid-femoral PWV
was not different across the genotypes. However, arterial
stiffness measured by femoral-dorsalis pedis or tibialis
posterior PWV was significantly associated with the C
allele of the A1166C polymorphism [40], suggesting
that the A1166C polymorphism may have different ef-
fects on central elastic arteries and peripheral muscular
arteries. There is also a potential combined effect of this
genotype with age. For example, a recent longitudinal
study showed that the C allele carrier in the A1166C
polymorphism had a 35 % more pronounced increase in
carotid-femoral PWV over a 16-year period than the AA
alleles subjects, and this difference in PWV was only
observed after the age of 55 years [84].

In another study examining polymorphisms in the aldoste-
rone synthase gene (CYP1/B2), the C allele of the T-344C
polymorphism in the promoter region was associated with
higher peripheral and central augmentation index than T allele
homozygotes in a healthy random population [34].
Inconsistent results in both arterial stiffness and age-related
changes of arterial stiffness were found with this T-344C
polymorphism in studies with hypertensive patients [27, 41].
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Genetic factors,
Age, sex, race,
Psychological stress, diet, physical activity,
Glucose, cholesterol, blood pressure

Oxidative stress Inflammation (/L-6, SELP, IC Renin-Angio Aldo system Sympathetic function
(p22phox, TXNIP) AM1, VCAM1, FAS, CRP, TNF-a) (AGT/ACE/AGTR1/CYPIIB) (ADRB1/ADRB2/ADRB)

Functional change

Endothelial dysfunction
(ECE-1& 2,
ETAR, ETBR, ET-1)

Structural change

Intimal calcification Medial calcification
VSMC proliferation (ELN, COL4A1, COL1A1,

MMP3 & 9, FBN1, LMNA)

AGE (RAGE, GLO1) /

4

\ 4
Estrogen (ER-a & 8, CYP19A1) ] . .
[ Atherosclerosis Arterial Stiffness
/Arteriosclerosis

o { Calcium (ATP2B1, Fetuin-A, ENPP1) ’
Adiponectin (ADIPOQ) /

( &

) orotein B £ (GNB
[ Apolipoprotein E (APOE) ] [ G-protein B3 subunit (GNB3)
Measures of
Arterial Stiffness
CVDs

Hypertension
Heart Failure
Coronary artery disease
Stroke

Fig. 1 AGT angiotensinogen, ACE angiotensin-converting enzyme, AGTR! reactive protein, 7NF-« tumor necrosis factor alpha, RAGE receptor for
angiotensin II type 1 receptor, CYP11B2 aldosterone synthase gene, ADRBI, advanced glycation endproducts, GLO! glyoxalasel, ER « and 3 estrogen
B2, B3 adrenergic receptors B1, B2, B3, ECE endothelin-converting enzyme, receptor alpha and beta, CYP1941 cytochrome P450 family 19 subfamily a
ETAR endothelin A receptor, E7BR endothelin B receptor, V'SMC vascular polypeptide 1, ATP2BI calcium transporting ATPase 1, ENPPI
smooth muscle cell, eNOS endothelial nitric oxide synthase, TXNIP ectonucleotide pyrophosphatase/phosphodiesterase-1, ADIPOQ adiponectin,
thioredoxin interaction protein, /L-6 interleukin-6, SELP P-selectin, ICAM1 ELN elastin, COL4A1 collagen type 4 alpha 1, FBN/ fibrillin-1 glycoprotein,
intercellular adhesion molecules-1, VCAM1 vascular cell adhesion molecules- LMNA lamin A/C, MMP matrix metalloproteinase, GNB3 G protein B3
1, FAS tumor necrosis factor (TNF) receptor superfamily member 6, CRP C- subunit

[3-Adrenergic Receptor Genes allele of the Arg389Gly polymorphisms in ADRB1 was asso-

ciated with arterial stiffness in White young adults, but not in
[3-adrenergic receptors, which are a class of G-protein-  Blacks. In contrast, the arginine allele of the Arg16Gly poly-
coupled receptors, play an important role in cardiovascular ~ morphism in ADRB?2 and the arginine allele of the Trp64Arg
function. Chronic stimulation of (3-adrenergic receptors by the ~ polymorphism in ADRB3 were associated with arterial stiff-
sympathetic nervous system may contribute to physiological ~ ness in Black young adults, but not in Whites. These three
and pathological remodeling of vascular function and struc-  polymorphisms were not associated with blood pressure and
ture. There are three (3-adrenergic receptors: 31 (ADRB1),  heart rate [42], suggesting the independent role of (3-
32(ADRB2), and 33(ADRB3) [85]. Compared with the stud-  adrenergic receptor genes on arterial elasticity in young adults.
ies on RAAS-related genes, studies that investigated the effect ~ Interestingly, the alleles of the Argl6Gly polymorphism in
of genetic variants of (3-adrenergic receptor genes on arterial ~ 4ADRB2 may have an opposite influence on arterial stiffness in
stiffness have been conducted in racially more diverse groups,  different racial groups. The glycine allele was associated with
including Asians, White, and Black adults. In one study with  a higher pulse pressure in European American youth [44]. In
White and Black young adults aged 19—44 years, the glycine  Japanese hypertensive patients, arterial stiffness and these
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three polymorphisms (Arg389Gly, Argl6Gly, and Trp64Arg)
were not associated; instead, homozygotes of the glycine
allele of the Ser49Gly polymorphism in ADRBI had higher
arterial stiffness [43].

Endothelin-Related Genes

Endothelin-1 (ET-1) is a potent vasoconstrictor produced in
endothelial cells. It binds to two G-protein-coupled receptors,
endothelin A receptor (ETAR) and endothelin B receptor
(ETBR), which are expressed mainly on vascular smooth-
muscle cells and endothelial cells, respectively [86]. Whereas
ETAR plays a role in vasoconstriction of smooth muscle cells,
ETBR facilitates endothelial synthesis of nitric oxide (NO) and
prostacyclin [87]. In a study with untreated hypertensive sub-
jects, women with the G allele of the A-231G polymorphism in
ETAR and with the GG alleles of the Leu277Leu polymorphism
(without amino acid change) in E7BR had significantly higher
carotid-femoral PWYV than other groups, but these results were
not found in men [39]. In another study, the A958G polymor-
phism in E7AR, and the Leu277Leu polymorphism in £7BR did
not contribute to the levels of arterial stiffness measured by
brachial-ankle PWV in a general Japanese population [45].
Endothelin-converting enzyme (ECE) converts a 39-amino-
acid precursor to a 21-amino-acid endothelin-1 protein, thus it
may be important in regulating vascular tone. However, the
polymorphisms, A2013(+289)G in ECE-I and T669(+17)C in
ECE-2, were not significantly related to arterial stiffness in
Japanese subjects [45].

Endothelial Nitric Oxide Synthase Gene

Endothelial NOS (eNOS), also known as nitric oxide synthase
3 (NOS3), plays an important role in modulating vascular
smooth muscle tone. In the presence of oxygen, reduced
nicotinamide adenine dinucleotide phosphate (NADPH), fla-
vin adenine dinucleotide (FAD), flavin mononucleotide
(FMN), and calmodulin, eNOS released from endothelium
catalyzes L-arginine to nitric oxide (NO) which is a short-
lived vasodilatory gas [88]. The results on the relationship
between eNOS polymorphisms and arterial stiffness have
shown inconsistencies in different races, sex, and various
arterial sites for measuring arterial stiffness. The T allele of
G894T (Asp298Glu) polymorphism was related to more arte-
rial elasticity in African Americans, but not in White
Americans [46]. This common missense mutation of G298T
was associated with changes in central pulse pressure in
females but not in males [47]. Furthermore, the C allele of
the T-786C polymorphism in eNOS was significantly associ-
ated with increased PWV measured in peripheral arteries, but
not in central elastic arteries [40]. In these studies, none of
polymorphisms in eNOS were significantly associated with
arterial stiffness measured by carotid-femoral PWV which is a

direct measure of central elastic arteries. It was also reported
that both eNOS polymorphisms, G10T and G298T
(Glu298Asp), were not associated with aortic PWYV in hyper-
tensive or non-hypertensive Europeans [49]. Despite promis-
ing evidence of eNOS in endothelial function and vascular
function, the effect of eNOS polymorphisms on arterial stiff-
ness remains unclear.

Oxidative Stress-Related Genes

The crucial role of NADPH oxidase system in vascular oxi-
dative stress and atherosclerosis has been well described in
previous studies. NADPH oxidase has been identified to be a
major source of reactive oxygen species (ROS), such as
superoxide anion, which causes oxidation of low density
lipoprotein (LDL) [89]. Studies have shown that the C242T
(Tyr72His) polymorphism of gene encoding NADPH oxidase
p22phox subunit is significantly related to arterial stiffness in
Caucasian male runners [51] and in the general population of
Brazil [90]. However, the allele related to arterial stiffness was
different in each study. While runners with the CC alleles had
higher carotid-femoral PWV (measured with the PulsePen
device) than runners with the CT and TT alleles, individuals
with the TT alleles had higher carotid-femoral PWV (mea-
sured by the Complior device) than those with the CC or CT
alleles in the Brazilian population.

Thioredoxin-interacting protein (TXNIP) is a protein known
to increase the production of ROS and oxidative stress [91]. The
G allele carriers of 137212 in TXNIP showed significantly higher
carotid-femoral PWV than CC homozygotes in diabetic patients
in Brazil, but not in the non-diabetic group, suggesting a possible
interaction of TXNIP and pathophysiology in diabetes [50].

Inflammation-Related Genes

Although inflammation may contribute to arterial stiffness,
biomarkers of inflammation are not always related to arterial
stiffness, even in patients with coronary artery disease [92].
One population-based study showed that the C allele of the G-
174C polymorphism in the interleukin-6 gene (/L-6) promoter
was significantly associated with increased carotid-femoral
PWYV and pulse pressure [52]. A study in young Americans
also demonstrated that polymorphisms, Ser29Asn and
1s2244529 in the P-selectin gene (SELP), Gly241Arg in the
intercellular adhesion molecules-1 gene (ICAMI), and
Asp693Asp (C>T) in the vascular cell adhesion molecules-1
gene (VCAM1I) were significantly related to aorto-foot PWYV,
suggesting that genetic variations of adhesion molecules may
be involved in the process of arterial stiffness [56].
However, another population-based study showed that
among the polymorphisms in 12 inflammatory biomarkers
genes, only the polymorphism rs10509561 of the TNF recep-
tor superfamily member 6 gene (FAS) was significantly related
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to central pulse pressure. This polymorphism was not associ-
ated with either carotid-femoral PWV or augmentation index
[55]. The C1444T polymorphism of C-reactive protein gene
(CRP) and G-308A of the tumor necrosis factor alpha gene
(TNF-x) were found to be determinants of carotid stiffness in
patients with a history of Kawasaki disease, but not in control
subjects [54]. Two studies reported that circulating levels of
inteleukin-6 were significantly associated with carotid-
femoral PWV and with its genetic variants; nevertheless, the
genetic variants were not associated with carotid-femoral
PWYV [53, 55]. Inflammation does not seem to be a direct
causal factor of arterial stiffness, but it may influence arterial
stiffness indirectly through different mechanisms such as en-
dothelial dysfunction enhanced by inflammation [93].

A recent meta-analysis of genome-wide association data has
reported that the SNP, rs7152623, located in the B-cell
lymphoma/leukemia 11B gene (BCL11B) desert was significant-
ly associated with carotid-femoral PWV in nine community-
based European ancestry cohorts and two other European cohorts
[80]. Since BCL11B is known to participate in interleukin-2 gene
(IL2) expression [94] and maybe important in the inflammatory
process, further studies are needed to define the association of
this genetic variation with inflammation.

Advanced Glycation Endproducts-Related Genes

Advanced glycation endproducts (AGE) is known to contrib-
ute to the development of vascular complications in diabetes.
Binding AGE to the receptor for AGE (RAGE) may initiate
the production of reactive oxygen species (ROS), resulting in
pro-inflammatory cellular responses [95]. Data from two
Dutch population-based cohort studies demonstrated that the
AA genotype of the T-374A and the TT genotype of the
C5878T in RAGE were associated with less arterial stiffness
in individuals with normal glucose metabolism. However, in
individuals with impaired glucose metabolism or type 2 dia-
betes, these genotypes were associated with higher pulse
pressure and higher arterial stiffness, respectively [58]. This
result suggests that the effect of the polymorphism under the
condition of normal glucose metabolism may be different in
altered glucose metabolism such as diabetes. An analysis on
the part of the data from a Dutch population explored the
glyoxalasel (GLO1) gene which is used to detoxify
methylglyoxal, a main precursor of AGEs. In 1289 partici-
pants with 33.3 % of DM2, the Alal11Glu of GLO! was only
weakly associated with pulse pressure, but not with other
arterial stiffness measures [57].

Estrogen-Related Genes
Estrogen is considered a cardioprotective hormone which

enhances NO production and inhibits inflammation and vas-
cular smooth muscle cell (VSMC) proliferation [96]. Estrogen
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receptors (ER) are expressed in vascular smooth muscle cells
[97, 98]. The associations between polymorphisms and arte-
rial stiffness have been examined in ER-«, ER-[3, and aroma-
tase (CYP19A1) genes. One study conducted in healthy older
adults in Japan reported that in the T-401C and the T30C
(Ser10Ser) polymorphisms of ER-o, women with the T allele
had higher brachial-ankle PWV as compared with women
with the C allele. This relationship was not found in men
[59], showing a sex-specific effect of the ER-o polymorphism
on arterial stiffness. Another population-based study demon-
strated that these polymorphisms, T-401C and Ser10Ser, were
related to augmentation index (Al), but with the CC alleles
relating to higher Al In this study, the polymorphisms, T-401,
Ser10Ser, (TA)n, and rs9340799 in ER-«, and rs944460 and
rs1256034 in ER-3, were significantly related to Al but not to
carotid-femoral PWV in the sex-pooled analysis [60]. Further,
the polymorphisms, rs4646, Var80Val, (TTTA)n, and
18726547 in CYP19A1 were neither associated with augmen-
tation index nor carotid-femoral PWV.

Adiponectin Gene

Adiponectin (ADIPOQ), produced by adipose tissue, is identi-
fied as an important adipocytokine that improves insulin resis-
tance through its anti-inflammatory and anti-atherogenic prop-
erties [99, 100]. Adiponectin is implicated in the metabolic
syndrome by regulating glucose levels and reducing fatty acids
[101]. In a Japanese cohort study, hypertensive patients with the
T allele of the G276T had significantly lower HDL cholesterol,
higher HbAlc, and higher brachial-ankle PWV [61]. Further
studies are required to replicate these results and to elucidate the
direct relationship between the G276T of ADIPOQ and arterial
stiffness in healthy individuals.

Apolipoprotein E Gene

Apolipoprotein E (APOE) is known to facilitate plasma cho-
lesterol homeostasis by the hepatic uptake of lipoproteins and
stimulation of cholesterol effluxes from macrophages [102].
APOE has four alleles (el, €2, €3, and e4) according to the
combination of C inrs429358 and T inrs7412 (el is very rare)
[102]. Many studies have shown the association between the ¢4
allele (CC) and coronary disease [103]. However, in a study in
the general population in urban Brazil, carotid-femoral PWV
was not different among subjects with the €2, €3, and ¢4
alleles. These APOE polymorphisms did not seem to have a
direct effect on arterial stiffness, although, the ¢4 allele was
significantly associated with an unfavorable lipid profile [62].

Elastin Gene

Medial degeneration is a key feature of arterial stiffness and is
characterized by a decrease in elastin fibers and an increase of
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collagen [5]. Elastin is one of the major components of the
extracellular matrix. In a study on the A/G polymorphism of
exon 16 (Ser422Gly) in the elastin gene (ELN), the A allele
carriers had significantly lower distensibility of carotid arteries
than the GG homozygous subjects. But this association was
not found in radial arteries from the same cohort, which
suggests that this polymorphism is associated with distensi-
bility of elastic arteries only, but not with muscular arteries
[63]. Another polymorphism, deletion/A in the ELN 3" un-
translated region, was associated with higher brachial-ankle
PWV in A allele carriers from a Japanese population [64],
showing the variant’s effect on muscular arteries. Given the
important role of central arteries in the development of CVD,
further studies are recommended to examine the influence of
these ELN polymorphisms on carotid-femoral PWV.

Fibrillin-1 Glycoprotein Gene

Fibrillin-1 glycoprotein (FBN1) is an essential connective pro-
tein for the formation of microfibrils which constitute arterial
elastic fibers [104]. Previous studies have examined the rela-
tionship between arterial stiffness and the variable nucleotide
tandem repeat (VNTR) polymorphism in intron 28 of FBNI,
but their results have not been consistent. While one study
reported that the FBN-1 VNTR polymorphism was not associ-
ated with either carotid-femoral PWV nor other measures of
stiffness in a healthy general population [70], other studies have
shown that participants with the 2-3 genotype of the VNTR
polymorphism had greater pulse pressure [74] and arterial
stiffness (measured by aortic stiffness 3 and elastic modulus)
[67] in healthy men. Another study in participants with coro-
nary artery disease also reported that those with the 2-3 geno-
type of the VNTR polymorphism had greater arterial stiffness
(measured by aortic impedance) and higher central pulse pres-
sure than those with the 2-2 and 2-4 genotypes [73].

Collagen Genes

Collagen is another important determinant of arterial wall
mechanics along with elastin [5]. Collagen type 4 is the major
structural component of basal lamina. A genome-wide asso-
ciation from the SardiNIA study showed that the minor C
allele of A4002C (GIn1334His) in the collagen type 4 alpha 1
gene (COL4AI) is associated with higher carotid-femoral
PWYV. This association was replicated in 1828 Sardinians
and 813 Amish individuals in the oldest category [65].
Another study in the UK reported that the G+2046T polymor-
phism in COL1A41, was associated with a higher PWV (mea-
sured in three segments; aortoiliac, aortoradial, and aorto-
dorsalis-pedis) in young healthy individuals with the T allele
[66]. However, this polymorphism was not associated with
aortic distensibility in men from Sweden (mean age
55.3 years) [67]. The role of COLIAI polymorphisms in

arterial stiffness should be reexamined in further studies due
to these inconsistent results.

Matrix Metalloproteinase Genes

Matrix metalloproteinases (MMPs) are a family of proteases
that degrade extracellular matrix molecules such as elastin and
collagen. It was reported that healthy subjects with the T allele
of the C-1562T and the glutamine allele of the Arg279GlIn in
MMP-9 had higher serum MMP-9 and aortic PWV [105]. The
association with the C-1562T polymorphism was also report-
ed in untreated hypertensive patients [71] and patients with
coronary artery disease [72]. The C-1562T polymorphism
may have a sex-specific effect on arterial stiffness. In a
population-based study conducted in Taiwan, this polymor-
phism was associated with arterial stiffness (measured by
arterial stiffness 3, elasticity modulus, and one-point PWV)
in menopausal women, but not in men [69].

As for the human stromelysin-1 (MMP-3) gene, a common
promoter polymorphism with one allele containing 5 adeno-
sines (5A) and the other allele containing 6 adenosines (6A)
was associated with stomelysin-1 gene expression [106]. A
study showed that SA homozygotes and 6A homozygotes
have higher ascending aortic input impedance as compared
with the heterozygotes in the older group (>60 years of age).
However, this relationship was not found in the younger group
(30-60 years of age), suggesting an age-related effect of this
polymorphism. The gene and protein expression data from
this study showed that those with the SA/6A alleles had
intermediate MMP-3 levels which are lower than those with
the SA/5A alleles and higher than those with 6A/6A. These
results show that the optimal level of MMP-3 may be an
important factor for the homeostasis between degradation
and deposition of matrix proteins [68].

Lamins Gene

Lamins are intermediate filament-type proteins which are major
components of the nuclear lamina [107]. Studies showed that
lamins are involved in cardiac and muscular muscle dystrophy
[108, 109]. In the lamin A/C gene encoding for lamin A and C,
the C-1030T polymorphism in the promoter region may influ-
ence arterial stiffness. In a study of healthy Japanese men, the CC
homozygotes of the C-1030T polymorphism had greater
brachial-ankle PWV than other genotypes, and the CC alleles
were reported to be a significant and independent predictor of
brachial-ankle PWV after controlling for other CVD risk factors
including age and blood pressure (BP) [75].

Calcium-Related Genes

Calcium phosphate metabolism may influence arterial stiffness
both in structure and function. For example, vascular
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calcification can be accelerated by calcium accumulation in the
extracellular matrix, and calcium is also involved in vascular
cell function and smooth muscle contraction [110]. Calcium
transporting ATPase 1, which is encoded by the ATP2B1 gene,
moves calcium ions from the cells in effort to promote intra-
cellular calcium homeostasis; thus, it may be involved in reg-
ulating vascular smooth muscle tone [111]. In untreated hyper-
tensive patients, the A allele homozygotes of 1517249754 and
the G allele homozygotes of rs1401982 had lower carotid-
femoral PWV than heterozygotes or other homozygotes [76].

Fetuin-A is a systemic inhibitor of calcium-phosphate pre-
cipitation [112]. A study conducted in subjects with normal
kidney function showed that the plasma fetuin-A level was
independently and negatively correlated with aortic PWV.
Subjects with the Ser/Ser alleles in the Thur256Ser polymor-
phism of the fetuin-A gene had significantly lower fetuin-A
levels and higher aortic PWV. This relationship was found
only in males, suggesting an interaction of this genetic variant
with sex [77].

Ectonucleotide pyrophosphatase/phosphodiesterase-1
(ENPP1), which is involved in regulating pyrophosphate
levels, is also known to inhibit calcification [113]. In a
study in Austrian patients with end-stage renal failure,
the patients with the Lys/Gln genotype of the
Lys173GIn polymorphism in ENPPI had a higher cor-
onary calcium score and a higher carotid-femoral PWV
than those with the Lys/Lys genotype after controlling
sex, age, diabetes, and duration of dialysis treatment
[78]. Further studies are needed to clarify the role of
polymorphisms in calcium metabolism related genes in
arterial structure and function.

G-Protein B3 Subunit Gene

The family of G-protein-coupled receptors interacts with
heterotrimeric G protein complexes (x,[3,y subunits) to trans-
duce extracellular signals to intracellular signals. Upon
receptor-ligand binding, the o unit is separated from the
receptor and 3 and y subunits and then activates other mole-
cules in the cell [114]. It was reported that in the C825T
(Ser275Ser) polymorphism of the gene encoding the G-
protein (33 subunit (GNB3), carriers of the T allele showed a
significantly higher carotid-femoral PWV and augmentation
index than those with the CC genotype in 72 young and
healthy males [79] Further study is required to replicate this
result in a large sample.

Factors Contributing to Inconsistent Results

The studies reviewed here illustrate conflicting results
on the association between genetic polymorphisms and
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arterial stiffness. These inconsistent results can be at-
tributable to several reasons. This review highlights the
issues of different methods used to measure arterial
stiffness and the selection of the study sample, which
have impeded the progress of studies assessing the
genetic component of arterial stiffness.

Phenotype of Arterial Stiffness

Various measures of arterial stiffness at different arterial sites
can serve as a major source of inconsistent results. Commonly
used methods in the studies reviewed include pulse wave
velocity (PWV), augmentation index (Alx), arterial stiffness
(3, arterial compliance, arterial dispensability, and elastic mod-
ulus. Noninvasive measures of arterial stiffness can be
grouped into three categories: measuring PWYV, analyzing
pulse waveforms, and measuring diameter change in relation
to pressure change in arteries [24].

Determining PWV is generally accepted as the robust and
reproducible method to measure arterial stiffness [25, 115].
PWYV can be determined by the distance the pulse wave travels
between two arterial sites divided by pulse transit time,
PWV=D (meters)/A#(seconds) [116]; thus, PWV provides
regional stiffness between two arterial sites. Carotid-femoral
PWYV is considered the “gold-standard” measure of arterial
stiffness because it is measured along the aortic and aorto-iliac
pathway which provides the largest BP buffering function
[116].

Pulse wave analysis (PWA) is a noninvasive method to
generate an ascending aorta pressure wave from arterial pres-
sure waveforms measured either at carotid or radial arterial
site by mathematical transformation [117]. A pulse pressure
waveform is a composite of forward pressure wave (incident
wave) and reversed wave (reflected wave). The augmentation
index (Al) is a commonly used measure of arterial stiffness
and is obtained from PWA. AI is defined as augmented
pressure (AP) by a reflected wave and is expressed as a
percentage of pulse pressure (PP) [24]. Although Al is used
to measure systemic arterial stiffness, because of differences
in elasticity and length of arteries, pulse waveforms are not
identical when measured in different arterial sites [118].

The methods to relate diameter change to pressure change
(or reverse) include arterial compliance, distensibility, elastic
modulus, Young’s modulus, and stiffness index (3. These
methods measure local arterial stiffness of measured sites.
The issue regarding the difference between the site to measure
diameter change and the site to measure pressure change has
been pointed out in several studies [24, 119].

Taken together, methods to measure arterial stiffness rep-
resent either regional, systemic, or local arterial stiffness. Most
studies have used different arterial sites, such as carotid,
femoral, brachial, tibial, and radial arteries for arterial stiffness
measurements. However, central arteries and peripheral
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arteries differ in their structure and function. While central
arteries are more elastic containing smaller amount of smooth
muscle, peripheral arteries are less elastic containing more
smooth muscle cells and less elastin. Various arterial sites also
respond differently to age, sympathetic nervous activity, hor-
mones, and drugs [119, 120]. Thus, arterial stiffness measured
even by the same method may not provide the same informa-
tion when measured in different arterial sites. Due to hetero-
geneity of arterial system, polymorphisms may exert different
effects on various arterial segments. Therefore, caution is
required to interpret and compare the results from studies that
used different methods to measure arterial stiffness in different
arterial sites.

Furthermore, studies are recommended to standardize mea-
sures of arterial stiffness that best identify the functional and
structural changes of arterial system over different age groups.
According to the data from Framingham Heart Study off-
spring cohort, before age 50 years, carotid-femoral PWV
was lower than carotid-brachial PWYV, but after age 50 years,
carotid-femoral PWV was higher, showing central and periph-
eral arteries have different progress over aging process [121].
The Anglo-Cardiff Collaborative Trial showed that while
PWYV was a good measure in older individuals (>50 years),
Al is a more sensitive marker for arterial stiffness risk in
younger individuals (<50 years). Measures of regional, sys-
temic, or local arterial stiffness can be standardized for differ-
ent age groups [122].

Selection of Study Sample

Arterial stiffness is a multifactorial condition which results
from the interaction of several genes and environmental fac-
tors. Thus, identifying genetic determinants of arterial stiff-
ness can be very challenging unless confounding factors (e.g.,
race, sex, pathological condition,) are well controlled. Studies
reviewed in this paper provide suggestive evidence for racial
differences in the associations between arterial stiffness and
polymorphisms in ADRBI, ADRB2, ADRB3, and eNOS.
Studies on the polymorphisms in ETAR, ETBR, eNOS,
ER-o, MMP9, and fetuin A gene showed a sex-specific role
for these polymorphisms in arterial stiffness. Furthermore,
many studies have been trying to find novel determinants of
arterial stiffness in patients with hypertension and atheroscle-
rosis, in which their pathophysiological mechanisms are
closely interrelated to ones of arterial stiffness.

Most studies on AGT, AGTRI, and CYP11B2 polymor-
phisms have been conducted in hypertensive patients but their
associations have not been replicated by ones conducted in
healthy individuals. Population-based longitudinal studies
have shown that arterial stiffness may itself predict progres-
sion of hypertension in normotensive subjects [13, 14].
However, continuously elevated blood pressure will also con-
tribute to arterial stiffness through structural and functional

changes of the vascular wall, showing the “bi-directional”
relationship between arterial stiffness and hypertension
[123]. In addition, arterial stiffness progressively increases
with age, and isolated systolic hypertension affects 50 % of
people over age 60 [122]. In order to exclude the influence of
hypertension on arterial stiffness, young and non-hypertensive
subjects would need to be selected for the study populations.
In addition, in all studies that measure arterial stiffness, mean
arterial pressure and age which are major determinants of
arterial stiffness should be adjusted in data analysis.

The terms of arterial stiffness and atherosclerosis have been
used interchangeably, which present challenges in current
arterial stiffness research. While atherosclerosis is character-
ized by a local inflammatory process and accumulation of
fatty plaque in the intima, arterial stiffness (called arterioscle-
rosis) is more likely due to medial degeneration characterized
by elastin degradation and collagen deposition [7]. Although
several studies have shown the significant relationship be-
tween atherosclerosis and arterial stiffness, these studies have
been conducted in patients with atherosclerosis [124], or
elderly people who may already have progressive subclinical
atherosclerosis [125]. Since currently available noninvasive
measures of arterial stiffness assess both intimal and medial
calcification, data from these subjects would not provide
accurate information about the levels of arterial stiffness.
Indeed, the significant relationship between atherosclerosis
and arterial stiffness was not demonstrated in the studies with
middle-aged US populations [126], healthy volunteers [127],
middle-aged patients referred for transesophageal echocardi-
ography [128], asymptomatic middle-aged men at cardiovas-
cular risk [129], and women in the general population [130].
In their editorial commentary, Wilkinson and McEniery point-
ed out that “an important first step is the realization that
athGenetic Variants Related to Arterierosclerosis and arterio-
sclerosis are different conditions.” [131] Studies on normo-
tensive population without atherosclerosis may help to answer
research questions of whether or not polymorphisms influence
arterial stiffness independently of blood pressure and
atherosclerosis.

A Proposed Conceptual Model of Arterial Stiffness
Pathophysiology

Mechanisms contributing to arterial stiffness were proposed in
Fig. 1. Although not many genetic variants have shown de-
finitive causal associations with arterial stiffness, this model
includes the genes that were investigated for their potential
associations with arterial stiffness in the previous studies. Age,
sex, and race, along with genetic makeup, can be important
demographic factors that may influence arterial stiffness.
There is evidence that psychological stress, diet, and physical
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activities are behavioral factors that intervene stiffness of
arteries. Uncontrolled cholesterol, glucose, and blood pressure
are known as critical factors that may predispose vasculature
to be easily insulted by oxidative stress and inflammation [95,
123, 132].

Stiftness of medium and large arteries called arteriosclero-
sis can be attributable to alterations in function (e.g., endothe-
lial function) and structure (e.g., vascular remodeling).
Arterial walls consist of the endothelium, intima, media, and
adventitia. The innermost layer of vascular wall, endothelium,
releases endothelium-derived relaxing factor (EDRF). One
EDREF is NO, which has been identified to play an important
role in regulating vascular smooth muscle tone. Endothelial
dysfunction from oxidative stress and inflammation process
decrease the production of NO and may consequently increase
arterial stiffness [133, 134]. Although NO influences smooth
muscle tone, its effect on arterial stiffness seems to be rela-
tively less than the stiffness caused by structural change in
medial layer of the arterial walls. For example, it was demon-
strated that inhibition of NO and cytochrome-related endothe-
lial-hyperpolarizing factor (EDHF) significantly decrease
smooth muscle tone and arterial wall stiffness assessed by
local measure [134]. However, other studies could not find a
significant association between endothelial function and
carotid-femoral PWYV in young healthy subjects [135], or in
adults with type 1 diabetes [136].

Oxidative stress and inflammation are considered key
mechanisms in the progression of atherosclerosis [132].
While normal endothelium does not bind leukocytes for a
prolonged time, when endothelial cells undergo inflammatory
activation, they increase the expression of various leukocyte
adhesion molecules (e.g., vascular cell adhesion molecule
(VCAM)-1) [137]. Monocytes bound to VCAM-1 penetrate
into the intima in the presence of monocyte chemoattractant
protein-1 (MCP-1), and become intimal macrophages.
Macrophage scavenger receptors bind oxidized LDL, and
these lipid-laden macrophages, called foam cells, secrets
pro-inflammatory cytokines (e.g., interleukin-6, tumor necro-
sis factor-oc, CD-40) and reactive oxygen species (ROS)
[138], exacerbating oxidation and inflammation process in
endothelium. As continued process of inflammation, vascular
smooth muscle cells (VSMC), which are abundant in medial
layer of the arterial wall, migrate to the intima, proliferate, and
excrete extracellular matrix proteins that contribute to the
development of fibrous plaques. This process explains the
progress of a simple fatty streak becoming atheromatous
plaques and calcificated lesions [139]. This intimal calcifica-
tion is closely associated with atherosclerosis.

On the other hand, calcification in the medial layer of the
arterial wall directly increases arterial stiffness [7]. Medial
calcification is characterized by fragmentation of elastin la-
mellae and collagen accumulation [140]. These structural
changes in the medial layer occur both in the presence or
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absence of atherosclerosis [139] and increase with age and
metabolic diseases such as diabetes [141] In vivo studies have
demonstrated that catecholamine released by sympathetic
function plays an important role in regulating vascular smooth
muscle contraction and arterial stiffness [142—144]. Although
the studies reviewed in this paper have not clearly demonstrat-
ed whether or not polymorphisms in RAAS genes play a
dominant or initiating effect on arterial stiffness, several cul-
tured cells and in vivo studies demonstrated that angiotensin I1
and aldosterone increase collagen synthesis in vascular
smooth muscle cells [145], and that ACE inhibitors delay
the accumulation of collagen in aorta [146, 147]. It was also
reported that aldosterone increases arterial stiffness in absence
of oxidative stress and endothelial dysfunction in an in vivo
study [148]. Together, these analyses suggest that arterial
stiffness may be induced independently of blood pressure
and inflammation.

Although atherosclerosis and arterial stiffness (called arte-
riosclerosis) denote different conditions, current measures of
arterial stiffness do not distinguish arteriosclerosis from ath-
erosclerosis [7]. Furthermore, stiffened arteries increase stress
within arteries and make the vascular environment more prone
to atherosclerosis. In order to identify genetic variants of
arteriosclerosis in clinical setting, careful selection of the
study sample and proper adjustment of confounding factors
should be considered.

Conclusion

In this paper, we reviewed the genetic association studies
in arterial stiffness, and most findings showed inconsistent
associations. These inconsistent results may have origi-
nated for several reasons. Among these existing studies,
several methods have been used to measure local, region-
al, and systemic arterial stiffness at various arterial sites.
The arterial system is not identical throughout body and
the various arterial sites are different in their structure and
characteristics. As such, the effect of genetic variants on
arterial stiffness may not be same in different arterial
sites. Thus, interpreting and comparing the results from
different studies requires caution. Futures studies are also
recommended to standardize local, regional, and systemic
measures of arterial stiffness for different age groups.
Furthermore, in the arterial stiffness studies, selection of
participants with confounding underlying conditions such
as hypertension and atherosclerosis can induce a biased
conclusion. Arterial stiffness is very closely aligned with
hypertension and atherosclerosis and they may share some
pathophysiological pathways. Research findings would be
more convincing when studies are conducted in a normo-
tensive population with normal cholesterol levels. Lastly,
the proposed model of arterial stiffness pathophysiology
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(Fig. 1) was developed to separate the concept of “mea-
surement of arterial stiffness” and “arteriosclerosis.” This
is useful to clarify that the current measures of arterial
stiffness assess arteriosclerosis (e.g., medial calcification)
which is combined with atherosclerosis (e.g., intimal cal-
cification). Considerate adjustment of confounding factors
along with careful selection of the study population may
progress arterial stiffness studies.
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