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Abstract Bipolar disorder is a highly heritable and func-
tionally impairing disease. The recognition and intervention 
of BD especially that characterized by early onset remains 
challenging. Risk biomarkers for predicting BD transition 
among at-risk youth may improve disease prognosis. We 
reviewed the more recent clinical studies to find possible 
pre-diagnostic biomarkers in youth at familial or (and) clini-
cal risk of BD. Here we found that putative biomarkers for 
predicting conversion to BD include findings from multiple 
sample sources based on different hypotheses. Putative risk 
biomarkers shown by perspective studies are higher bipo-
lar polygenetic risk scores, epigenetic alterations, elevated 
immune parameters, front-limbic system deficits, and brain 
circuit dysfunction associated with emotion and reward pro-
cessing. Future studies need to enhance machine learning 
integration, make clinical detection methods more objective, 
and improve the quality of cohort studies.
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Introduction

Bipolar disorder (BD) is a developmental and progressive 
illness, with a high heritability of 60%–80% [1, 2]. Genetic, 
cognitive, emotional, behavioral, and physiological fac-
tors all contribute to BD, and earlier onset tends to be more 

difficult to treat [3–5]. In the recent 15 years, definable 
stages of evolution were established for BD [6–11], enabling 
a more precise stratification of the patients and at-risk popu-
lations. Generally, individuals with genetic/familial risk are 
often defined by their parents’ or their first-degree relatives’ 
BD diagnoses. However, till now, there is no consensus on 
criteria among studies defining bipolar clinical risk, and dif-
ferent scales and cut-offs were used to define subthreshold 
episodes [8, 12, 13]. Studies of different follow-up periods 
preliminarily indicate that about 8% to 54% of youth at clini-
cal risk and 13% to 25% of youth at genetic risk converted 
to BD [14–16]. Thus, predicting who among at-risk youth 
will convert could facilitate timely disease recognition and 
intervention, thus leading to improved prognosis [14, 17, 
18]. However, the prodromal stages of psychiatric disorders 
are not obvious and similar across future diagnoses, making 
biological measurements warranted to inform more precise 
evidence [5].

Biomarkers are typically evaluated by blood, urine, or 
soft tissue samples to indicate normal or pathogenic biologi-
cal processes, and pharmacological responses to therapeutic 
interventions [19, 20]. For a biomarker to be of practical 
value, it must be tested clinically, with an acceptable level 
of sensitivity, specificity, and predictive value [21]. In 2020, 
Steardo et al. performed a narrative review [22] identifying 
clinical, genetic, and gene-image binding markers focus-
ing on youth at genetic or clinical risk for BD. Focused on 
genetic at-risk populations, other reviews concluded the 
neurological imaging characteristics detected by structure 
magnetic resonance imaging (MRI) [23], diffusion tensor 
imaging (DTI) [24], tasked-based functional MRI (fMRI) 
[25], and alterations in basal and reactive cortisol [26]. 
These reviews included mostly retrospective studies, and 
evidence-based on other hypotheses (e.g., genetic varia-
tions, epigenetic modifications, brain metabolic alterations) 
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remains unexamined [14, 22, 27]. A growing number of 
recent prospective studies may allow us to summarize the 
clinical value of plausible risk biomarkers.

In this review, we aimed to (1) review the cross-sectional 
and prospective evidence of biological changes among youth 
at risk for BD, including genetic, peripheral, and neuroimag-
ing findings; (2) landscape the biomarkers with evidence on 
their performance in predicting conversion, and give hints 
for possible interventions.

Omics Biomarkers

Changes in Genomics

Based on a strong genetic component with a heritability of 
60%–80% [1, 2], the genetic etiology of BD was explored 
in large-sample genome-wide association studies (GWAS). 
Recently, a GWAS study in more than 40,000 patients found 
15 genes linked to BD [28]. The risk alleles were enriched 
in synaptic signaling pathways and brain-expressed genes, 
especially in those expressed in neurons of the prefrontal 
cortex (PFC) and hippocampus. Additionally, a novel locus 
near TMEM108 was found genome-wide associated with 
BD in Han Chinese individuals but not with Europeans 
[29], showing underlying ethic and environmental factors 
in genome studies.

To better convey the combined effects of common genetic 
variants in BD, the polygenic risk score (PRS) was con-
structed based on single-nucleotide variations identified 
by GWAS. Cross-sectional studies found young offspring 
and siblings of BD patients showed higher bipolar PRS 
than offspring of parents without BD [30–32]. In a family 
cohort followed up for 13 years, parental and offspring PRS 
(hazard ratio [HR] = 0.89 and 1.40, P = 0.40 and 0.02) for 
BD explained 6% of the BD onset variance among offspring 
[30]. However, parental BD had a stronger direct association 
(HR = 5.21, P = 0.002, explaining 30% of the variance) than 
parental or offspring bipolar PRS. This suggests the insuf-
ficiency of current bipolar PRS itself in explaining the BD’s 
“heritability gap”.

Changes in Epigenomics

Epigenetic changes include covalent modifications to DNA 
or histones (e.g., methylation and hydroxylation), RNA 
transcripts, and post-transcriptional alterations involving 
numerous non-coding RNAs. Recent hypotheses have been 
made to demonstrate its role in genetic and environmental 
interactions in psychiatric disorders [33, 34].

Most cross-sectional studies found differentially meth-
ylated DNA sites in youth at familial risk of BD [35–40]. 
One recent study investigated both genetic background 

and methylation signatures using Illumina PsychArray 
and Methylation BeadChips [38]. The DNA methylation 
differences between groups with high (n = 41) or low (n = 
41) PRS were shown in the VARS2 gene, which encodes 
a mitochondrial aminoacyl-tRNA synthetase that plays a 
role in synthesis proteins within the mitochondria, sup-
porting the mitochondrial dysfunction hypothesis in BD 
[41, 42]. Another study [37] analyzed the genome-wide 
expression and methylation levels in peripheral blood sam-
ples of 6 BD patients, 6 unaffected bipolar offspring, and 
6 controls. The study identified 43 risk genes especially 
enriched in the glucocorticoid receptor pathway, empha-
sizing the role of stress in the prodromal stages of BD.

In addition, epigenomic studies tried to underpin the 
involvement of stress by coping with DNA epigenetic 
aging found in BD patients [36, 41]. Surprisingly, Alex et 
al. [39] found epigenetic age deacceleration in the Horvath 
and Hannum clocks in 53 youth at familial risk for BD 
compared to 64 controls. However, none of the environ-
mental stressors assessed (i.e., the Lewis-Murray scale, 
the Hollingshead and Redlich scale, and the Stressful Life 
Events Schedule) was associated with the findings. Subse-
quent studies need to further explore the role of environ-
mental factors in methylation patterns.

Changes in Proteomics

Proteomics is the large-scale study of proteins in a system, 
capturing their expression levels, isoforms, and posttrans-
lational modifications at a specific time and condition [43, 
44]. Protein detection is typically done using immunoas-
says like Enzyme-Linked ImmunoSorbent Assays, West-
ern blots, and multiplex panels, or more powerful and 
reproducible mass-spectrometry methods [45].

Studies in BD have found differentially expressed pro-
teins in a range of processes with diverse functions [46], 
with one showing early perturbations in lipid metabolism 
are independent of mood state [47]. Moreover, blood-
based models have been recently constructed, which had a 
high performance for discriminating schizophrenia (SCZ), 
BD, major depressive disorder (MDD), and healthy con-
trols with 11 to 13 proteins (area under the curve [AUC] = 
0.890–0.955) [48]. For differentiating 110 pre-diagnostic 
BD youth and controls, multiplex immunoassay analy-
ses using serum samples were carried out to construct a 
blood-based biomarker panel [49, 50]. The panel had a 
fair to good predictive performance (AUC = 0.79) with 
lasso regression, and identified 20 protein analytes that 
functioned as pro-inflammatory, anti-inflammatory, lipid 
transporting, metalloendopeptidase activating, cysteine 
protease inhibiting, and growth factors [50].
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Peripheral Biomarkers

Mitochondrial Dysfunction and Oxidative Stress

From the 1990s, mitochondrial dysfunction and other linked 
pathological processes including oxidative stress, inflam-
mation, stress response, and accelerated aging were found 
in BD [41, 42, 51, 52]. Excessive oxidative stress induces 
point mutations that lead to mitochondrial DNA deletion 
due to restricted DNA repair ability and the absence of 
histones in mitochondria [37, 53]. Greater levels of lipid 
peroxidation (i.e., lipid damage), DNA/RNA damage, and 
nitric oxide (NO) markers were found in BD [54, 55]. Lower 
lipid hydroperoxides (i.e., an early-stage lipid peroxidation 
marker) and a higher trend of 4-hyroxy-2-nonenal and 8-iso-
prostane (late-stage lipid peroxidation markers) were found 
in BD patients and at-risk youths than in controls [56]. Such 
findings showed possible accelerated conversion from early- 
into late-stage markers of lipid peroxidation in the pathology 
of BD [56].

Immune Dysregulation

There is considerable evidence supporting the hypotheses 
of chronic low-grade inflammation in BD [57, 58]. Patients 
showed elevated levels of immune parameters including 
pro-inflammatory cytokines, acute phase protein levels, 
and complement factors [59–66], which can change neuro-
transmitter signaling mainly by decreasing the availability 
of 5-HT and DA [67].

Peripheral changes of inflammatory markers have been 
found in both genetic and clinical at-risk youth of BD. The 
prospective Dutch studies [68, 69] found that bipolar off-
spring showed higher serum levels of (1) cytokines pentraxin 
3, a regulatory protein that enhances the anti-inflammatory 
response [70]; (2) chemokine ligand 2, a chemokine known 
to recruit monocytes and macrophages during inflamma-
tion [71]; (3) S100 calcium-binding protein B, an astrocyte 
activation marker, which seems to appear sequentially from 
adolescence to adulthood; and (4) other immune factors 
including IL-7, Insulin-like Growth Factor-Binding Pro-
tein-2 (IGF-BP2) and stem cell factor. Of these, IGF-BP2, 
transporting Insulin-like Growth Factor-1 to the brain [72] 
to modulate neuroinflammation and neuroprotection [73], 
showed the closest prediction of conversion with a sensi-
tivity of 81% and specificity of 50% (threshold: > 150 ng/
mL) [69]. Further, compared with asymptomatic ones, the 
symptomatic bipolar offspring showed higher Interleukin-6 
in the serum sample [74], indicating a progressed dysregu-
lation of the immune system among at-risk youth. Notably, 
such differences were not solid in plasma samples between 
youth at familial and (or) clinical risk of BD and healthy 
controls [56, 75]. One possible reason is the different ability 

to detect cytokines among sample sources [76], which needs 
further validation.

Hyperactivity of the Hypothalamic‑Pituitary‑Adrenal 
Axis

For a long time, people have believed that mood disorders 
might be linked to the overactivity of the hypothalamic-pitu-
itary-adrenal (HPA) axis [77–80]. This is a key biological 
system that helps us respond to stress. Patients with BD have 
increased salivary and plasma basal cortisol, post-dexameth-
asone cortisol, adrenocorticotropic hormone, and increased 
response to the dexamethasone/corticotropin-releasing hor-
mone test [81].

Hyperarousal of the HPA axis was consistently found in 
offspring of parents with MDD [26]. However, among youth 
at familial risk for BD, cortisol level is the most studied 
peripheral target but with uncertain conclusions [26, 82]. A 
series of studies reported higher salivary basal cortisol levels 
in offspring at familial risk for BD [83–87]. Moreover, one 
study found salivary cortisol levels at the mean age of 17.5 
years predicted future conversion to affective disorders dur-
ing the subsequent 2.5 years among 28 BD offspring and 31 
healthy controls (Odds Ratio [OR] = 2.1, 95% confidence 
interval [95% CI] 1.0–4.1, P < 0.05) [86]. However, more 
recent studies measuring salivary and hair cortisol concen-
trations do not support such differences shown between 
bipolar offspring and controls [88–93]. The inconsistencies 
observed between recent and older studies could potentially 
be attributed to the limited sample sizes used in these inves-
tigations. Additionally, to differentiate MDD and BD at-risk 
status, comparisons should be down between youths with 
genetic risk or sub-clinical symptoms of both MDD and BD. 
For example, the ongoing Lausanne-Geneva cohort aimed to 
test HPA-axis dysregulation by measuring cortisol levels in a 
pre-diagnostic sample of BD, MDD, and controls, and psy-
chological stress by life events questionnaires. The related 
endophenotypes will hopefully be identified in probands of 
mood disorders, their offspring, and spouses [94].

Changes in Brain‑Derived Neurotrophic Factor

Brain-derived neurotrophic factor (BDNF) is the most 
studied neurotrophic factor in BD, involved in hypoth-
eses of impaired neuroplasticity during the illness course 
[95]. Decreased levels of BDNF were found in brain tis-
sue, plasma, and serum samples of BD patients [42, 96]. 
Moreover, it may have a role in the depressive component of 
BD because a negative correlation between levels of BDNF 
and depression score was found in patients [97]. Reduced 
peripheral levels of BDNF were also related to poor cogni-
tive functions in patients [98, 99].
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The prospective Dutch study [68] found a decreased expres-
sion of the BDNF genes in youth at familial risk compared to 
healthy controls, which is supported by serological tests in 
the same population [69]. While they did observe the posi-
tive result, the presence of both contradictory [75, 100] and 
negative [101] outcomes in similar comparisons suggests that 
pathological deficits and compensatory responses may coex-
ist in at-risk youth. This complexity underscores the need for 
further research introducing assessments of emotional states 
to fully understand these dynamics.

Sleep Disturbances

One symptomatologic feature of BD is the delayed sleep-
wake cycle (i.e., later timing of sleep and daily activities) [82, 
102–104]. The chronotype can be characterized by the bio-
synthesis of melatonin throughout the day—less during the 
light phase and more during the night [105]. This is usually 
measured in saliva or blood tests. Higher levels of melatonin 
were observed during the manic episode of BD patients [106] 
and reduced and later melatonin secretion was observed dur-
ing the depressive episode and euthymic phases [105, 107].

Identifiable circadian rhythm change was found in 7 youth 
at familial risk of BD [91], and they experienced an earlier 
saliva melatonin red light melatonin onset after a 200-lux light 
exposure compared with 7 controls [91]. However, this result 
is the opposite of an earlier report with similar but older par-
ticipants [108], which warrants more status-isolated evidence 
to conclude the potential role of melatonin in the at-risk stage 
of BD.

Altered Gut Microbiota

The human gut microbiota consists of microbes which include 
bacteria, archaea, bacteriophages, viruses, and fungi coexisting 
on human body surfaces and cavities [109]. Gut flora modi-
fications might influence our behavior through the gut-brain 
axis, and induce altered neurodevelopment in the at-risk con-
struct of severe mental illness [110]. As a proxy of intestinal 
microbiota, clinical samples are mostly collected from feces 
for sequencing [111]. Higher Bifidobacterium and Oscillibac‑
ter were observed in BD, while no study has investigated the 
gut microbiome in at-risk youth so far. Results from the adult 
first-degree relatives of BD patients showed no group differ-
ence [112–114].

Neuroimaging Biomarkers

Changes in Brain Structure

Magnetic Resonance Imaging

Structural MRI provides images that describe the shape, 
size, and integrity of the ventricles, white matter, and gray 
matter structures of the brain [115]. Parental BD psycho-
pathology has been linked to the altered brain structure of 
their offspring. Compared to controls, youth at familial risk 
for BD showed reduced cortical thickness in parietal, fron-
tal, and temporal areas, thickening of the anterior cingulate 
cortex (ACC), and larger caudate volume [23, 116–119]. 
Recent studies from the Early-BipoLife project also found 
that youths at clinical risk defined by BPSS-P showed a 
higher volume of the medial nucleus of the amygdala [120], 
and a thinner whole brain thickness than controls [121]. 
These findings are generally in line with structural changes 
associated with emotional regulation and reward reported in 
BD [42]. Further, research based on the Pittsburgh Bipolar 
Offspring Study [122] constructed a machine learning model 
elucidating cortical thickness and neural activity predictors 
of future mixed/mania factor score after 29 months, which 
explained 39.8% of the variance (F = 3.71, P = 0.002, clini-
cal variables and age explained 31.5%, and neuroimaging 
variables added 8.3%) [116]. Captured neural predictors 
include lower bilateral parietal cortical thickness, greater 
left ventrolateral PFC (VLPFC) thickness, and lower right 
transverse temporal cortex thickness, emphasizing the role 
of evaluating cortical thickness as a biomarker of BD risk.

Diffusion Tensor Imaging

DTI assesses the structure, myelination, and connectivity 
of white matter based on tissue diffusivity [123]. The frac-
tional anisotropy (FA) measure ranges from 0 to 1, with low 
FA suggesting decreased fiber density, reduced myelination, 
or less directionally organization of fibers [124]. Consist-
ent with the dysconnectivity of front-limbic regions found 
in BD [42, 125], studies in youth offspring and siblings of 
patients with BD showed disease-specific decreased FA in 
tracts relating to emotional regulation and face recognition, 
including the left inferior longitudinal fasciculus (ILF), the 
corpus callosum and the left optic radiations [24, 126]. A 
6-year study focused on a part of the brain called the right 
uncinate fasciculus, which is thought to play a role in emo-
tion regulation. They found that FA of the right uncinate fas-
ciculus was associated with the onset of BD (AUC = 0.859, 
sensitivity = 88.9%, specificity = 77.3%) in 45 youth at both 
clinical and familial risk [127]. Thus, future research is war-
ranted to replicate and extend DTI findings on emotional 
regulation circus; in addition, complementary measures to 
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FA including axial diffusivity, mean diffusivity, and radial 
diffusivity are suggested to provide more sensitive informa-
tion [128].

Changes in Brain Function

Resting‑State fMRI

Resting-state fMRI is aimed at estimating correlations 
between brain regions while no task is performed at the time 
of the scan. Integral measures of functional connectivity are 
extracted from the blood oxygen level-dependent (BOLD) 
signals, indicating the strength of the brain networks [129]. 
Regional measures include the amplitude of low-frequency 
fluctuations, the fractional amplitude of low-frequency fluc-
tuations, and regional homogeneity. Decreased prefrontal-
temporal and cortico-limbic functional connectivity were 
repeatedly found among youth at risk of BD, involving 
the amygdala, hippocampus, ACC, insula, and striatum 
[130–132]. These findings are in line with the abnormali-
ties relating to emotional and cognitive deficits reported in 
BD [133], and with structural alterations mentioned earlier. 
Interestingly, one study showed increased functional con-
nectivity between the posterior cingulate cortex (PCC) and 
clusters in the subcallosal cortex, amygdala, and hippocam-
pus in bipolar offspring [134]. Similar to patterns found in 
depressed patients [135], the findings may represent an over-
activated default mode network [134].

Prospective studies also showed the relation between 
abnormal functional connectivity and the future risk of 
BD. In one trial with a 6-year follow-up, the logistic regres-
sive model on the functional connectivity between the left 
hippocampus and left precuneus, and between right hip-
pocampus and left PCC showed a discriminative capac-
ity for predicting future mood disorder (AUC = 0.76 and 
0.75) as well as BD onset (AUC = 0.77 and 0.82) among 80 
bipolar offspring [136]. Another cohort study did not show 
such predictive ability by baseline functional connectivity 
differences relative to the amygdala and striatal network. 
Instead, among youth offspring of parents with affective 
disorders, youth converted to psychopathology (i.e., meet 
diagnostic criteria for any psychiatric disorder) had lower 
right amygdala-orbitofrontal cortex (OFC) and left ventral 
striatum-dorsal ACC voxel-based functional connectivity 
than resilient at-risk youth (P<0.05) after an average of 4.5-
year follow-up [137].

Task‑Based fMRI

Task-based fMRI also acquires the BOLD signals, and the 
difference between task activity and rest/control activity 
are compared for analyses [138]. Of note, individuals with 
BD show deficits of the front-limbic network in emotional 

and reward processing, and working memory even during 
euthymic periods [139, 140], supporting its state-independ-
ent property as a potential biomarker.

Youth at risk of BD are associated with aberrant brain 
activation. Although no significant behavior difference 
was found in the experimental setting, hyperactivation 
in the amygdala relative to healthy controls was repeat-
edly reported across different emotion processing designs 
[141–145]. Other inconclusive alterations reported in single 
studies were cortical regions including the VLPFC [142], 
the dorsolateral PFC (DLPFC) [146], the middle temporal 
gyrus [146], the SFG [147], the IFG [148], the ACC [141], 
the visual cortical regions [142, 147], the insula [147], and 
the subcortical structure including putamen [149] and hip-
pocampus [147]. Differences in brain activity during reward 
processing are mainly shown in frontal and medial corti-
cal areas between familial at-risk youth and controls [25]. 
Specifically, during reward feedback versus non-reward 
feedback, the OFC [150, 151], the right frontal pole [143], 
and the right posterior insular cortex [152] were reported as 
hyperactivated; the thalamus [153] and the right pregenual 
cingulate cortex [151] were reported as hyperactivated. In 
addition, small studies reported hypoactivation during high 
versus low working memory load in the left VLPFC, the left 
cerebellum, the bilateral insular cortex, the right brainstem, 
and the right parahippocampal gyrus/amygdala [149, 154] 
among youth with familial risk of BD.

Brain areas involved in emotion and reward processing 
were also shown predictive value by 2 prospective studies. 
A study among 29 bipolar offspring found that decreased 
left and right putamen activation (P < 0.05), and decreased 
left putamen and right PCC connectivity during emotion 
processing tasks were correlated with a higher risk of con-
version to a mood or anxiety disorder (HR = 8.28, P < 0.01) 
[155]. In another study with 22 bipolar offspring and 22 
healthy control offspring, interacting effects were found 
between scores of a previously developed risk calculator 
of clinical indicators [156], scores of negative stressful life 
events schedule, and task-based fMRI changes during the 
emotion and reward processing tasks [157].

Changes in Brain Metabolism

Magnetic Resonance Spectroscopy

Magnetic resonance spectroscopy (MRS) detects radio fre-
quency electromagnetic signals and can be applied to nuclei 
such as proton (1H), phosphorus-31 (31P), and fluorine-19 
(19F) [158]. This method measures brain metabolites, such 
as glutamate (Glu), glutamine (Gln), gamma-aminobutyric 
acid (GABA), choline (Cho), creatine (Cr), phosphocreatine 
(PCr), myoinositol (mI), lactate (Lac) and N-acetyl-aspartate 
(NAA) [159]. Glutamatergic hyperactivity decreased Cr and 
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NAA in frontal cortical areas and increased ACC Cho in BD 
patients, with several key neurometabolic alterations appear-
ing state-dependent [159, 160].

The PCr/adenosine triphosphate ratio in the frontal lobe 
detected by 31P-MRS was reduced in 21 youths at familial 
risk for BD compared to controls [161]. Moreover, a longi-
tudinal study reported PCr plus Cr levels in the left VLPFC 
predicted future mood episodes in bipolar offspring (HR = 
0.47, 95% CI 0.27–0.82, P = 0.008) in survival analyses 
[162]. A 1H-MRS study reported decreased myoinositol and 
Cho in the cerebellar vermis of bipolar offspring compared 
to healthy offspring [163]. However, there are studies detect-
ing NAA, Cr, myoinositol, and Cho reported no group dif-
ference [164–167]. Also, a prospective 1H-MRS study with 
a 5-year follow-up reported no group difference in NAA/
Cr and myoinositol/Cr in the DLPFC [168]. Together, the 
current findings may support the reduced PCr as one of the 
indicators of BD genetic risk, suggesting the inability to 
maintain ATP levels during increased energy demand in the 
prodromal stages of BD [169].

Positron Emission Tomography

Positron emission tomography (PET) measures tissue meta-
bolic activity by detecting the metabolism of the injected 
radiopharmaceutical tracer. The most widely utilized radi-
opharmaceutical for brain PET imaging is 18F-fluorodeoxy-
glucose, which quantifies the metabolism of glucose [170]. 
In a study comparing three groups with 60 samples, patients 
with BD demonstrated hypoactive glucose utilization in the 
DLPFC and hyperactive utilization in the amygdala, similar 
patterns were insignificantly shown in adult bipolar siblings 
[131].

Landscape of Current Findings and Combined 
Strategies

Perspective researches showing the predictive value of 
potential biomarkers are concluded in Table 1. Accordingly, 
a prospective predicting model and hints at possible inter-
ventions ahead of solid evidence are suggested, indicating a 
variety of early intervention strategies can be developed and 
tested in at-risk populations (Fig. 1).

Combined biomarkers should be further investigated, as 
they may better characterize complex dysregulated pre-dis-
ease states [171]. For example, a recent study [172] found a 
negative association between methylation profile score with 
the volume of the medial geniculate thalamus (β = − 0.472, 
P = 0.003) among 47 individuals with BD or subthreshold 
BD. The medial geniculate thalamus relays auditory sen-
sory information to the auditory cortex, suggesting that the 
methylation signatures may mediate affected brain structure 

due to environmental sensors [172]. Bipolar PRS was found 
not associated with any brain measures in the same study 
[172] but was shown to be associated with EEG coherence 
in adolescents with BD [173]. Another study combining 
blood tests and structural neuroimaging biomarkers showed 
a divergent relationship between serum BDNF levels and 
regional brain volumes detected by MRI, which is negatively 
correlated among 67 bipolar offspring, while positively cor-
related among 45 healthy controls [100]. A similar trend of 
correlation was also reported in BD patients [174], with a 
possible explanation of the preventive and repairing role of 
BDNF in neural damage. Moreover, a study found increased 
coupling between structural and functional connectivity in 
long-distance connections in offspring of both groups of par-
ents with SCH and BD compared to community control sub-
jects[175], which may reflect higher anatomical constraints 
on functional brain dynamics in at-risk youth [176, 177]. 
Fig. 2 concludes the current landscape of sample sources 
in at-risk youth in finding putative risk biomarkers (Fig. 2).

Conclusions and Future Perspectives

This review summarized pieces of evidence on risk biomark-
ers and their value in predicting conversion among youth 
at familial or (and) clinical risk of developing BD while 
most of the perspectives are still in a proof-of-concept phase. 
Consistent with findings from BD patients, at-risk youth 
repeatedly showed deficits in the front-limbic system and 
dysfunction in brain circuits associated with emotion and 
reward processing [23–25, 119, 130, 132]. Higher bipolar 
PRS [30, 31], epigenetic alterations [37, 38], and elevated 
immune parameters [68, 69, 74] were also detected in 
peripheral samples. A few prospective studies yielded prom-
ising results toward developing risk biomarkers for predict-
ing conversion among at-risk youth. In addition, biomark-
ers with predictive value toward converting to BD include 
serum tests of immune parameters [69], salivary tests of 
daytime cortisol [86], and bipolar PRS [30], as well as vari-
ous neuroimaging methods detecting brain areas associated 
with emotion processing [116, 127, 136, 155, 162]. Apply-
ing these enlightening findings to clinical risk prediction 
is still a long way to go. To further investigate and validate 
the clinical value of the putative biomarkers, future studies 
need to enhance machine learning integration, make clinical 
detection methods more objective, and improve the quality 
of cohort studies.

In addressing problems of misdiagnosis and diagnostic 
delay in BD, different machine-learning models have been 
developed [178, 179]. However, most algorithms were 
developed based on symptomatological data from clini-
cally diagnosed BD patients. Integrated machine-learning 
models including biological indicators are of great value 
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for risk prediction among at-risk youth with less obvious 
symptoms [179, 180]. With the development of machine 
learning-based predictive methods, data from a series of 
omics such as genetics, epigenomics, and radiomics can 
be holistically understood and may contribute to precision 
medicine for psychiatric disorders [181, 182]. For example, 
support vector machines may help classify subjects fulfill-
ing vs. not fulfilling the Bipolar Prodrome Symptom inter-
view and Scale–Prospective (BPSS-P) criterion by data of 
structural imaging [121]. In addition, in an fMRI emotional 

task, depressed and/or anxious youth with genetic risk of BD 
showed different brain connectome patterns than controls, 
which was tested by a case-control classifier using machine 
learning (topological metrics) with an accuracy of 78.4%) 
[147]. Thus, future models should make more efforts to use 
clinically measurable, high-performance multi-dimensional 
biomarkers to improve the efficiency of predicting tools.

To make the study results more reliable and applicable to 
a wider range, clinical detection methods that follow sound 
methodology and standardized processes will promote the 

Fig. 1  The prospective predict-
ing model in at-risk youth and 
hints at possible interventions.

Fig. 2  The landscape of 
sample sources in at-risk youth 
in finding early biomarkers. 
CRH Corticotropin-releasing 
hormone, BDNF Brain-derived 
neurotrophic factor, MRI Mag-
netic resonance imaging, DTI 
Diffusion tensor imaging, MRS 
Magnetic resonance spectros-
copy, PET Positron emission 
tomography.
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selection and implementation of putative biomarkers [183]. 
Despite the remaining controversy in the representativeness 
of some biomarkers, efforts have been made to compare 
in vitro diagnostic techniques and instant test products for 
peripheral biomarkers in BD (e.g., cortisol, melatonin, inter-
leukins, and oxidative stress biomarkers) [184]. This study 
could pave the way for creating and standardizing future 
products that can help in detecting BD at early stages.

Finally, larger cohorts and new perspectives on research 
are still warranted in this issue of great public health signifi-
cance. Existing cohorts (e.g., the Bipolar Offspring Study 
(BIOS) [122, 185] founded by the National Institute of Men-
tal Health, the Longitudinal Assessment of Mania Symp-
toms (LAMS) study [186–188], the Recognition and Early 
Intervention on Prodromal Bipolar Disorders (REI-PBD) 
study [189] and the Danish High Risk and Resilience Study 
[190]) all contributed a lot to the recognition and evalua-
tion of early biomarkers for BD. Besides, considerable data 
shows stressful life events seem to affect multiple biological 
processes in youth [191–193], and to precede the occurrence 
of BD [194–196], and youth offspring of parents with BD 
were exposed to stress as early as infancy [197]. The ongo-
ing Lausanne-Geneva cohort and the Early-Bipolife study 
aim to assess combined markers and environmental factors 
with a clear definition of the at-risk states [94, 198, 199]. 
These cohorts may provide a rich source of data and insights 
that can guide the direction of future research in BD risk 
identification, which will hopefully advance the pathological 
interpretation and biotype identification in the early courses 
of BD [200, 201].
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