
Vol.:(0123456789)1 3

Neurosci. Bull. July, 2024, 40(7):905–920 
https://doi.org/10.1007/s12264-024-01184-4

ORIGINAL ARTICLE     

www.neurosci.cn
www.springer.com/12264

SMART (Splitting‑Merging Assisted Reliable) Independent 
Component Analysis for Extracting Accurate Brain Functional 
Networks

Xingyu He1 · Vince D. Calhoun2 · Yuhui Du1,2  

Received: 30 June 2023 / Accepted: 8 December 2023 / Published online: 15 March 2024 
© Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences 2024

Abstract Functional networks (FNs) hold significant 
promise in understanding brain function. Independent com-
ponent analysis (ICA) has been applied in estimating FNs 
from functional magnetic resonance imaging (fMRI). How-
ever, determining an optimal model order for ICA remains 
challenging, leading to criticism about the reliability of FN 
estimation. Here, we propose a SMART (splitting-merging 
assisted reliable) ICA method that automatically extracts 
reliable FNs by clustering independent components (ICs) 
obtained from multi-model-order ICA using a simplified 
graph while providing linkages among FNs deduced from 
different-model orders. We extend SMART ICA to multi-
subject fMRI analysis, validating its effectiveness using 
simulated and real fMRI data. Based on simulated data, 
the method accurately estimates both group-common and 
group-unique components and demonstrates robustness to 
parameters. Using two age-matched cohorts of resting fMRI 
data comprising 1,950 healthy subjects, the resulting reliable 
group-level FNs are greatly similar between the two cohorts, 
and interestingly the subject-specific FNs show progressive 
changes while age increases. Furthermore, both small-scale 
and large-scale brain FN templates are provided as bench-
marks for future studies. Taken together, SMART ICA can 

automatically obtain reliable FNs in analyzing multi-subject 
fMRI data, while also providing linkages between different 
FNs.

Keywords Independent component analysis · Functional 
magnetic resonance imaging · Brain functional networks · 
Clustering · Multi-model-order

Introduction

Functional networks (FNs) derived from functional mag-
netic resonance imaging (fMRI) data represent integrative 
and interactive relations among different brain regions [1] 
and are promising in disclosing information about human 
brain function [2]. Many studies have explored brain FNs in 
healthy populations [3–5] and in the mechanisms of mental 
disorders [6–9] since FNs play a pivotal role in elucidating 
cognitive activities in the human brain and identifying reli-
able biomarkers at the network level. Therefore, developing 
reliable methods of brain FN analysis is particularly critical 
for maximizing the robustness and generalizability of the 
findings on brain FNs.

Although different approaches have been used to extract 
brain FNs [10, 11], data-driven independent component 
analysis (ICA) is one of the most widely applied methods 
for understanding healthy brain function [12, 13] as well as 
exploring brain disorders [14–17]. Relative to hypothesis-
based methods, such as seed-based or region-of-interest-
based methods, ICA does not require a priori determination 
of seeds or brain regions. Spatial ICA decomposes fMRI 
data into spatially independent components, some of which 
represent meaningful FNs while others could be artifacts. 
Using spatial ICA, different components are modeled to 
have no or less spatial overlap, measured by independence, 
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to obtain FNs that handle different functions. In practice, 
ICA also can help explore intricate functional associations 
as a certain brain region may be simultaneously involved in 
the operation of multiple brain functions [18, 19]. Although 
ICA has been successful in extracting networks, it has some 
inherent shortcomings in extracting FNs, especially in terms 
of the determination of model order (i.e., the number of 
components). The uncertainty of the model order hinders 
the capability of ICA in FN extraction and subsequent explo-
ration of biomarkers to some extent.

Indeed, some early studies have suggested estimating the 
number of components in ICA using information theoretic 
criteria (ITC) [20], such as the minimum description-length, 
Akaike’s information, and Bayesian information criteria. 
Based on the finite memory length and the autoregressive 
model, entropy-rate-based model order selection meth-
ods using ITC have been proposed to utilize all available 
subjects’ data [21]. Some studies have also used informa-
tion theory methods to estimate the model order of ICA in 
fMRI applications [22–24]. However, the estimation accu-
racy of these methods is compromised by the presence of 
complex noise structures [25]. Despite various methods 
being proposed, their results may vary significantly, and no 
method can guarantee an accurate estimate of the number 
of components.

A few studies avoid setting a specific model order of ICA 
but estimate relatively robust FNs by changing the param-
eter settings and the data input. Kuang et al. estimated FNs 
with different model orders and selected the ‘best’ result 
that fit well with the reference networks [26]. However, the 
method relies heavily on the selection of reference networks. 
A method called Snowball ICA first generates seed compo-
nents by applying ICA to randomly selected subjects’ fMRI 
data and then updates the seed components iteratively by 
adding different blocks of fMRI data until all subjects’ data 
are used [27]. Although the method does not require the 
input of the component number, it is sensitive to the genera-
tion of the seed components and the organized arrangement 
of fMRI blocks. Furthermore, previous methods only focus 
on extracting one group of FNs, without providing any infor-
mation to depict the relationship among FNs of different 
scales. Another study suggests that FN connectivity between 
FNs obtained from multi-model-order ICA can provide more 
intriguing findings than single-model-order ICA [28]; how-
ever, it only aggregates all FN connectivity strengths from 
different orders and does not truly combine them.

In this paper, we propose a method, named SMART 
(splitting-merging assisted reliable) ICA, which achieves 
the automatic estimation of reliable FNs without the need 
to require a specific model order and meanwhile provides 
the linkage relationship among networks with different 
scales. The main contributions are as follows: (1) Our 
method effectively combines a clustering technique with 

ICA to automatically extract reliable FNs from multi-
model-order ICA results, which facilitates the use of 
ICA in brain FN analysis since determining an optimal 
model order is often difficult for traditional ICA. (2) We 
develop a splitting-merging clustering approach that not 
only iteratively identifies the optimal cluster centers dur-
ing the splitting-merging process but also provides the 
linkage information among the independent components 
(ICs) obtained from different model orders by making full 
use of the FNs constructed in a tree structure. Different 
from previous studies, our method allows for a compre-
hensive understanding of the FNs under various model 
orders. (3) We propose a scheme to extend SMART ICA 
to multiple-subject analysis and validate our method using 
both simulated and real fMRI data. Using multiple simu-
lated datasets with different properties, our method out-
puts accurate subject-specific FNs and is insensitive to 
the parameter setting. When applied to real fMRI data, 
SMART ICA yields highly consistent FNs between two 
age-matched healthy cohorts. Interestingly, our method 
detects subtle and progressive functional changes in the 
brains of a healthy population associated with increasing 
age. (4) Based on the large-sample fMRI data from 1,950 
healthy subjects, we construct reliable FN templates at 
both the small- and large-scale, which provide an impor-
tant benchmark for future FN studies using fMRI data.

Materials and Methods

Here, we provide a detailed description of the SMART 
ICA method and its evaluation process. We propose a 
splitting- and merging-assisted clustering algorithm in 
conjunction with a graph simplification technique to auto-
matically cluster ICs from multi-model-order ICA runs 
on fMRI data. SMART ICA not only yields reliable and 
meaningful FNs represented by cluster centers but also 
establishes linkage relationships between different-scale 
ICs resulting from multi-model-order ICA. It is worth 
pointing out that SMART ICA applies to both individual-
subject and multi-subject data analyses. It is known that 
ICA on individual-subject data may result in ICs with a 
random order [29], and a common solution is to obtain 
reliable group-level ICs and then estimate subject-specific 
ICs based on them to facilitate the analysis of multi-sub-
ject data in fMRI studies. So, in the following, we primar-
ily describe the extension of SMART ICA to the multi-
subject fMRI data analysis. All experiments in this paper 
were performed on MATLAB 2018a and 2022a.
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Our SMART (Splitting‑Merging‑Assisted Reliable) ICA 
Method

As shown in Fig. 1A, multi-subject fMRI data analysis using 
SMART ICA primarily includes four steps. First, initial group-
level ICs are obtained by applying ICA [30] to the entire multi-
subject fMRI data using different model orders. Second, we 
apply the proposed splitting- and merging-assisted clustering 
technique to cluster the initial group-level ICs, resulting in reli-
able group-level ICs. Simultaneously, this process establishes 
linkage relationships between the initial group-level ICs. Third, 
artifact-related ICs are removed from reliable group-level ICs, 
retaining reliable group-level FNs. Finally, subject-specific FNs 
are computed by applying group information-guided ICA (GIG-
ICA) [14, 31] with the guidance of reliable group-level FNs.

(1) ICA with Different Model Orders

In step 1, multi-model-order ICA runs on the fMRI data of 
multiple subjects (e.g., P subjects) are performed to obtain the 
initial group-level ICs. Using each model order (i.e., a specific 
component number N ), we conduct the following procedure 
for obtaining group-level ICs. Firstly, we transform the p th 
subject’s fMRI data into a matrix Xp ∈ ℝ

T×M , where T repre-
sents the number of time points and M represents the number 
of voxels within a common brain mask. Based on the data of 
each subject ( Xp, p = 1, 2,… ,P) , the subject-level principal 
component analysis (PCA) is conducted for dimensionality 
reduction along the time point direction. Then, the reduced 
data of all subjects are concatenated along the time point 
direction and the group-level PCA is carried out for a further 
dimensionality reduction, resulting in a matrix H ∈ ℝ

N×M . 
Here, N is the number of components. Finally, the ICA (Info-
max algorithm in this paper) [32, 33] with an additional stabi-
lization technique [34] is implemented to decompose H into 
N ICs. ICA is formulated by Eq. (1).

(1)H ≈ Q × S,

here, Q ∈ ℝ
N×N denotes the mixing matrix, and S ∈ ℝ

N×M 
denotes the group-level ICs. Our method sets N to different 
numbers to represent different model orders, and a total of 
g initial group-level ICs are obtained across different model 
orders.

(2) Splitting- and Merging-Assisted Clustering

In step 2, we introduce a novel splitting- and merging-
assisted clustering algorithm combined with a graph sim-
plification method to group all g initial group-level ICs into 
distinct clusters. All cluster centers are used to represent 
reliable group-level ICs. As illustrated in Fig. 1B, a graph 
with all initial group-level ICs as nodes is constructed and 
then simplified to a tree based on a previous method [35]. A 
forest is initialized with this tree, and an iterative splitting 
and merging process is done until the structures of all trees 
in the forest stabilize. After that, each tree in the forest is 
regarded as a cluster whose center is regarded as one reliable 
group-level IC, and the linkage relationships between initial 
group-level ICs within each tree are captured. The details of 
the clustering method are stated as follows.

Here, we employ a simplified tree-based community 
detection (STCD) method [35] to transform the intricate 
relationships among the initial group-level ICs into a sim-
plified tree structure, serving as the foundation for our 
clustering process. We begin with g initial group-level ICs 
and create graph G to depict their relationships. Regarding 
G = < V ,E,A > , the node set V  encompasses all initial 
group-level ICs, E signifies the set of edges between the 
ICs, and A represents the adjacent matrix of G . Hereafter, ⟨
vi, vj

⟩
∈ E represents the edge between IC vi and IC vj , and 

Aij that denotes the (i, j) th element of A contains the absolute 
value of the Pearson correlation coefficient between IC vi 
and IC vj . Next, we mine the intricate relationships among 
all initial group-level ICs to simplify the graph G by the 
STCD method. For each node (i.e., each IC), we utilize the 
edges between it and other nodes (i.e., other ICs) to represent 
the properties of the node, which are then used to quantify 

Fig. 1  The pipeline of SMART 
ICA. A The pipeline of our 
method, which primarily 
includes four steps. B Step 2 in 
more detail. Here, the simplified 
tree-based community detection 
(STCD) algorithm can simplify 
a complex graph structure into 
a tree-like structure. ICA, inde-
pendent component analysis; 
fMRI, functional magnetic 
resonance imaging; ICs, 
independent components; FNs, 
functional networks.
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the relationships between any two ICs. As such, the similar-
ity �

(
vi, vj

)
 between IC vi and IC vj is then formalized as:

This calculates the similarity between two ICs on a global 
scale by taking into account their relations with other ICs, 
rather than solely focusing on the similarity between the two 
ICs themselves. After that, we evaluate how each IC leads or 
follows other ICs to further extract their important relations. 
For the IC vi , its leading degree is computed by:

Here, the degree of IC vi [i.e., D
(
vi
)
 ] is defined as the sum 

of the absolute values of the Pearson correlation coefficients 
between the IC vi and all other ICs, and is formulated by:

The following degree of IC vi over IC vj is defined as:

Based on the leading degree and following degree of each 
IC, a new graph with a tree structure G� = < V �,E�,A�

> is 
established by:

A forest, which is composed of all initial group-level ICs and 
their relationships, is initialized using the tree structure G′ . 
Inspired by a previous study [36], we propose the follow-
ing splitting and merging method to iteratively segment the 
forest into multiple stable trees. Each tree within the forest 
corresponds to a cluster and the cluster center ( Ci ) of the i th 
cluster is defined as the IC with the maximum degree sum 
according to the tree structure as formulated in Eq. (7).

(2)�
�
vi, vj

�
=

∑
vz∈V ,vz≠vi,vz≠vj

AizAjz.

(3)L
�
vi
�
=

∑
D(vj)<D(vi),vj∈V ,vj≠vi

𝛿
�
vi, vj

�
.

(4)D
�
vi
�
=

∑
vj∈V ,vj≠vi

Aij.

(5)F
(
vi, vj

)
=

{
�(vi,vj)
D(vi)

, if L
(
vj
)
≥ L

(
vi
)

0, otherwise
.

(6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

V � = V ,

E� =

��
vi, vq

����
F
�
vi, vq

�
= max

vj∈V
F
�
vi, vj

�
,

vi ∈ V

�

A� =

�
A�
ij
� A

�
ij
= F

�
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�
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�
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�
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= 0, otherwise
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⎪

⎪
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⎪

⎪

⎭

,

where A′yx represents the (y, x) element of the A′ and Vi rep-
resents the set of all ICs in i th tree.

Specifically, for the i th tree, a splitting operation is 
conducted if its intra-cluster distance di

intra
 exceeds the 

half of current average inter-cluster distance dmean (i.e., 
di
intra

> dmean∕2 ). The average inter-cluster distance and 
the intra-cluster distance are defined by Eqs (8) and (9), 
respectively.

where o represents the current cluster numbers and d
(
Ci,Cj

)
 

represents the distance between Ci and Cj.

where the intra-cluster distance ( di
intra

 ) of the i th tree is 
regarded as the sum of the distance between the cluster 
center Ci and the nearest IC (except for itself) as well as 
the distance between the cluster center and the farthest IC. 
Here, the distance between any two ICs (such as IC vx and 
IC vy ) is defined as:

where corr(⋅) represents the Pearson correlation coefficient, 
and |⋅| represents absolute value operation.

As for the splitting process, our method searches through 
the forest to identify trees that satisfy the splitting condition. 
Subsequently, it divides each of these trees into two separate 
trees by eliminating the edge with the minimum following 
degree. This process continues until all trees in the forest no 
longer meet the splitting condition.

Following the completion of the splitting operation, we 
proceed with the merge operation. The merging condition 
of the i th and j th trees is that the distance between Ci and 
Cj is less than half of the average inter-cluster distance [i.e., 
d
(
Ci,Cj

)
< dmean∕2 ].  we identify candidate pairs of trees 

that meet the merging condition. Subsequently, our method 
searches all candidate pairs to merge the paired trees with 
the minimum d

(
Ci,Cj

)
 into a new tree using the STCD 

method.
The splitting and merging operations described above are 

conducted iteratively until the structures of all trees reach 
a stable state. Consequently, we assign ICs within the same 
tree using the same label. The linkage relationships between 
the initial group-level ICs included in each tree are retained 
and each cluster center is regarded as one reliable group-
level IC.

(8)dmean =

⎧
⎪⎨⎪⎩

2

o×(o−1)

o∑
i=1

o∑
j=i+1

d
�
Ci,Cj

�
, if o > 1

0, if o = 1

,

(9)di
intra

= max
vx∈V

i

{
d
(
Ci, vx

)}
+ min

vy≠Ci,vy∈V
i

{
d
(
Ci, vy

)}
,

(10)d
(
vx, vy

)
= 1 −

|||corr
(
vx, vy

)|||,
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(3) Removal of Group-level Artifact ICs

In step 3, based on the reliable group-level ICs yielded from 
step 2, the artifact ICs are removed and the remaining reli-
able group-level ICs are taken as reliable group-level FNs. 
For the simulated data, we propose a method to detect arti-
fact ICs by measuring the smoothness of reliable group-level 
ICs reflected by the number of Maximally Stable Extremal 
Regions (MSERs) [37–39]. Here, we retain those ICs with 
< 150 MSERs, while removing ICs with a higher count. 
For the real fMRI data, due to the small number of reliable 
group-level ICs, we manually remove the artifact ICs, such 
as the ICs with peak activation located in white matter and 
cerebrospinal fluid [40, 41].

(4) Estimation of Subject-specific Functional Networks 
Using the Group Information-Guided ICA (GIG-ICA) 
Method

In step 4, GIG-ICA [31] with reliable group-level FNs as 
the guide information is performed based on the fMRI data 
of each subject, which results in subject-specific FNs and 
related time courses (TCs). While various methods, such 
as PCA-based back-reconstruction [30] and dual regression 
[42], can be used to estimate subject-specific FNs, GIG-
ICA [43] stands out for its superior performance due to its 
optimization of the independence of subject-specific FNs. 
Consequently, we employ GIG-ICA as the method of choice 
for estimating individual FNs and corresponding TCs here.

Validation Using Simulated Data

In this section, we evaluate SMART ICA using the simu-
lated data. Two groups of simulated data with both common 
and unique real spatial mapping (SMs) to evaluate if our 
SMART ICA method can extract accurate subject-specific 
FNs from data with different properties. Six groups of data 
with different numbers of real SMs were simulated to evalu-
ate the sensitivity of SMART ICA for the parameter settings.

(1) Evaluation of SMART ICA Based on Simulated Data with 
Both Common and Unique SMs

To test the utility of the SMART ICA method, we designed 
experiments using two groups of simulated data with both 
group-common and group-unique SMs, applying SMART 
ICA and assessing its performance. Three main aspects were 
evaluated: the clustering capability for the initial group-level 
ICs, the ability to capture linkage information between dif-
ferent-scale ICs, and the similarity between the extracted 
subject-specific FNs and the real SMs.

Two groups (Group 1 and Group 2) of simulated data 
with both common and unique SMs were generated via the 

SimTB toolbox [44]. Each group included 100 subjects, 
while each subject’s data were generated using 8 SMs with 
small spatial overlaps and related TCs (with 300 time points 
for each TC). Among the 8 SMs, a common template was 
used for each of the six SMs, and different templates were 
used for each of the other two SMs to simulate the variabil-
ity between the two groups. Each SM had 148 × 148 vox-
els. To simulate the subject variation, the x-transition and 
y-transition with the mean value = 0 voxel and SD = 1 voxel, 
the rotation with the mean value = 0° and SD = 1°, as well 
as the spread with the mean value = 1 and the SD = 0.01 
were added for each SM. Finally, additional noise (with the 
signal-to-noise ratio = 1) was also added to the two groups 
of simulated data.

Based on the generated simulated data with both com-
mon and unique SMs, we conducted the following process. 
In step 1, for each given model order N , ICA was applied to 
all data of the two groups to obtain initial group-level ICs. 
In the experiment, N was set from 4 to 14 with a step of 2, 
so g (54) initial group-level ICs were obtained. For step 2, 
our clustering method clustered g initial group-level ICs to 
obtain reliable group-level ICs. In step 3, artifact ICs were 
removed from the reliable group-level ICs, resulting in reli-
able group-level FNs. In step 4, based on the remaining reli-
able group-level FNs and the simulated data of each subject, 
GIG-ICA was applied to compute subject-specific FNs and 
corresponding TCs.

After that, we assessed the performance of the SMART 
ICA method from three perspectives. We initially assessed 
whether the initial group-level ICs were effectively grouped 
using the proposed clustering method. Effective cluster-
ing tends to exhibit greater intra-cluster compactness and 
inter-cluster separability. In our work, the absolute values of 
Pearson correlation coefficients between initial group-level 
ICs that were sorted according to the cluster labels were 
calculated to demonstrate the intra-cluster and inter-cluster 
similarity. We also calculated the mean of the absolute val-
ues of the Pearson correlation coefficients between paired 
initial group-level ICs for each tree to measure intra-cluster 
compactness. Moreover, we calculated the absolute values of 
Pearson correlation coefficients among reliable group-level 
FNs to explore whether they are unique.

SMART ICA had an advantage in capturing linkage rela-
tionships (i.e., following and being followed) between dif-
ferent ICs. Therefore, we visualized the linkages between 
ICs within each cluster to explore the relationships between 
ICs obtained under different model orders. It was expected 
that each cluster would contain similar ICs obtained under 
different model orders.

Since data from two groups were simulated using both 
group-common and group-specific SMs but were analyzed 
as a whole, we evaluated the similarities between subject-
specific FNs/TCs and real SMs/TCs to verify our method in 
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capturing subject variability. We first matched the subject-
specific FNs and ground-truth SMs of all subjects using 
a greedy spatial correlation analysis [14] according to the 
absolute value of the Pearson correlation coefficient between 
them. Then, the Pearson correlation coefficients between 
the matched FNs/TCs and SMs/TCs were used to represent 
similarities. Finally, the similarities of FNs/TCs across all 
subjects were displayed using boxplots.

(2) Evaluation of SMART ICA Based on Simulated Data with 
Different Numbers of SMs

To further validate the sensitivity of SMART ICA for the 
parameter settings, we designed experiments using six 
groups of simulated data with varying numbers of SMs, 
applying SMART ICA and assessing its performance. Six 
groups of simulated data with varying numbers of SMs 
were generated via the SimTB toolbox [44] and the number 
of real SMs in the six groups was 4, 6, 8, 10, 12, and 14, 
respectively. Each group included 50 subjects and other data 
generation parameters were the same as those in the above 
section (1).

Based on the simulated data generated with varying 
numbers of SMs, we conducted independent experiments 
using the same parameter setting. For each of the six groups 
of simulated data, we separately applied the SMART ICA 
method to obtain initial group-level ICs, reliable group-level 
ICs, reliable group-level FNs, and subject-specific FNs/TCs. 
It is worth pointing out that the same model order set includ-
ing 4, 6, 8, 10, 12, and 14 was used for the six groups of data 
while performing the multi-model-order ICA runs in the 
SMART ICA. We were interested in investigating whether 
SMART ICA can work well under different conditions.

To assess the sensitivity of the method to parameter set-
tings, we primarily focused on the number of reliable group-
level FNs, as well as the similarities between subject-spe-
cific FNs/TCs and real SMs/TCs. The closer the number 
of reliable group-level FNs is to the number of real SMs, 
and the higher the similarity between subject-specific FNs/
TCs and real SMs/TCs, the less sensitive SMART ICA is to 
the parameter settings. For reliable group-level FNs of each 
group, we calculated the numbers of reliable group-level ICs 
and FNs and summarized them. For subject-specific FNs/
TCs of each group, we matched them with the true SMs/TCs 
using a greedy spatial correlation analysis [14] according 
to the absolute value of the Pearson correlation coefficient 
between them, obtaining the similarities between extracted 
FNs/TCs and real SMs/TCs for each subject. We averaged 
the similarities of all FNs/TCs within a subject to represent 
the FN/TC similarity of the subject. Here, we used boxplots 
to demonstrate the FN/TC similarity for all subjects across 
all six groups.

Validation Using fMRI Data

Here, we evaluated SMART ICA using real fMRI data 
of large-sample healthy cohorts. Two groups of fMRI 
data collected from healthy populations with similar 
demographic characteristics were used to test the repro-
ducibility of the results using our method. Importantly, 
the low-model-order and high-model-order ranges were 
set separately to perform SMART ICA, aiming to pro-
vide both small- and large-scale FNs for validation. We 
assessed the clustering performance of our method on the 
initial group-level ICs and the ability of our method to 
capture linkage relationships between different-scale ICs. 
In addition, we verified the correspondence and specific-
ity of estimated FNs across all subjects, with an interest 
in investigating if our method can identify subtle changes 
in FNs along with increasing age.

(1) Materials

We analyzed the fMRI data of the subjects aged from 45 to 
55 in the UK BioBank project [45]. UK Biobank data has 
approval from the North West Multi-Centre Research Ethics 
Committee as a Research Tissue Bank (please see https:// 
www. ukbio bank. ac. uk/ learn- more- about- uk- bioba nk/ about- 
us/ ethics for details). This research has been conducted with 
the UK Biobank Resource under the project: Application ID: 
34175, Applicant PI: Yuhui Du. For each subject’s data, we 
removed the first 10 time points and then applied the rigid 
body motion correction to correct the subject’s head motion, 
followed by the slice-timing correction to account for the 
timing difference in slice acquisition. fMRI data were sub-
sequently warped into the standard Montreal Neurological 
Institute space using an echo planar imaging template and 
were then resampled to 3 mm × 3 mm × 3 mm isotropic 
voxels. The resampled fMRI images were further smoothed 
using a Gaussian kernel with a full width at half maximum 
of 6 mm. Finally, we carried out strict quality control to only 
select the subjects with mean head translation motion < 1 
mm and mean head rotation < 1°.

The NeuroMark toolbox, available at http:// www. yuhui 
du. com/, was used to generate a common brain mask for 
ICA. First, using the volume at the first time point, a brain 
mask for each subject was calculated by setting voxels show-
ing values > 90% of the mean value in the whole brain to 1. 
Then, a group mask was yielded by setting voxels included 
in > 90% of the individual masks to 1. Third, the correla-
tions between the group mask and the individual mask for 
each subject were calculated. The correlations were cal-
culated using voxels within the top 10 slices of the mask, 
within the bottom 10 slices of the mask, and within the 
whole mask, resulting in three correlation values for each 
subject. If a subject had three correlations greater than the 

https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics
https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics
https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics
http://www.yuhuidu.com/
http://www.yuhuidu.com/
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specified thresholds (0.75, 0.55, and 0.80), we included the 
subject for further fMRI analysis. Finally, the common brain 
mask was computed based on the selected subjects’ masks.

Through this processing, the remaining subjects were 
divided into two groups (Group 1 and Group 2), each group 
containing 975 subjects. Between the two groups, there 
were no significant differences in age (P = 0.9776) and 
head motion (translation: P = 0.7171, rotation: P = 0.5979) 
using the two-sample t-test, and no significant differences 
in gender (P = 0.9636) using the χ2 test. In addition, for all 
subjects in both groups, the fMRI acquisition was identi-
cal (repetition time: 0.7350 s, slice number: 64, slice size: 
88 × 88, time point: 490).

(2) Functional Network Extraction Using SMART ICA Based 
on Real fMRI Data

We applied SMART ICA separately to the data of Group 
1 and Group 2 to evaluate the reproducibility of results for 
both the group-level and subject-specific FNs. According to 
previous research [46, 47], small-scale FNs, each of which 
often includes many spatially remote brain regions, can be 
extracted using a small number of components, while large-
scale FNs, each of which tends to be a small brain region, 
can be obtained using a relatively large number of compo-
nents. Therefore, we divided the model order range into low 
(model orders = 20, 25, 30, and 35) and high (model orders 
= 85, 90, 95, and 100) numbers for separate validation. In 
the following, we take the low-model-order range as the 
instance for the explanation. In step 1, ICA was applied to 
the fMRI data to obtain initial group-level ICs for each given 
N (20, 25, 30, or 35), resulting in a total of 110 initial group-
level ICs. In step 2, our clustering method was carried out to 
cluster 110 initial group-level ICs to obtain reliable group-
level ICs. Since reliable group-level ICs not only consist of 
meaningful FNs but also involve some meaningless artifact 
ICs, in step 3, artifact ICs were removed from the reliable 
group-level ICs, and the remaining ICs were regarded as 
reliable group-level FNs. After that, we provided the linkage 
information between different-scale initial group-level ICs 
for each remaining cluster. In step 4, by taking the reliable 
group-level FNs as guidance, GIG-ICA was used to estimate 
the subject-specific FNs.

(3) Evaluation of SMART ICA Based on Results of Real fMRI 
Data

Based on the real fMRI data, in addition to the evaluation 
of the validity of the proposed clustering method and the 
ability to capture the linkage relationships between initial 
group-level ICs, we also evaluated the reproducibility of 
results obtained from Group 1 and Group 2. Specifically, 
for both low-model-order and high-model-order, we assessed 

whether the reliable group-level FNs from the two groups 
were similar in quantity and quality. Here, two groups of 
reliable group-level FNs were matched by performing 
greedy spatial correlation analysis using the Pearson cor-
relation coefficient [14].

Using real fMRI data, we were also interested in assess-
ing whether the FN correspondence and specificity were 
well preserved. For this goal, we used t-distributed stochas-
tic neighbor embedding (t-SNE) [48–50] for the projection 
of all networks of all subjects into a two-dimensional space. 
To further investigate whether the resulting FNs can capture 
subject specificity well, we investigated the group differ-
ences in the subject-specific FNs between different sets at 
different ages. For each group (Group 1 or Group 2), all 
the subjects were divided into 5 sets: 45–47 (benchmark), 
48–49, 50–51, 52–53, and 54–55 years. Subsequently, 
for each FN, we evaluated the group differences between 
 Setbenchmark and  Setother (e.g.,  Set48–49) for each important 
voxel using a two-sample t-test. Here, the voxels that passed 
a right-tailed one-sample t-test (P < 0.05 with Bonferroni 
correction) based on all subjects were regarded as important 
voxels. We then summarized the T-values with P < 0.05 in 
two-sample t-tests and visualized the differences (for T-value 
> 0 and T-value < 0 separately) between different age sub-
groups of all FNs by using boxplots.

(4) Constructing Brain Functional Network Templates

Standardized brain functional templates are recognized for 
their utility in facilitating large-sample analyses and enhanc-
ing the robustness of findings. Here, we provide FN tem-
plates of both small- and large-scale to promote the unified 
and standardized analysis of fMRI data. Specifically, for 
both the low-model-order and the high-model-order ranges, 
we matched the reliable group-level FNs from Group 1 and 
Group 2 using a greedy spatial correlation analysis [14] 
according to the Pearson correlation coefficient. Pairs of 
FNs, where the Pearson correlation coefficient exceeded 
0.5, were averaged to construct one FN template. For each 
template, we associated it with the Automated Anatomical 
Atlas 3 (AAL3) [51] using the Intelligent Analysis of Brain 
Connectivity (IABC) toolbox available at http:// yuhui du. 
com/. This process allowed us to identify the primary brain 
regions associated with each FN. The relevant brain regions 
were identified by calculating the overlap between the brain 
regions of AAL3 and the activated regions in the developed 
templates.

Code Availability

The code of SMART ICA is integrated into the toolbox 
IABC, which is accessible at http:// www. yuhui du. com/.

http://yuhuidu.com/
http://yuhuidu.com/
http://www.yuhuidu.com/
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Result

Results from Simulated Data

(1) Results Based on Two Groups of Simulated Data with 
Group-common and Group-unique SMs

With the two groups of simulated data with group-com-
mon and group-unique SMs, we applied ICA using various 
model orders, resulting in 54 initial group-level ICs. Then, a 
graph constructed based on those initial group-level ICs was 
divided into 10 trees representing 10 clusters, of which the 

cluster centers were regarded as the reliable group-level ICs. 
In our results, all 10 reliable group-level ICs were retained 
as reliable group-level FNs, suggesting that the number 
of estimated reliable group-level FNs was the same as the 
number of real SM templates (six common and four unique 
templates) in the two groups.

Furthermore, the low correlation coefficients (Fig. 2A) 
among the 10 reliable group-level FNs indicate that each FN 
has a unique pattern. Fig. 2B shows the correlation matrix of 
the related 54 initial group-level ICs that are sorted accord-
ing to cluster labels. The high intra-cluster similarity and 

Fig. 2  The correlation matrix 
between reliable group-level 
FNs and the correlation matrix 
between initial group-level ICs 
based on simulated data with 
group-common and group-
unique SMs. A Correlation 
matrix of 10 reliable group-level 
FNs. B Correlation matrix of 54 
initial non-artifact group-level 
ICs after sorting according to 
the cluster labels. The black 
lines represent the division of 
the different clusters.

Fig. 3  Tree structures of the resulting clusters corresponding to 10 
reliable group-level FNs. In each subfigure, SIntra-cluster represents the 
intra-cluster similarity. The 2D images show the initial group-level 
ICs. Below each 2D image, there is Number 1-Number 2, where 
Number 1 represents the ID of the IC in all initial group-level ICs, 

and Number 2 represents the model order of the IC. For the reliable 
group-level FN in each cluster, we display the Number 1-Number 2 
in red. The 10 trees in this figure correspond to the 10 corresponding 
clusters in Fig. 2B.
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low inter-cluster similarity provide strong evidence for the 
effectiveness of the proposed clustering method.

As summarized in Table S1, among the 10 reliable 
group-level FNs, 2, 4, and 4 FNs came from the ICA runs 
of which the model order was 6, 8, and 10, respectively, 
meaning that multi-model-order results were jointly used 
in our method. In Fig. 3, we present linkage information 
between different-scale ICs for each cluster, including 
intra-cluster similarity, the initial group-level ICs, the IDs 
of the ICs, the model orders corresponding to the ICs, and 
the following degree between ICs to depict the linkage 
relationships within each cluster. Our findings indicate that 
our method effectively captured the linkage relationships 
among results from different model orders.

The subject-specific FNs/TCs were computed based on 
the reliable group-level FNs, resulting in 8 FNs for each sub-
ject by the match with real SMs. Fig. 4 illustrates that the 
similarities between subject-specific FNs/TCs and real SMs/
TCs across all subjects are greater than 0.9. Moreover, we 
show the FNs and TCs for one example subject of each group 
in Fig. S1. Taken together, we found that both the common 
and unique SMs were perfectly extracted and the similarities 
between the estimated FNs/TCs and real SMs/TCs were high 
for all subjects, which supports the conclusion that the pro-
posed method-SMART ICA can effectively and accurately 
identify subject-specific FNs for the simulated data. 

(2) Results Based on Six Groups of Simulated Data with 
Different Numbers of SMs

Based on six groups of simulated data with different 
numbers of SMs (numbers of SMs: 4, 6, 8, 10, 12, and 14), 
our experimental results showed that our method effectively 
extracts reliable group-level FNs and subject-specific FNs 
that are highly similar to the true SMs for all six groups. The 
numbers of reliable group-level ICs and reliable group-level 
FNs for six groups of simulated data are listed in Table S2. 
Fig. S2 illustrates that all mean similarities between subject-
specific FNs/TCs and real SMs/TCs for all subjects across 

all six groups are greater than 0.95. The above results sup-
port the conclusion that the SMART ICA is insensitive to 
the true number of SMs and the model order range setting.

Results from fMRI Data

By performing experiments using the real fMRI data, we 
obtained the initial group-level ICs, the reliable group-level 
FNs, and the subject-specific FNs for both Group 1 and 
Group 2 as well as for both the low-model-order and the 
high-model-order.

For Group 1, under the low-model-order range, 32 reli-
able group-level ICs were obtained by clustering 110 initial 
group-level ICs using our method. Subsequent removal of 
artifact ICs resulted in 24 reliable group-level FNs, with 76 
corresponding to initial group-level ICs. Similarly, for Group 
2, 33 reliable group-level ICs were obtained first, and then 25 
reliable group-level FNs and 74 corresponding initial group-
level ICs were retained after removal of artifact ICs. Regard-
ing the high-model-order range, 102 and 99 reliable group-
level ICs were obtained based on 370 initial group-level ICs 
for Group 1 and Group 2, respectively. After removing the 
group-level artifact ICs, 74 group-level FNs and 269 corre-
sponding initial group-level ICs were retained for Group 1, 
and 69 group-level FNs and 268 corresponding initial group-
level ICs were retained for Group 2. In summary, the results 
for both Group 1 and Group 2 exhibited remarkable consist-
ency in terms of the quantity of reliable group-level FNs for 
both low-model-order and high-model-order conditions.

Regarding the quality of FNs, Fig. 5A, C reflect the low 
correlation coefficients between reliable group-level FNs 
of Group 1 and Group 2 under the low-model-order range, 
indicating the uniqueness of each reliable group-level FN. 
Furthermore, Fig. 5B, D show the correlation coefficient of 
initial group-level ICs corresponding to reliable group-level 

Fig. 4  The similarities reflected by the correlations between sub-
ject-specific FNs (TCs) and real SMs (TCs) across all subjects. The 
blue and red boxplots display the similarity results of FNs and TCs, 
respectively, with each boxplot showing the accuracy values of one 

FN or TC across all subjects. Since both group-common and group-
unique SMs were simulated, we show the accuracy results corre-
sponding to the group-common SMs in subfigure A and the results 
corresponding to the group-unique SMs in subfigure B.
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Fig. 5  The correlation of reli-
able group-level FNs and initial 
group-level ICs based on real 
fMRI data for the low-model-
order. A Correlation matrix of 
24 reliable group-level FNs of 
Group 1. B Correlation matrix 
of 76 initial group-level ICs 
after sorting according to the 
cluster labels of Group 1. C 
Correlation matrix of 25 reli-
able group-level FNs of Group 
2. D Correlation matrix of 74 
initial group-level ICs after 
sorting according to the cluster 
labels of Group 2.

Fig. 6  The matched reliable 
group-level FNs of Group 1 
and Group 2 for the low-model-
order. In each subfigure, along 
with two matched FNs from 
the two groups, the similarity 
(Pearson correlation coefficient) 
between them is provided in R. 
In R(Number 1, Number 2), Number 
1 and Number 2 represent the 
FN’s ID in Group 1 and Group 
2, respectively. All FNs are 
displayed after applying the 
Z-score transformation in this 
paper. The color bar represents 
the Z-score of each functional 
network.
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FNs for Group 1 and Group 2, respectively, supporting low 
inter-cluster similarities and high intra-cluster similari-
ties for the clustering results. Due to the limited space, we 
demonstrate the relevant correlation results under the high-
model-order range in Fig. S3. Overall, Figs. 5 and S3 sup-
port the effectiveness of the proposed method in clustering 
the initial group-level ICs based on real fMRI data.

To validate the robustness of our proposed method and 
the reproducibility of the results, we further compared the 
quality of the reliable group-level FNs between two groups 
(Group 1 and Group 2) for both the low-model-order and 
high-model-order. Fig. 6 and S4 show the matched results 
of the reliable group-level FNs for the low-model-order and 
high-model-order, respectively, which illustrates that the 
spatial similarities between Group 1 and Group 2 exceeded 
0.9 for most of the reliable group-level FNs in both model 
ranges. Based on the above results, it can be concluded that 
the reliable group-level FNs extracted from two groups (with 
similar characteristics) were highly similar in quantity and 
quality, meaning strong robustness and high reproducibility.

One of the advantages of our method is its ability to jointly 
utilize multi-model-order results. For the low-model-order, 
among the 24 reliable group-level FNs of Group 1, 7, 7, 2, and 
8 FNs were retained from the results of k = 20, 25, 30, and 35; 
among the 25 reliable group-level FNs of Group 2, 6, 6, 4, and 
9 FNs were retained from the results of k = 20, 25, 30, and 35. 
For the high-model-order, among the 74 reliable group-level 
FNs of Group 1, 34, 17, 11, and 12 FNs were retained from the 
results of k = 85, 90, 95, and 100; among the 69 reliable group-
level FNs of Group 2, 33, 20, 10, and 6 FNs were retained from 
the results of k = 85, 90, 95, and 100. Therefore, it seemed that 
the distribution of reliable ICs of Group 1 and Group 2 resem-
ble each other, as summarized in Table S1, which supports the 
conclusion that our method can simultaneously take advantage 
of ICA results with different model order settings.

For the reliable group-level FNs in Group 1 and Group 
2, which exhibited matched similarities greater than 0.9, 
the detailed linkage relationships (represented by the intra-
cluster similarity, the initial group-level ICs, the IDs of the 
ICs, the model orders corresponding to the ICs, and the 
following degree between ICs) of the low-model-order are 
shown in Fig. 7. As there were many FNs (i.e., 53) with 
matched similarities > 0.9 between Group 1 and Group 2 for 
the high-model-order, we selected only the top 10 reliable 
group-level FNs with the highest between-group similarity 
to display their linkage relationships in the form of trees in 
Fig. S5. We found that, for the initial group-level ICs under 
a single model order setting, no more than one initial group-
level IC was included in the same tree for almost all trees. 
Furthermore, the IC on a small scale (e.g., obtained using 
the number of components as 25) tended to be the leader to 
be followed by the IC on a bigger scale (e.g., obtained using 
the number of components as 30). To sum up, our method 

is capable of capturing the linkage relationships among ICs 
in different scales.

We further visualized all subject-specific FNs using 
t-SNE, as depicted in Fig. 8A, B for the low-model-order 
range and Fig. S6A, B for the high-model-order range. 
These visualizations reveal that subject-specific FNs cor-
responding to the same reliable group-level FN are closely 
located but also exhibit subject-specific variability. The 
results support that both the correspondence and specificity 
of the subject-specific FNs are well guaranteed by using our 
method. Furthermore, as outlined in the methodology sec-
tion, we conducted a comprehensive investigation into the 
age effect on subject-specific FNs using statistical analysis. 
Fig. 8C, D show the T-value results under the low-model-
order range for Group 1 and Group 2. The related results 
from the high-model-order range are shown in Fig. S6C, 
D. The results indicate that while the age gaps gradually 
increase, the differences in subject-specific FNs between dif-
ferent subject sets also increase, supporting the idea that the 
subject-specific FNs extracted by our method can identify 
subtle specificity. It is important to note that T > 0 indicates 
that the Z-score of subject-specific FNs of subjects in  Setother 
is lower than that in  Setbenchmark. Conversely, when T < 0, it 
signifies that the Z-score of subject-specific FNs of subjects 
in  Setother is higher than that in  Setbenchmark. Our results reveal 
that differences with T > 0 are more pronounced than those 
with T < 0, indicating that, in general, reduced connectiv-
ity may be more evident along with the increasing age of 
subjects. All the results underscore the conclusion that the 
extracted FNs inherit subject-specific characteristics.

More importantly, two groups of brain network tem-
plates were obtained in our work. The templates from the 
low-model-order and high-model-order ranges include 21 
and 65 FNs, respectively. The visualizations for the tem-
plates are shown in Fig. S7A and B, respectively. Com-
prehensive details, including the primary brain region and 
peak coordinates of each FN in the templates, are summa-
rized in Table S3. These templates are available at http:// 
yuhui du. com/ and http:// trend scent er. org/ data/, facilitat-
ing the advancement and utilization of FNs in the field of 
neuroscience.

Discussion

Developing an effective method for identifying reliable brain 
functional networks from fMRI data is greatly needed in 
the neuroscience field. ICA has been widely applied to FN 
analysis using fMRI data. However, obtaining reliable brain 
FNs using ICA under the condition of an unknown number 
of components is challenging [21, 27]. In this paper, we 
propose a method, named SMART ICA, which automati-
cally clusters ICs from multi-model-order ICA on fMRI data 

http://yuhuidu.com/
http://yuhuidu.com/
http://trendscenter.org/data/
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to obtain reliable FNs, which avoids setting a specific ICA 
model order. Importantly, our method provides direct link-
age information among FNs deduced from different model 
orders by simplifying the graph that reflects the relationship 
among those ICs into a tree structure.

The automatic extraction of reliable FNs is the most 
important advantage of SMART ICA. In the method, effec-
tive clustering is achieved on ICs from multiple model 

orders using our proposed splitting and merging clustering 
method combined with a graph simplification technique. Our 
method utilizes the intra-cluster distance of each cluster, the 
inter-cluster distance of two clusters, and the mean inter-
cluster distance to measure within-cluster quality and inter-
cluster separability to guide the split and merge process. By 
iteratively performing split and merge operations, automatic 
and robust clustering for the integration of FN information 
across varying model orders is achieved without the need for 
specifying an ICA model order. Although setting a range of 
model order is needed for the multi-model-order analysis 
in our method, it is much easier to set a range compared to 
determine the optimal one in the traditional ICA analysis.

Based on two groups of simulated data with common and 
unique SMs and six groups of simulated data with different 
numbers of SMs, the number of reliable FNs is consistent 
with the number of real SMs. The high similarities between 
the subject-specific FNs and real SMs support the effective-
ness of SMART ICA and the reliability of the extracted 
FNs. Based on two groups of simulated data that have both 

Fig. 7  The linkage relationships of initial group-level ICs within 
each cluster that have a high reproducibility between Group 1 and 
Group 2 with matched similarity > 0.9 for the low-model-order. A 
and B represent the results of Group 1 and Group 2, respectively. 
For each cluster, S(Number 1) represents the intra-cluster similarity 
and Number 1 represents the ID of the reliable group-level FN. The 
black boxes show the initial group-level ICs. Number 1 represents 
the ID of this IC in all initial group-level ICs, Number 2 represents 
the model order used, and Number 1-Number 2 in red corresponds 
to the reliable group-level FN in this cluster. The color bar represents 
the Z-score of each IC. If there is only one IC in the cluster, then the 
intra-cluster similarity cannot be calculated, so it is represented by the 
null value "NAN".

◂

Fig. 8  Correspondence and specificity of subject-specific FNs for the 
low-model-order. A and B display the projections of subject-specific 
FNs of Group 1 and Group 2 using t-SNE, respectively. In these scat-
terplots, the FNs corresponding to the same reliable group-level FN 
are represented using the same color. C and D display the differences 
in subject-specific FNs between the  Setbenchmark and the  Setother with 

different ages of Group 1 and Group 2, respectively. The difference 
of one FN between  Setbenchmark and  Setother is represented by the mean 
T-value with P <0.05 across all voxels within the important voxels. 
The x-axis of C and D represents the sets of subjects of different ages. 
The y-axis of C and D represent the absolute T-value obtained by 
two-sample t-tests.
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common and unique SMs, the subject-specific FNs extracted 
by SMART ICA are highly similar to the real SMs, indicat-
ing the ability of our method to capture subject variability. 
By applying SMART ICA with the same parameter setting 
to six groups of simulated data with different numbers of 
SMs, the resulting subject-specific FNs are also highly simi-
lar to the real SMs. The results indicate that SMART ICA is 
insensitive to parameters and easy to use.

For the real fMRI data, the FNs show high similari-
ties in the spatial patterns between two age-matched 
cohorts for both the small and large scales. In addition, 
the quantity of reliable group-level FNs between the two 
groups is very close. More interestingly, we also found 
that the difference in subject-specific FNs between differ-
ent age groups showed an increasing trend as the age gap 
increased. Moreover, our results revealed that the reduced 
connectivity along with aging seems to be more pro-
nounced than the increased connectivity. Many research-
ers [52–54] have found that, as age increases, the strength 
of functional connectivity in the human brain tends to 
decrease, which supports our findings. Taken together, our 
results demonstrate that the FNs obtained by SMART ICA 
can inherit the subject specificity, so it is feasible to study 
and discover well-characterized biomarkers from subject-
specific FNs using the SMART ICA method.

The exploration of the linkage relationship between dif-
ferent-scale FNs (corresponding to different model orders) 
is another important strength of our method. Using the graph 
simplification technique, the linkage provides direct infor-
mation about the following and leading (or being followed) 
relationships between the ICs within the same cluster. Based 
on the simplified tree structure with sparse edges, it is more 
convincing to select a dominant IC as the representative and 
reliable IC for further analysis. As expected, the ICs that are 
grouped into one cluster show a high spatial similarity. That 
means the ICs having the same biological meaning tend to 
be closely linked and thus grouped. We also found that for 
some well-known stable FNs such as the default mode net-
work, visual network, and motor-related networks, each of 
those clusters seems to include more ICs, compared to the 
less important FNs or artifact-related ICs. We think one pos-
sible reason is that important FNs can always be successfully 
extracted regardless of model orders.

In summary, we propose a novel brain FN extraction 
method, called SMART ICA, which automatically clusters 
ICs obtained from multi-model-order ICA to output reli-
able and accurate brain FNs. Furthermore, SMART ICA 
enables the exploration of complex relationships among 
networks under different scales, which may be beneficial 
for understanding the mechanism of brain FNs and how 

they collaboratively or independently operate. In addition, 
reliable templates for small-scale and large-scale are pro-
vided based on fMRI data of 1,950 subjects, which furnish 
a benchmark for further study of individual functional net-
works. Collectively, the SMART ICA method holds promise 
for advancing the application of ICA in fMRI analysis.
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