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Abstract  Neurological manifestations of coronavirus dis-
ease 2019 (COVID-19) are less noticeable than the respira-
tory symptoms, but they may be associated with disability 
and mortality in COVID-19. Even though Omicron caused 
less severe disease than Delta, the incidence of neurological 
manifestations is similar. More than 30% of patients expe-
rienced “brain fog”, delirium, stroke, and cognitive impair-
ment, and over half of these patients presented abnormal 
neuroimaging outcomes. In this review, we summarize cur-
rent advances in the clinical findings of neurological mani-
festations in COVID-19 patients and compare them with 
those in patients with influenza infection. We also illustrate 

the structure and cellular invasion mechanisms of SARS-
CoV-2 and describe the pathway for central SARS-CoV-2 
invasion. In addition, we discuss direct damage and other 
pathological conditions caused by SARS-CoV-2, such as 
an aberrant interferon response, cytokine storm, lymphope-
nia, and hypercoagulation, to provide treatment ideas. This 
review may offer new insights into preventing or treating 
brain damage in COVID-19.

Keywords  COVID-19 · SARS-CoV-2 · Brain · 
Neurological pathology

Introduction

As of Jan 5, 2023, the global pandemic coronavirus disease 
2019 (COVID-19) caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) has resulted in over 600 
million confirmed cases and 6 million deaths (https://​covid​
19.​who.​int/). The majority of COVID-19 patients initially 
suffer respiratory symptoms, which can progress to severe 
substantial pulmonary diseases, such as pneumonia or acute 
respiratory distress syndrome (ARDS) [1]. With increasing 
clinical evidence, researchers have discovered that SARS-
CoV-2 causes neurological manifestations in ~30% of 
patients who recovered from COVID-19. The most common 
neurological manifestations include cognitive impairment, 
depression, and psychosis [2, 3]. Further investigations have 
revealed brain pathology in COVID-19 patients with neu-
rological manifestations [4]. Although Omicron causes less 
severe disease than Delta, it still leads to brain pathology 
in many patients. However, the mechanisms of brain dis-
ease in COVID-19 continue to be a mystery because of the 
complexity of brain structure and function, the uncertain 
course of central SARS-CoV-2 invasion, and the diverse 
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responses to the virus. In this review, we summarize the 
clinical manifestations and brain pathological features of 
COVID-19 and discuss the mechanisms of brain damage 
caused by SARS-CoV-2.

Clinical Neurological Manifestations in COVID‑19 
Patients

Neurological manifestations have been reported in COVID-
19 patients of all ages. For instance, in a study conducted 
in Wuhan, China, more than a third of COVID-19 patients 
developed new neurological symptoms after being infected, 
as shown in Table 1 [5]. Another retrospective cohort study 
that included 236,379 patients also found a similar rate 
(33.62%) of patients with neurological manifestations [6]. 
During the acute phase of infection, patients most frequently 
experience headache, anosmia, and stroke [7], while "brain 
fog", headache, anxiety, anosmia, ageusia, and cognitive 
impairment are common post-acute neurological sequelae of 
SARS-CoV-2 infection [8]. Many patients had anosmia, and 
further investigations showed that their nasal components [9] 
and olfactory gyrus [10] had been damaged. A recent study 
suggested that sensory and neurological disorders are more 
evident in younger patients, whereas mental health, mus-
culoskeletal, and episodic disorders are more noticeable in 
older patients [11]. While most of these symptoms gradually 
disappear within a few months after COVID-19 recovery, 
more research is required to confirm the duration of these 
symptoms and subsequent changes.

Compared to the patients infected by influenza, COVID-
19 patients with neurological manifestations are older and 
exhibit a higher incidence of altered mental status, headache, 
anosmia, dysgeusia, and ischemic stroke [12, 13]. In addi-
tion, COVID-19 patients develop symptoms more quickly. 
As shown in Tables 3 and 5, flu patients may suffer from 
influenza-associated encephalitis/encephalopathy (IAE) 
with symptoms such as altered consciousness and seizures. 
Flu patients may also experience post-influenza encephali-
tis, Guillain-Barre syndrome (GBS), Reye’s syndrome, and 
Parkinsonian symptoms (PD) [14].

Neuroimaging Findings of COVID‑19 Patients

Neuroimaging applies quantitative techniques to visualize 
the brain’s structure and function. As listed in Table 2, medi-
cal imaging examinations, particularly magnetic resonance 
imaging (MRI) and positron emission computed tomography 
(PET) reveal the brain structure and function of patients with 
neurological manifestations [15]. The most frequent imag-
ing features (affecting >60% of patients) include ischemic 
infarcts, intracerebral hemorrhages, perfusion abnormalities, 

and leptomeningeal enhancement. Hypometabolism in the 
pons, cerebellum, bilateral insula, bilateral medial lobes, 
and prefrontal cortex indicates brain function dysregulation 
in COVID patients. The high incidence of cerebrovascular 
events such as ischemic stroke and intracerebral hemorrhage, 
indicates potential endothelial injury and coagulation dys-
function. Other investigations have also reported hypoxic 
alterations in the cerebellum and cerebrum, metabolic altera-
tions of astrocytes, microglial activation [16], neuro-axonal 
damage, and neuronal loss [17], which provide additional 
evidence for brain damage in COVID patients.

As for flu patients, the most prevalent imaging features 
include brain lesions, edema, rapid and fulminant demyeli-
nation, and inflammation. These abnormalities are mainly in 
the cortex, white matter, or brainstem (Tables 4 and 5). In 
addition, glial activation, metabolic disorders, and genetic 
factors may be involved [18, 19].

Variant and Neurological Complications 
in Patients with COVID‑19

After the appearance of the Alpha variant, there was no dis-
cernible difference in the prevalence of neurological man-
ifestations in patients with COVID. However, the risk of 
anxiety disorders, insomnia, cognitive deficit, and ischemic 
stroke were significantly higher after the appearance of the 
Delta variant. Patients diagnosed with COVID-19 after the 
emergence of the Omicron variant have a lower death rate, 
but their neurological outcomes still carry a similar risk to 
those with the Alpha variant [20]. Therefore, despite the 
reduced rate of severe cases of Omicron, we cannot under-
estimate the high incidence of neurological sequelae. It is 
important to note that this aspect has not been adequately 
studied because of the difficulty of differentiating the vari-
ants of viruses that infect patients in those published clinical 
studies.

Patients’ Characteristics and Brain Pathology 
in COVID‑19

Cohort studies on the neurological manifestations of 
COVID-19 have shown that older age and pre-existing 
neurological disorders are risk factors for neuropathy and 
mortality [21]. It is known that aging results in immunose-
nescence, which is a progressive weakening of the ability 
to mount efficient immune responses against infections 
[22]. In addition, older people are more likely to have pre-
existing neurodegenerative diseases, including Alzheimer’s 
disease (AD) and PD [23]. Previous studies have suggested 
that patients with AD are vulnerable to experiencing severe 
conditions and passing away during COVID-19 [24]. It is 
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worth noticing that the apolipoprotein E4 (APOE4) allele, 
which is strongly associated with AD, is also a risk factor for 
severe COVID-19 [25]. Neuropathy in COVID-19 may be 
exacerbated by APOE4 because it can increase fibrinogen-
esis, blood-brain barrier (BBB) permeability, and cerebral 
amyloid angiopathy in the brain [26]. In contrast to female 
patients, aged male patients have fewer activated and differ-
entiated T cells, as well as poorer CD8+ T cell activation and 
IFNγ production [27]. However, the incidence of COVID-19 
sequelae does not differ significantly by gender or exhibits a 
modest overrepresentation of female patients [28]. Patients 
with pre-existing diseases, such as hypertension, diabetes, 
and cardiac diseases, are at a higher risk of infection and 
brain pathology [29]. Pre-existing pathological conditions, 

such as arteriosclerosis, contribute to acute ischemia, stroke, 
dementia, and other neurological manifestations [30]. More-
over, drugs used to treat pre-existing diseases must also be 
considered for their potential impact on the incidence and 
severity of infection. One study has suggested that patients 
treated with drugs that increase angiotensin-converting 
enzyme 2 (ACE2) expression may be more vulnerable to 
severe COVID-19 infection [31]. Therefore, patient charac-
teristics, including age, pre-existing conditions, and medica-
tion use, should be carefully evaluated when making clinical 
decisions.

Table 3   Brain Pathology or Manifestations in influenza infection

Search strategy: search "(brain) AND (influenza)" in PUBMED and filter articles with specific neurological manifestations. Notably, the study 
should have explicit inclusion criteria and an experimental process to ensure the validity of the results.

Author and Area Date Population Characteristics Key Findings

Zayet et al. [12], France February 26 to March 14, 
2020

54 patients with confirmed influenza; 
mean age, 61.3 years

5/54 (9.3%) patients had a frontal 
headache, and 2/54 (3.7%) reported 
a retro-orbital or temporal headache. 
Dysgeusia occurred in 11/54 (20.4%) 
patients, while anosmia occurred in 
9/54 (16.7%).

Okuno et al. [48], Japan 2010 to 2015 385 IAE cases reported through the 
National Epidemiological Surveil-
lance of Infectious Diseases database; 
median age at diagnosis, 7 years

Between children and adults, the mean 
seasonal incidence of IAE cases 
was 2.83 and 0.19, respectively, per 
1,000,000 people. IAE frequency was 
highest in school-aged (5-12 years) 
children (38%), followed by children 
aged 2-4 years (21%) and adults aged 
18-49 years (11%). The proportion 
of cases with seizures was higher in 
children.

Mastrolia et al. [49], Italy October 2017 to April 2019 15 children (13.1% of those with influ-
enza infection in the study period) had 
influenza-associated CNS manifesta-
tions; median age, 27 months

8 patients (53.3%) were diagnosed with 
influenza encephalitis and 7 (46.7%) 
with influenza encephalopathy. In chil-
dren <2 years of age (40% of all cases), 
altered consciousness was the most 
frequent neurological manifestation.

Muhammad et al. [50], 
Malaysia

June to November 30, 2009 1244 patients with influenza A H1N1; 
mean age, 4.2 years

69 (66.9%) cases were diagnosed as 
febrile seizures, 16 (15.5%) as break-
through seizures with underlying epi-
lepsy, 14 (13.6%) as IAE, and 4 (3.9%) 
as ANE of childhood.

Jantarabenjakul et al. [51],  
Bangkok

2013 to 2018 397 hospitalized children diagnosed 
with influenza; median age, 3.7 years

16.9% of patients had neurological 
problems, such as seizures or acute 
encephalopathy. Among the 39 (58.2%) 
acute symptomatic seizure cases, 25 
(37.3%) had simple febrile seizures, 
7 (10.4%) had repetitive seizures, and 
7 (10.4%) had provoked seizures with 
pre-existing epilepsy. In 28 (41.8%) 
of encephalopathy cases, the clinical 
courses were benign in 20 (29.9%) 
cases and severe in 8 (11.9%).
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Evidence for Central Invasion of SARS‑CoV‑2

In several post-mortem studies, small amounts of SARS-
CoV-2 have been detected in the brains of patients, but in 
almost all cases [60], the patients had at least one site in 
the brain with low but positive amounts of SARS-CoV-2 
RNA, with the cerebellum being the most frequently 
affected [61]. The astrocyte has been identified to be 
the preferred target for SARS-CoV-2 infection and rep-
lication. However, SARS-CoV-2 is difficult to detect in 
microglia, although the activation of microglia is promi-
nent in the brain of severe COVID patients and is similar 
to the state of human neurodegenerative disease [62]. In 

addition, SARS-CoV-2 has also been detected in brain 
capillary endothelial cells [63]. Notably, SARS-CoV-2 
has been found to infect and kill neurons in human brain 
organoids [64]. A recent study identified virus-specific 
protein expression in the hypothalamus and spinal gan-
glia neurons by immunofluorescence. Furthermore, this 
study demonstrated that SARS-CoV-2 RNA persists in 
the brain for months, even after the virus has been elimi-
nated from the plasma [65]. However, additional research 
is required to confirm the virus’s capacity for replication 
in the brain. It should be emphasized that the existing 
studies are insufficient to demonstrate direct viral inva-
sion of neurons or detect low virus levels in the brain. 

Table 4   Neuroimaging findings in influenza patients

Search strategy: search "(brain) AND (COVID-19) AND ((MRI) OR (EEG))" in PUBMED and filter articles with detailed and concrete out-
comes. Notably, the study should have explicit inclusion criteria and an experimental process to ensure the validity of the results

Author and area Date Population characteristics Key findings Imaging test

Zeng et al. [53], 
China

September 2009 
to December 
2011

17 patients with severe neuro-
logical complications after 
H1N1 infection (6 children 
died, 11 recovered); mean age, 
6.7 years

Their manifestations of H1N1 were meningitis (3), 
encephalitis (1), and influenza encephalopathy (7). 
MRI features of acute necrotizing encephalopathy 
(ANE) included multiple symmetrical brain lesions 
demonstrating prolonged T1 and T2 signals in 
the thalami, internal capsule, lenticular nucleus, 
and pontine tegmentum. Postmortem MRI in two 
children with ANE showed diffuse prolonged T1 
and T2 signals in the bilateral thalami, brainstem 
deformation, and tonsillar herniation.

MRI

Thabet et al. [53], 
Japan

2002 to 2004 14 children diagnosed with influ-
enza infection with neurologi-
cal complications

EEG showed a focal slowing in 4/9 patients with 
delirium and 4/5 with febrile seizures. Generalized 
slowing occurred in 1 patient with delirium.

EEG

Britton et al. [54], 
Australia

May 2013 to 
December 
2015

13 cases of IAE; median age, 
3.7 years

MRI showed typical bilateral, symmetrical thalamic 
lesions with varying degrees of basal ganglia, brain-
stem, and cerebellar involvement in the 4 children 
with ANE.

MRI

Dadak et al. [55], 
Germany

January 2012 
to December 
2017

6 children with influenza 
encephalopathy following 
influenza A infection, 5 under-
went MRI and 1 CT; aged 
between 10 months to 14 years

Impaired consciousness followed by epileptic seizures 
was the most common CNS symptom. The MRI 
findings of 1 child were concordant with mild 
encephalopathy with a reversible splenial lesion 
(MERS); this patient recovered but remained 
aphasic. In 2 cases, MRI showed typical bilateral 
thalamic lesions as a feature of ANE. In 3 patients, 
the common finding was multiple intracerebral 
hemorrhages without thalamic and pontotegmental 
involvement.

MRI and CT

Li et al. [56], 
Guangzhou, 
China

January to Feb-
ruary 2019

4 patients with H1N1 influenza 
A-associated MERS; mean 
age, 4.9 years

Brain MRI revealed similar ovoid lesions in the cor-
pus callosum, mainly in the splenium and, in 1 case, 
in the splenium and genu of the corpus callosum. 
Only 1 patient had an abnormal EEG outcome.

MRI and EEG

Meijer et al. [57], 
Data for the 
case review 
were identified 
by searching 
Medline

November 2013 
to May 2016

44 patients with influenza virus 
infection at the onset of neuro-
logical symptoms

Confusion and seizures were the most prevalent 
neurological symptoms in 12 (27 %) and 10 (23 %) 
patients. MRI was performed in 21 cases. It was 
abnormal in 13 cases, including multiple lesions in 
10 cases and a single lesion in 3 cases. Brain edema 
was observed in 5 cases. EEG was performed in 25 
cases. It was abnormal in 15 cases (60 %), mostly 
described as generalized or diffuse slowing (9 
cases) or consistent with encephalitis (4 cases).

MRI, CT, and 
EEG
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Currently, no conclusive information about the brain inva-
sion of SARS-CoV-2 is available in human post-mortem 
studies. Besides, unlike animal studies with a good perfu-
sion process before sampling, the SARS-CoV-2 detected 
in the human brain might originate in the blood. Thus, it 
is more likely that the virus indirectly causes damage to 
the brain by triggering a series of responses. The impor-
tance (even the existence) of direct viral brain invasion of 
SARS-CoV-2 still needs further study.

Virus Structure and Cellular Invasion 
Mechanisms

SARS-CoV-2, known as the main culprit of this global 
pandemic, possesses single-stranded positive-sense RNA 
(+ssRNA), four structural proteins (N, E, M, and S), and six-
teen non-structural proteins (nsp1−16) [66, 67]. The spike 
(S) protein, which consists of S1 and S2 subunits, plays a 
prominent role in viral invasion and is regarded as a crucial 
target for antiviral treatment [68, 69] (Fig. 1). In addition, 
the nucleocapsid (N), envelope (E), and membrane (M) pro-
teins are all involved in viral production and combine with 
host cell organelles to cause various dysregulation of physi-
ological processes [70, 71]. ACE2 is a significant receptor 
for SARS-CoV-2 entering host cells [72]. After binding to 
ACE2 via the S1 unit, SARS-CoV-2 can initiate membrane 
fusion depending on a furin-like cleavage site on the S1/S2 
and S2 units [73]. The S2 unit is cleaved by the endosomal 
proteases cathepsin B and L (CatB/L) [74], or the transmem-
brane protease serine 2 (TMPRSS2) [75], to form a fusion 

pore, which allows the viral genome to enter cells [76]. The 
replication and transcription complex discontinuously pro-
cesses the viral RNA, mainly formed by nsp12 cooperating 
with nsp7 and nsp8 [77]. Viral transcription, replication, 
and translation depend on host cell organelles, including the 
endoplasmic reticulum and Golgi [78]. It is worth noting that 
the S protein of Omicron has a higher ACE2 binding affinity 
than the S protein of other variants, which might explain the 
higher infection of Omicron [79]. In addition, since different 
receptors are highly expressed on different types of cells, it 
is important to consider the impact of additional receptors, 
such as neuropilin-1, in bringing about pathological changes.

As SARS-CoV-2 has been shown to cause damage and 
dysregulation in other systems [80], its detection in the brain 
by polymerase chain reaction [81] and immunohistochem-
istry [82] suggests that it may also harm brain cells and tis-
sues. Typically, the virus causes damage through two mecha-
nisms: (1) replication in cells to produce daughter viruses 
and breaking the cell to release more viruses to invade other 
cells [83]; (2) the body’s response against the virus inevi-
tably results in cell destruction. Thus, SARS-CoV-2 might 
also enter the brain and directly or indirectly damage brain 
cells. In direct damage, while the daughter virus is released 
by secretory vesicles and causes light damage to cell struc-
ture, interference by viral protein in the cell cycle can result 
in severe cell damage and death [84]. The nonstructural 
proteins (nsps) of SARS-CoV-2 disturb host DNA replica-
tion, protein synthesis, and transport [85], leading to some 
pathological brain changes. Besides, the virus can directly 
kill cells by inducing apoptosis, necroptosis, and autophagy 
in infected cells [86].

Table 5   COVID-19 versus influenza virus

COVID-19 Influenza virus

Manifestations COVID-19 patients with neurological manifestations 
were older, exhibited a higher incidence of altered 
mental status, headache, anosmia, dysgeusia, and 
ischemic stroke [12, 13], and developed symptoms 
more quickly.

Flu patients displayed IAE including consciousness and 
seizure activity, as well as post-influenza encephalitis, 
GBS, Reye’s syndrome, and PD. Flu patients had neu-
rological manifestations later and experienced a lower 
incidence of altered mental status [14].

Brain pathology The most common neuroimaging features of COVID-
19 patients include ischemic infarcts, intracerebral 
hemorrhages, perfusion abnormalities, and leptome-
ningeal enhancement.

Flu patients with IAE might show neuroimaging features, 
including brain lesions, edema, rapid and fulminant 
demyelination, and inflammation, typically in the cortex, 
white matter, or brainstem. Glial activation, metabolic 
disorders, and genetic factors are involved [18, 19].

Central invasion SARS-CoV-2 might enter the brain through the BBB, 
CSF, and retrograde nerve transmission. No direct 
evidence of neuronal invasion.

Influenza virus might enter the CNS from peripheral 
nerves, and the olfactory system might be a major route 
to forebrain invasion. Like SARS-CoV-2, viral invasion 
of the CNS lacks direct evidence [58].

Neural mechanisms SARS-CoV-2 has a small probability of causing brain 
damage through direct invasion of the brain and a 
large probability of causing indirect damage by caus-
ing abnormal states such as cytokine storms.

Nerve damage is mainly caused by metabolic dysregula-
tion and an aberrant immune response. Brain invasion of 
the influenza virus can infect vascular endothelial cells, 
astrocytes, and neurons and induce their apoptosis [59].

Population susceptibility People with older age and pre-existing neurological 
disorders are inclined to neuropathy.

Neurological complications of the influenza virus mainly 
occur in children [57].
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Possible Brain Entry Mechanisms of SARS‑CoV‑2

Via the BBB

The BBB typically serves as a barrier and a transporter. It 
transports ions, macromolecules, nutrients, and toxins into 
or out of the brain [87]. The BBB is mostly composed of vas-
cular endothelial cells, pericytes, and astrocytes. The tight 
junctions (Tjs) and adhesion junctions between endothelial 
cells act as significant parts of the barrier [88]. Pericytes, 
embedded in the basement membrane of microvessels, reg-
ulate BBB formation and permeability and serve in CNS 
immune surveillance, such as the leukocyte migration across 
endothelial cells [89]. Astrocytes exhibit a strong link with 
BBB formation and dominantly enhance the frequency, 
length, and complexity of Tjs [90, 91].

As remarked above, ACE2 is the main receptor of SARS-
CoV-2 and has been detected in several tissues, especially 
in arterial and venous endothelial cells [92]. In the human 
brain, the substantial nigra, paraventricular nuclei of the 
thalamus, raphe nuclei, tuberomammillary nucleus, central 
glial substance (an area of gray matter surrounding the cen-
tral canal), and choroid plexus (ChP) of the lateral ventricle 
may have high ACE2 expression [93]. SARS-CoV-2 might 
infect brain microvascular endothelial cells through ACE2 
and replicate in them [94]. However, entry through endothe-
lial cells may be limited, because numerous studies have not 
yet demonstrated that infection and replication can occur 
there effectively. Besides, the basement membrane disrup-
tion of the BBB induced by SARS-CoV-2 through matrix 
metalloproteinase-9 is considered a significant factor for 
virus entry [95]. Indeed, BBB disruption and leakage have 
also been reported in COVID-19 patients with neurological 
manifestations [96].

The SRAS-CoV-2 may also use host cells to convey 
traffic across the BBB [97]. The virus is believed to pref-
erentially invade lipid-secreting cells and use lipid metab-
olism for replication and spread [98]. A study has also 
shown replication of SRAS-CoV-2 in infected monocytes 
and macrophages [99]. Since the immune cells can enter 
the brain through the BBB and the ChP, SARS-CoV-2 may 
get a ride and get out after brain entry [100, 101]. How-
ever, it is not yet known whether viral replication in mono-
cytes produces infectious viruses [102]. Further research 
is needed to investigate this mechanism

Via the CSF

As some cases have reported the presence of SARS-CoV-2 
in cerebrospinal fluid (CSF), it is worth discussing the pos-
sibility of the CSF route [103]. The blood-cerebrospinal 
fluid barrier (BCSFB) is one of the selectively permeable 

barriers which regulates the transportation of substances 
between the blood and CSF. The BCSFB is formed by 
epithelial cells of the ChP, which separate the fenestrated 
capillaries from the CSF [104] (Fig. 2A and B). Similar to 
the BBB, The Tjs between ChP endothelial cells function 
as the barrier [105]. The ChP also secretes pro-inflamma-
tory cytokines and provides space for transporting immune 
cells into the stroma [106]. ACE2 and its co-receptors 
TMPRSS2 and TMPRSS4 are highly expressed in the 
ChP, through which SARS-CoV-2 destroys the structure 
and function of the BCSFB in organoids [107, 108]. The 
circumventricular organs (CVOs) are located in the third 
and fourth ventricles and have continually fenestrated 
and highly permeable vessels. ACE2 has been detected 
at a high level in CVOs, which provide a facility for virus 
entry [109, 110]. However, due to the limited detection of 
SARS-CoV-2 in CSF, the efficiency of virus entry through 
this route must be further studied.

Via Retrograde Nerve Transmission

Olfactory dysfunction has been frequently reported in 
COVID-19 patients [111] and may be correlated with the 
invasion of olfactory cells by viruses (leading to the down-
regulation of odor detection pathways) [112]. Olfactory 
mucosa is in contact with droplets by ciliated cells and per-
ceives them through the olfactory sensory nerves (OSNs) in 
the basal cells, which are supported and nourished by sus-
tentacular cells. Signals are then transferred to the olfactory 
bulb (OB) where they reach the mitral cells. The virus might 
invade the peripheral nerves, move retrogradely along them, 
and finally enter the CNS [113]. Given that many viruses 
enter the brain in this way, it might also be a possible route 
for SARS-CoV-2 to invade the brain [114] (Fig. 2C). Mein-
hardt et al. analyzed regional mapping of the consecutive 
olfactory nervous tracts and defined CNS regions in 33 indi-
viduals, suggesting that neuroinvasion can occur by transmu-
cosal entry via regional nervous structures [115]. Besides, 
the invasion of OSNs by SARS-CoV and SARS-CoV-2 has 
also been revealed in hamsters [116]. However, many other 
studies conversely showed a low possibility of the OB route 
in humans. Based on 88 post-mortem cases of COVID-19 
patients, Khan et al. found that SARS-CoV-2 infects ciliated 
cells, sustentacular cells, and even leptomeningeal layers 
surrounding the OB, while the OSNs and OB are uninfected 
[117]. Another post-mortem research also obtained the same 
result and suggested that inflammation might cause axon and 
vascular injury [118]. Butowt et al. pointed out that a lack 
of quantitative analysis and false positives might explain the 
contradictory reports on OSN infection [119]. In addition to 
the OSNs, Bowman’s gland, a branching tubular gland in the 
olfactory mucosa, has been found to show both CatB/L and 
furin expression [120]. Thus, the nerve terminals of neurons 
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might receive SARS-CoV-2 from the infected Bowman’s 
gland. Overall, retrograde nerve transmission at least is a 
theoretically possible means of SARS-CoV-2 invasion but 
needs further determination. Besides, retrograde nerve trans-
mission is also being considered in the infection of the eye, 
intestine, and lung through the vagus nerve [121] or optic 
nerve [122].

Other Mechanisms for Brain Pathology 
in COVID‑19

Apart from the direct damage caused by the cellular inva-
sion, several pathological conditions, such as an aberrant 
IFN response, cytokine storm, lymphopenia, and hyperco-
agulation in the brain, may result in more severe and wide-
spread damage to the brain. In this section, we elucidate the 
periphery-related potential mechanisms of central pathologi-
cal conditions (Fig. 3).

Aberrant IFN Response

The innate immune system plays a significant role in defend-
ing against infection and determining the disease sever-
ity [123]. Dysregulation of type I and II IFN is the main 

cause of the insufficient innate immune response. In the 
early stages of infection, a large amount of type I IFN may 
be present in the patient’s body to fight the virus, and the 
ChP is the most vulnerable area to infection in the brain. A 
study by Suzzi et al. has demonstrated that the increased 
IFN response may disrupt the ChP and be involved in the 
process of brain damage [124]. After a peak of type I IFN in 
the early stage of infection, a delayed aberrant IFN response 
has been reported in most severe cases [125]. For example, 
in the later period of COVID-19, a decrease of IFN occurs 
in the CSF of severe patients with neurological manifesta-
tions, and this may be related to the deficient innate immune 
response [126]. SARS-CoV-2 interferes the IFN production 
and activation in two ways: (1) the nsp1 of SARS-CoV-2 
inhibits the gene expression and translation of IFN, and 
(2) pattern-recognition receptor (PRR)-mediated signaling 
pathways are suppressed to downregulate the IFN signaling. 
PRRs, including membrane-bound C-type lectin receptors, 
NOD-like receptors (NLRs), retinoic acid-inducible gene I 
(RIG-I)-like receptors, and Toll-like receptors (TLRs), are 
commonly expressed on sensory neurons, astrocytes, and 
microglia [127, 128]. SARS-CoV-2 RNA and M proteins 
can bind to RIG-I and melanoma differentiation-associated 
gene 5, blocking the activation of interferon regulatory fac-
tor 3 and the type I IFN signaling [129]. In addition, it has 

Fig. 1   The structure of SARS-CoV-2. SARS-CoV-2 consists of 4 
structural proteins (S, M, E, and N) and 16 non-structural proteins 
(nsp1−16). After the S1 component binds to ACE2, the S1/S2 cleav-
age primes the fusion and creates extra cell surface receptors, like 
NRP1. Then, SARS-CoV-2 starts entry by CatB/L and TMPRSS2. 
The viral RNA is released after the entry and translated into corre-
sponding viral structures. The open reading frame 1a (ORF1a) and 

ORF1b of RNA are translated into polyprotein 1a (pp1a) and pp1ab, 
further being translated into nsp1−11 and nsp12−16. Host cell orga-
nelles, such as the Golgi, are involved in virus replication. SARS-
CoV-2: severe acute respiratory syndrome coronavirus 2; ACE2: 
angiotensin-converting enzyme 2; NRP-1: neuropilin-1; TMPRSS2: 
transmembrane protease serine 2.
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been demonstrated that several SARS-CoV-2 components, 
including nsp6, nsp13, and open reading frame 3a, inhibit 
the type I IFN response in vitro [130]. As the balance of 
the innate immune response is closely related to the disease 
severity of COVID-19 patients with neurological manifes-
tations, the potential strategy to rectify the IFN response is 
worth discussing.

Cytokine Storm

The cytokine storm is a dangerous sharp increase of 
cytokines in body fluid that is also a concern in COVID-
19 patients, especially in severe cases. As inflammation has 
been considered to be involved in several CNS diseases such 
as AD and PD, the elevated cytokines induced by SARS-
CoV-2, including IL-6, TNF-α, IL-1, and IL-10 [131], might 
also be related to the pathological brain changes in COVID-
19. It is worth mentioning that the increase of cytokines 
not only occurs in the acute phase but also may persist in 
patients for 3 months after recovery from COVID-19. Low-
grade chronic inflammation may be associated with brain 
injury and vascular injury-related stroke in patients [132].

The generation of inflammation in the brain may be 
closely relevant to the brain barriers. SRAS-CoV-2 can 
infect components of barriers such as endothelial cells and 
astrocytes to process pro-inflammatory cytokines [133] 
and influence BBB permeability [134]. The neurofilament 
light chain protein and glial fibrillary acidic protein are at 
high levels in both the plasma serum and CSF of COVID-
19 patients, indicating that astrocytic and neuronal injury 

indeed occurs in these patients [135]. Notably, C-C motif 
chemokine ligand 11, which can specifically cause hip-
pocampal microglial reactivity and impaired neurogenesis, 
has been found to be elevated in CSF only in COVID-19 
patients with cognitive syndrome [136]. In addition to ele-
vated CSF cytokines [137], the choroid-to-cortex network 
across inflammatory pathways also increases in COVID-19 
patients. This indicates that the inflammatory signals are 
sent from the choroid plexus into the brain more effectively 
to activate the glia. Microglia, the innate immune cells in the 
CNS, respond to the virus and form clusters with infiltrating 
T cells, which are associated with the brain and perivascular 
inflammation [138]. Elevated complements like C1q and C3, 
combined with microglia, are linked to the synaptic loss and 
toxicity of soluble β-amyloid (Aβ) oligomers [139]. Moreo-
ver, the mast cells, as innate immune cells participating in 
the adaptive immune response, can be activated by SARS-
CoV-2 and release pro-inflammatory cytokines, including 
IL-1β, C-C motif chemokine ligand 2, IL-6, granulocyte-
macrophage colony-stimulating factor, and TNF-α, which 
makes them significant components in neuroinflammation 
[140, 141].

SARS-CoV-2 may bind to receptors on host cells, includ-
ing ACE2 and PRRs, to promote inflammation. ACE2 plays 
a key part in the renin-angiotensin system (RAS) [142]. As 
SARS-CoV-2 interacts with ACE2 and influences its cata-
lytic activity, it can further regulate the RAS and contribute 
to the cytokine storm [143]. Besides, the reduction of ACE2 
leads to an increase of serum Ang II, which activates the 
production of reactive oxygen species (ROS) and nuclear 

Fig. 2   The CSF and retrograde 
nerve transmission pathways 
for virus entry. A, B The 
CSF pathway. SARS-CoV-2 
traverses the permeable vessels 
of the choroid plexus (ChP) 
to reach the stroma. In the 
stroma, it binds to ACE2 and 
TMPRSS2/4 to enter endothe-
lial cells and then be released 
into the CSF. C The retrograde 
nerve transmission pathway. 
The virus invades the olfactory 
sensory nerves (OSNs), moves 
retrogradely along nerves, and 
finally enters the neurons of 
the CNS. Besides, the virus 
can invade nervous terminal 
neurons that contact Bowman’s 
gland through cathepsin B/L 
(CatB/L). Tj, tight junction; 
ACE2, angiotensin-converting 
enzyme 2; TMPRSS2, trans-
membrane protease serine 2; 
OB, olfactory bulb.
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factor-kappa B pathways. These activations accordingly 
promote the expression of pro-inflammatory cytokines and 
inactive NOD-like receptor family pyrin domain containing 
3 (NLRP3) [144, 145]. Excessive ROS can trigger apoptosis 
through the mitochondria, which causes morphological and 
functional changes in the host cell [146]. ROS also leads to 
the overactivation of the immune response and other patho-
logical reactions [147]. NLRP3 inflammasomes, activated 
by ROS production and mitochondrial dysfunction, show a 
high correlation with apoptosis, dysregulation of tau protein 
phosphorylation, and neurofibrillary tangles [148]. Uncon-
trolled activation of NLRP3 has also been found in endothe-
lial progenitor cells of COVID-19 patients [149, 150].

As discussed above, PRRs, including TLRs, NLRs, and 
RIG-I, participate in the signaling pathways of IFN. PRRs in 
the CNS, especially TLRs, are also involved in the produc-
tion and release of several cytokines including IL-1, IL-6, 
and TNF-α [151]. The S protein of SARS-CoV-2 can bind 
to TLR2 and TLR4 and activate the myeloid differentiation 
factor 88 signaling pathway to promote the cytokine storm 
[152]. Besides, TLR4-mediated inflammatory cytokines are 
reported to be upregulated in peripheral blood mononuclear 
cells and CSF [153].

Lymphopenia

Lymphopenia has been found in severe COVID-19 patients, 
and several factors may account for this phenomenon [154, 
155]. Firstly, ACE2 has remarkable expression in lympho-
cyte cells, through which the SARS-CoV-2 can directly 
destroy them. SRAS-CoV-2 RNA has also been detected in 

macrophages, neutrophils, B cells, T cells, and natural killer 
cells [156]. Secondly, the elevated cytokines, especially 
TNF and IFNγ, can contribute to apoptosis and pyroptosis, 
which leads to the death of lymphocytes and atrophy of the 
spleen [157, 158]. The systemic reduction of lymphocytes 
also results in lymphopenia in the brain [60], which directly 
decreases the body’s defense against viruses and leads to 
pathological changes. Several studies have suggested that 
changes in immune cells might induce neural and neuroen-
docrine dysregulation, such as anxiety [159], depression 
[160], and neurodegenerative diseases [161]. Meanwhile, 
these psychiatric sequelae have been reported in COVID-
19 patients with an aberrant immune system and include 
significant post-traumatic stress disorder [162]. In addition, 
lymphopenia is also considered a hallmark of poor prognosis 
in COVID-19 patients, further highlighting the importance 
of lymphopenia [163, 164].

Hypercoagulation

Hypercoagulation-related neurological manifestations, 
such as ischemic stroke, have been reported in COVID-19 
patients [165]. In addition, risk factors of coagulation are 
also considerably elevated in COVID-19 patients, includ-
ing D-dimer, von Willebrand Factor (vWF), vWF antigen, 
and FVIII [1, 166]. Both white and red thrombi have been 
observed in microvascular, macrovascular, and venous sys-
tems [167]. Affected individuals may experience neuropsy-
chiatric diseases, neurocognitive (dementia-like) syndrome, 
and altered mental status as a result of the thrombi in the 
cerebrovascular, system; they obstruct the bloodstream and 
kill endothelial cells [21]. The term "coagulation cascade" 
refers to the sequence of events that leads to the formation 
of clots during the coagulation process.

The coagulation process includes the extrinsic, intrinsic, 
and complement pathways. (1) The extrinsic pathway starts 
with tissue factor, which is expressed on neutrophils and 
monocytes and can be activated by cytokines and neutrophil 
extracellular traps (NETs) [168]. NETs consist of cytosolic 
and granule proteins and mitochondrial DNA. Triggered 
by ROS against infection, NETs regulate the activation of 
the extrinsic pathway [169]. An elevated number of neu-
trophils and myeloperoxidase /DNA complexes, a well-
defined marker of NETosis, indicates a high incidence of 
NET formation in COVID-19 patients [170]. (2) The intrin-
sic pathway begins with factor 12 and ultimately partici-
pates in fibrin formation. The intrinsic pathway is triggered 
by an endothelial injury, which can be caused by infection 
with SRAS-CoV-2. Factor 8 and vWF, a carrier of factor 8, 
and fibrinogen are highly expressed in COVID-19 patients 
[171]. In addition, patients with COVID-19 have remark-
ably elevated levels of the plasminogen activator inhibitor-1 
(PAI-1), which downregulates the plasminogen activation 

Fig. 3   Pathological conditions in the brain. SARS-CoV-2 may cause 
several pathological conditions, including an aberrant IFN response, 
cytokine storm, lymphopenia, and hypercoagulation, resulting in 
pathological brain changes. NETs, neutrophil extracellular traps.
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to plasmin by inhibiting tissue-type plasminogen activa-
tor (tPA). Contradictory opinions have been generated by 
the fact that some other COVID-19 patients have elevated 
tPA. That is, the PAI-1 could counteract the local tPA effect 
to create a net prothrombotic hypofibrinolytic state, while 
the fibrinolysis led by tPA is predominant [172, 173]. Fur-
thermore, despite the decrease or maintenance of platelet 
numbers in COVID-19 patients, the plasma thrombopoietin 
levels, platelet surface P-selectin expression (a marker of 
platelet activation), and circulating platelet-leukocyte aggre-
gations are prominently high. These results may partly apply 
to the hypercoagulation state in COVID-19 patients and also 
suggest that the JAK3-MAPK pathway is involved in the 
process [174, 175]. The platelet-to-lymphocyte ratio level 
is significantly higher in severe patients than in non-severe 
patients with COVID-19 and shows a correlation with the 
cytokine storm [176]. The D-dimer, a protein produced 
when clots dissolve, is elevated in COVID-19 patients, 
which also suggests a serious hypercoagulation syndrome 
[177]. (3) The complement pathway is a cascade of events 
that leads to hemostasis. It has been found that the N protein 
of SARS-CoV-2 can cause abnormal complement activation 
[178]. Indeed, complements such as C5, C6, C5a, and C8 
also increase in severe COVID-19 patients [179]. The com-
plement dysregulation might impel thrombosis and endothe-
lial injury, ultimately leading to brain damage. In summary, 
the “coagulation cascade” might be started by SARS-CoV-2 
and result in a pathological hypercoagulation state, which 
induces endothelial injury and subsequently causes patho-
logical brain changes.

Other Potential Mechanisms

Several studies have detected anti-neuronal and anti-glial 
autoantibodies in the serum or CSF of COVID-19 patients 
with neurological symptoms, suggesting that autoantibod-
ies may be involved in the brain injury of COVID-19 [180, 
181]. Autoantibodies may directly damage neurons and can 
also lead to immune abnormalities. In addition, Franke et 
al. found that autoantibodies have undetermined antigenic 
epitopes, which may be related to the molecular mimicry of 
the SARS-CoV-2 virus [182].

Hypoxia due to pulmonary fibrosis can cause multi-organ 
damage, which is more prominent in patients with severe dis-
ease [183]. Hypoxia in COVID-19 may be correlated with the 
expression of ACE2 and TMPRSS2 as well as Aβ deposits in 
the neocortex [184, 185]. Zilberman-Itskovich et al. found a 
lower incidence of neurological manifestations in COVID-19 
patients subjected to hyperbaric oxygen therapy, suggesting 
that improving hypoxia may reduce neurological pathology 
by improving brain perfusion and neuroplasticity [186].

Conclusion

COVID-19 is still a problem that affects the entire world and 
interferes with people’s daily lives. Approximately 30% of 
COVID-19 patients experience new neurological manifes-
tations or exhibit pathological brain changes. However, the 
current treatments have hitherto been insufficient. In this 
review, we emphasize the need for clinical practice to con-
sider patient features, such as pre-existing diseases, when 
treating COVID-19 patients with neurological symptoms. As 
for the mechanisms, in this review, we indicate that SARS-
CoV-2 can infect host cells through ACE2 (accompanied 
by TMPRSS2 or CatB/L) and may further enter the brain 
through the BBB, CSF, and retrograde nerve transmission. 
SARS-CoV-2 may cause cell and tissue damage once it has 
entered the brain by preventing replication and promoting 
apoptosis. Apart from these direct effects, several systemic 
or peripheral pathological conditions, including an aber-
rant IFN response, cytokine storm, and hypercoagulation, 
may also contribute to brain pathology. The aberrant IFN 
response can result in a delayed innate immune response, 
rendering the viral defense ineffective. The cytokine storm 
produces excessive tissue damage and cell death, even in 
the brain, despite its original function as a defense mecha-
nism against the virus. Besides, severe COVID-19 patients 
exhibit remarkable lymphopenia, indicating a high risk of 
neurological pathology. Hypercoagulation may be related 
to endothelial injuries, infarcts, and hemorrhages in the 
brain. Thus, in addition to host receptors (such as ACE2 
and TMPRSS2) and virus structures (such as the S protein 
and nsps) as potential targets, we suggest that protecting the 
brain barrier, regulating immune responses, and ameliorat-
ing the hypercoagulation state via specific targets also poten-
tially prevent or suggest treatment strategies for pathological 
brain changes in patients with COVID-19.
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