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Abstract Chronic stress leads to many psychiatric disor-

ders, including social and anxiety disorders that are

associated with over-activation of neurons in the basolat-

eral amygdala (BLA). However, not all individuals develop

psychiatric diseases, many showing considerable resilience

against stress exposure. Whether BLA neuronal activity is

involved in regulating an individual’s vulnerability to

stress remains elusive. In this study, using a mouse model

of chronic social defeat stress (CSDS), we divided the mice

into susceptible and resilient subgroups based on their

social interaction behavior. Using in vivo fiber photometry

and in vitro patch-clamp recording, we showed that CSDS

persistently (after 20 days of recovery from stress)

increased BLA neuronal activity in all the mice regardless

of their susceptible or resilient nature, although impaired

social interaction behavior was only observed in suscep-

tible mice. Increased anxiety-like behavior, on the other

hand, was evident in both groups. Notably, the CSDS-

induced increase of BLA neuronal activity correlated well

with the heightened anxiety-like but not the social avoid-

ance behavior in mice. These findings provide new insight

to our understanding of the role of neuronal activity in the

amygdala in mediating stress-related psychiatric disorders.
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Introduction

Exposure to chronic stress increases the risk of developing

psychopathology, including anxiety disorder and major

depressive disorder [1–4]. Stressful life events are unavoid-

able throughout the lifespan; however, the occurrence of

psychiatric disorders varies across individuals when they

are exposed to the same extreme stress. While most people

recover from stressful events and show considerable

resilience, nearly 20% are vulnerable to such events and

thus develop stress-related disorders [5–8]. In this context,

it appears urgent to understand the brain mechanisms

governing stress resilience and vulnerability, as they are a

prerequisite for the development of new therapeutic

approaches to psychopathologies associated with stress.

Social defeat stress during adolescence is one of the

critical factors affecting the onset of depressive disorders in

humans [9]. The mouse model of chronic social defeat

stress (CSDS) has been widely used to explore the

mechanisms underlying stress-related behaviors [5, 10].

In this model, the mice are subjected to multiple episodes

of social defeat stress, and their vulnerability to stress is

then defined according to their performance in a social

interaction (SI) test. The mice that display avoidance

behavior to the social stressor in this test are defined as

susceptible, and this group of mice also show anhedonia

and despair behavior, which are key symptoms of depres-

sion. By contrast, the mice not showing such behaviors

after stress are identified as resilient [5]. In the past decade,

this excellent model has helped to markedly expand our

understanding of the neural substrates underlying stress
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susceptibility and resilience [10, 11]. For example,

researchers have demonstrated the roles of various neuro-

transmitters, hormones, and neuropeptides, as well as

multiple genetic factors in the neurobiology of resilience

[12]. Nevertheless, understanding of the neurobiological

differences between susceptible and resilient individuals is

rather limited.

The mechanisms underlying coping with stress are

associated with neurobiological changes in several brain

regions [13, 14]. Among them, the amygdala, a kernel area

for the expression of mood and emotion, has been strongly

implicated in both the physiological and pathological

responses to stress [15–17]. Many studies have demon-

strated that aberrant neuronal activity and hyperexcitability

in the amygdala are critically engaged in the occurrence of

a series of stress-related psychiatric disorders, such as

social disorder [3] and anxiety disorder [18]. In the resting

state, the amygdala is under the tight control of strong

inhibitory tone, which limits its excessive activation and is

essential for the maintenance of a normal emotional state

as well as the avoidance of inappropriate responses to

external stimuli [19]. However, under exposure to stress,

the inhibitory tone in the amygdala is removed, and its

neurons become disinhibited and hyperexcited. The

increased activity of the amygdala, especially its basolat-

eral part (BLA), drives increased emotional output and

contributes to a spectrum of stress-related psychiatric

disorders [20–23]. Notably, most of the information is from

studies focusing on the detection of BLA neuronal activity

at a specific time point after stress exposure. How the BLA

neurons show dynamic changes to stress and contribute to

stress vulnerability remains largely unknown.

Recently, the fiber photometry system has attracted wide

interest due to its convenience, sensitivity, and reliability in

dynamically monitoring Ca2? signals under designed

behavioral paradigms in freely-moving mice [24–27]. It

also effectively avoids electromagnetic noise and interfer-

ing physiological activity. In this study, with the aid of

fiber photometry, we recorded the dynamic activity of BLA

neurons responding to CSDS and explored their role in

regulating the susceptibility to stress-related psychiatric

disorders. We also used in vitro electrophysiology to test

the effects of CSDS on BLA neurons. Finally, we analyzed

the correlation between CSDS-induced changes of BLA

neuronal activity and its effects on mice’s stress-related

behavior.

Materials and Methods

Animals

Male C57BL/6J mice (4 or 7 weeks old) were used in all

experiments. They were maintained in a temperature- and

humidity-controlled room with a light/dark cycle of 12-h

(lights on 07:00, off 19:00) and ad libitum access to food

and water. All experimental procedures were performed

following the guidelines of the National Institutes of Health

and approved by the Institutional Animal Care and Use

Committee of Nanchang University.

Chronic social defeat stress and the social inter-
action test

CSDS was imposed as previously described [28, 29].

Briefly, we screened CD1 retired breeder mice aged 4-6

months for aggressive behavior upon intrusion into their

home cages. Those exhibiting aggression were used to

defeat C57BL/6J mice. During CSDS, a male C57BL/6J

mouse (test mouse, 7 weeks old) was exposed to a different

CD1 aggressor mouse (target mouse) for 5 min each day

for 10 consecutive days. After the defeat episodes, the test

mouse was separated from an aggressor by a perforated

acrylic barrier where it was persistently exposed to the

threat for the next 24 h. Each control mouse was gently

handled every day and housed opposite another C57BL/6J

mouse. In the SI test, the C57BL/6J mouse was placed in a

square open-field arena with a small animal cage at one

end, and its movement was tracked for 5 min in two 2.5-

min epochs. The time spent in the interaction zone during

the first (target absent) and second (target present) epoch

was measured. The SI ratio was calculated as (Interaction

time with CD1 present)/(Interaction time with CD1 absent)

9 100%. ANY-maze 6.3 (Stoelting Co., USA) was used to

analyze the times in the interaction and corner zones. Mice

with an SI ratio \100% were considered susceptible (SI-

sus), and those with an SI ratio C100% were considered

resilient (SI-res).

Open Field Test (OFT)

The open field chamber was made of transparent plastic (50

cm 9 50 cm) and a 25 cm 9 25 cm center square was

defined as the center area. Each mouse was placed in the

center of the chamber before starting the 10-min session.

An overhead video-tracking system (Med Associates Inc.,

Fairfax, VT) was used to monitor their behavior. Time in

the center area and total distance traveled were analyzed by

the ANY-maze 6.3 software (Stoelting Co., USA).
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Following each trial, the apparatus was cleaned with 70%

ethanol to remove olfactory cues.

Elevated Plus Maze (EPM) Test

Six hours after the OFT test, the mice were subjected to the

EPM test. The EPM apparatus consisted of two open arms

(35 cm 9 6 cm), two closed arms (35 cm 9 6 cm), and a

central connecting platform (6 cm 9 6 cm). The apparatus

was elevated 74 cm above the floor. Each mouse was

placed on the central platform, facing an open arm,

followed by 10-min monitoring of its behavior using the

video-tracking system (Med Associates Inc.). The ANY-

maze 6.3 software was used to analyze the time spent in the

open arms and entries into the open or closed arms. After

each trial, the apparatus was cleaned with 70% ethanol to

remove olfactory cues.

Fiber Photometry

Four-week-old mice were anesthetized with 5% isoflurane

in a clean induction chamber and head-fixed in a stereo-

tactic frame (RWD, Shenzhen, China). Anesthesia was

maintained via delivery of 1%–2% isoflurane during

surgical procedures. Body temperature was maintained

with a heat lamp. We injected 0.3 lL of AAV-CaMKIIa-

GCaMP6s or AAV-CaMKIIa-EGFP virus (Obio Technol-

ogy, Shanghai, China) into the BLA (bregma coordinates:

anterior/posterior, –1.3 mm; medial/lateral, ?3.15 mm;

dorsal/ventral, –5.05 mm) at 80 nL/min, and a 200-lm

diameter optical fiber was immediately implanted into the

BLA (dorsal/ventral, –5 mm). Three weeks after surgery,

the mice were subjected to the SI test with concurrent

recording of the GCaMP6s signal. The GCaMP6s fluores-

cence was recorded by a fiber photometry system (Thinker

Tech Nanjing Biotech Limited Co., Ltd). To induce

GCaMP6s fluorescence, 488-nm laser light was delivered

using the fiber photometry system, and fluorescent signals

were recorded. In data analysis, to normalize the fluores-

cent signal data from each mouse, the changes of Ca2?

signal values were calculated as: (DF/F) = (F-F0)/F0,

where F0 is the average baseline Ca2? signal during a 2-s

control time-window prior to a defined event. For the acute

stress assay, the data are presented as heatmaps or as peri-

event plots with a shaded area indicating the SEM, and as

histograms of the DF/F average values that include 2 s

before and 5 s after a CD1 mouse attack. For the chronic

stress assay, the peak DF/F value in a 5-s window centered

on the defined behavioral event (proximal interaction

toward enclosure) was identified and the peak values were

compared across groups. Since the number of interaction

zone entries and proximal interactions differed between the

SI-sus and SI-res mice, to ensure comparability, only the

first incidence of each event was included. All data were

analyzed with MatLab R2016b (The MathWorks).

Histology and Microscopy

Histology and microscopy experiments were performed as

previously described with minor modifications [30, 31].

Briefly, mice were anesthetized with 2% sodium pento-

barbital, followed by transcardial perfusion with phos-

phate-buffered saline (PBS) and 4% paraformaldehyde

(PFA) successively to fix the tissues. The brains were post-

fixed overnight at 4�C in 4% PFA. Coronal slices were cut

on a VT1200S vibratome (Leica Microsystems). Subse-

quently, the slices were incubated for 5 min with 40,6-

diamidino-2-phenylindole, a DNA-specific fluorescent

probe, rinsed in PBS (3 9 5 min), and mounted with

fluoromount aqueous mounting medium (Sigma-Aldrich,

Saint Louis, MO, USA). Images were captured with the

Virtual Slide System (VS120; Olympus Corp., Tokyo,

Japan).

Amygdala Slice Preparation

Amygdala slices were prepared as described previously

[28, 30]. Briefly, mice were deeply anesthetized decapi-

tated, and the brains were removed immediately and

chilled in ice-cold cutting solution containing (in mmol/L)

80 NaCl, 3.5 KCl, 4.5 MgSO4, 0.5 CaCl2, 1.25 NaH2PO4,

25 NaHCO3, 90 sucrose, and 10 glucose, aerated with 95%

O2 and 5% CO2. The 320-lm thick coronal slices

containing the amygdala were cut on the VT1200S

vibratome (Leica Microsystems), allowed to recover in

artificial cerebrospinal fluid (ACSF) containing (in mmol/

L): 124 NaCl, 2.5 KCl, 2 MgSO4, 2.5 CaCl2, 1.25

NaH2PO4, 22 NaHCO3, and 10 glucose, for 30 min at

34�C, and then transferred to a holding chamber with

ACSF (bubbled with 95% O2 and 5% CO2) for at least 1 h

at room temperature before recording.

Whole-Cell Patch-Clamp Recordings

Whole-cell patch-clamp recordings were performed as

previously described [31]. Briefly, a single slice containing

the amygdala was transferred to the recording chamber

under continuous perfusion with ACSF (1 mL/min–2 mL/

min). Patch electrodes were made from filamented borosil-

icate glass capillary tubes (inner diameter, 0.84 lm) using

a horizontal pipette puller (P97, Sutter Instrument, Novato,

CA, USA). To record action potentials (APs) in BLA

projection neurons (PNs), patch electrodes with a resis-

tance of 3 MX–7 MX were filled with an internal solution

containing (in mmol/L): 130 K-gluconate, 5 NaCl, 1

MgCl2, 10 HEPES, 0.2 EGTA, 0.1 NaGTP, and 2 MgATP,
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pH adjusted to 7.3 and osmolarity to 285 mOsm. Then, 20

lmol/L CNQX and 100 lmol/L picrotoxin were added to

the bath solution. Cells were recorded in current-clamp

mode, and depolarizing current pulse ramps (250 pA over

1.5 s) or increasing in steps of 50 pA (0 pA–250 pA, 1 s)

were injected. A junction potential of *12 mV was not

corrected. The data were discarded if the series resistance

changed by[20%.

Statistical Analyses

All the data are shown as the mean ± SEM. The statistical

analyses were performed using GraphPad Prism 7 (Graph-

Pad Software, Inc., San Diego, CA) or SPSS 19.0 (SPSS

Inc., Chicago, IL, USA), using one-way and two-way

ANOVA with or without repeated measures, followed by

post-hoc comparisons with Bonferroni’s test. The homo-

geneity of variance and normality were analyzed with

Levene’s test and the Kolmogorov–Smirnov test, respec-

tively. If these assumptions were violated, the Wilcoxon

signed-rank test or Mann-Whitney test were applied where

appropriate. Pearson’s correlation and linear regression

analysis were used to evaluate correlations. P\0.05 was

considered statistically significant.

Results

Defeat Stress Rapidly Increases Neuronal Activity

in the BLA

We investigated the dynamic changes of BLA neural

activity in freely-moving awake mice during defeat stress

exposure (social attack) using in vivo fiber photometry

(Fig. 1A). To this end, a genetically encoded Ca2?

indicator, GCaMP6s, was expressed in the BLA PNs by

injecting AAV-CaMKIIa-GCaMP6s or AAV-CaMKIIa-

EGFP into the BLA (Fig. 1B), where an optical fiber was

implanted (Fig. 1C). The tested mice were placed in the

home cage of an aggressive male CD1 aggressor, where

they were frequently attacked by the CD1 mouse. The

changes in GCaMP6s fluorescence, which reflect real-time

neuronal activity, were monitored through the optical fiber

embedded in the BLA during the entire process of stress

exposure.

We first found that the Ca2? signals in the tested mice

expressing GCaMP6s robustly increased when they were

attacked by a CD1 mouse, while in mice expressing EGFP,

the signals remained unaltered during attacks (Fig. 1D),

indicating that the signals were indeed derived from defeat

stress-evoked changes in cellular Ca2? levels and not

signals caused by body movement. The Ca2? signals

increased rapidly from the attack onset and decayed slowly

after the tested mouse retreated to a safe area (Fig. 1E, F).

Statistical analysis showed that the average value of the

Ca2? signals of BLA PNs increased significantly when a

mouse was attacked by a CD-1 mouse (Fig. 1G), indicating

that acute defeat stress strongly activates BLA PNs.

CSDS Persistently Increases BLA Neuronal Activity

We then explored whether the changes in BLA activity

were involved in the impairment of social behaviors

induced by chronic stress. For this, we established a CSDS

model. After 10 consecutive days of defeat stress, the SI

test was used to divide the mice into SI-sus and SI-res

groups (Fig. 2A). The SI ratio of the SI-sus mice was

significantly lower than that of the control or SI-res mice

(Fig. 2B, C). Furthermore, when compared to the control

mice, the SI-sus mice spent less time in the interaction

zone, while the SI-res mice spent more time in the

interaction zone when the CD1 mouse was present in the

mesh enclosure (Fig. 2D). On the other hand, the SI-sus but

not the SI-res mice spent more time in the corner zone

(Fig. 2E) suggesting that CSDS leads to social avoidance

behavior in the former but not the latter.

We next assessed the dynamic changes of BLA activity

at different stages of CSDS. The mice were allowed to

freely explore in the presence or absence of a CD1 target in

the mesh enclosure during the SI test. We recorded the

peaks of Ca2? signals that were time-locked with behav-

ioral events (proximal interaction with the mesh enclosure)

and then compared the amplitudes of these time-locked

peaks across groups (Fig. 2F). Before CSDS, the Ca2?

signal peaks upon proximal interaction were comparable in

the absence or presence of a CD1 mouse in both SI-sus and

SI-res mice (Fig. 2G–I). One day after CSDS, the peaks

were significantly increased in both groups when a CD1

mouse was present in the mesh enclosure (Fig. 2J, K), and

the increased peaks triggered by a CD1 mouse did not

differ between SI-sus and SI-res mice (Fig. 2L). To explore

whether the increased Ca2? peaks recovered differently

upon cessation of the stress exposure, we then measured

the BLA activity 20 days after CSDS. We found that the

Ca2? signal peaks upon proximal interaction were signif-

icantly increased in both groups when a CD1 mouse was in

the mesh enclosure (Fig. 2M, N), indicating a lasting effect

of CSDS. Notably, the increased peaks trigged by the CD1

mouse were much lower in the SI-res than the SI-sus mice

(Fig. 2O). We then analyzed the correlation between BLA

activity and social avoidance behavior as indicated by the

SI ratio and found no significant correlation between the

increased BLA activity and the SI ratio (Fig. 2P).

Taken together, these results indicate that CSDS

increases social avoidance only in SI-sus mice and this
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increase does not appear to correlate with the enhanced

BLA neuronal activity.

CSDS Increases the Intrinsic Excitability of BLA

Projection Neurons

To further reinforce the above finding that CSDS increased

the BLA neuronal activity in both groups, we then used

ex vivo slice electrophysiology to measure the excitability

of BLA PNs in acutely-prepared brain slices (Fig. 3A). We

first injected depolarizing current pulses of increasing

amplitude to induce APs. As shown in Figure 3B and C, the

number of APs was significantly greater in the SI-sus and

SI-res mice than in control mice; however, the input

resistance did not differ among the three groups (Fig. 3D).

To support the above findings, we then measured the

intrinsic excitability of BLA PNs using another protocol by

injecting a depolarizing current ramp into the cells. Similar

results were found that the number of APs was significantly

increased in both SI-sus and SI-res mice (Fig. 3E, F), while

the rheobase (minimal current necessary to elicit an AP)

remained unaltered (Fig. 3G). These results suggest that

CSDS significantly increases the excitability of BLA

neurons in both SI-sus and SI-res mice.

CSDS Persistently Increases the Intrinsic Excitabil-

ity of BLA Projection Neurons 20 Days After CSDS

To explore whether the increased intrinsic excitability of

BLA PNs persists after long-term recovery, we then
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vulnerability: F(2, 36) = 4.56, P = 0.017; main effect of CD1 present:

F(1, 36) = 0.29, P = 0.59; interaction: F(2, 36) = 11.86, P = 0.0001.

Bonferroni post hoc comparison, SI-sus, P = 0.003; SI-res, P = 0.014.
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vulnerability: F(2,36) = 13.78, P\0.0001; main effect of CD1 present:
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Bonferroni post hoc comparison, SI-sus, P\0.0001. F Experimental

procedures for recording dynamic Ca2? signals in BLA projection

neurons by in vivo fiber photometry. G Representative traces of Ca2?

signals aligned with first proximal interaction before CSDS in the

absence (upper) or presence (lower) of a CD1 target. H Summary plots

of DF/F signal during proximal interaction before CSDS. The

susceptible and resilient mice were defined after CSDS. SI-sus, n = 6
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present: F(1, 11) = 0.18, P = 0.679; main effect of stress vulnerability:
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I Percentage change inDF/F signal in H. t test, P = 0.6). J Represen-
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presented as the mean ± SEM. *P\0.05, **P\0.01, ****P\0.0001.
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recorded their firing in all three groups of mice 20 days

after CSDS (Fig. 4A). Similarly, the results showed that the

number of APs induced by depolarizing current injection

was significantly increased in the SI-sus and SI-res mice

(Fig. 4B, C), while the input resistance did not differ

among the three groups (Fig. 4D). In parallel, the results of

injection of a ramp of depolarizing current also showed that

the number of APs, but not the rheobase, was increased in

both SI-sus and SI-res mice (Fig. 4E–G). These results

argue that CSDS persistently increases the intrinsic

excitability of BLA PNs in both SI-sus and SI-res mice.

CSDS Persistently Induces Anxiety-Like Behavior

in SI-sus and SI-res Mice

The above results indicated that CSDS results in a

persistent increase of BLA neuronal activity in both SI-

sus and SI-res mice, suggesting that this activity may not

be responsible for CSDS-induced social avoidance behav-

ior. A large number of studies have consistently shown that

the increased activity of amygdala neurons is strongly

associated with stress-related anxiety-like behaviors

[20, 30]. We then measured the anxiety-like behaviors in

SI-sus and SI-res mice 1 day after CSDS using the OFT and

EPM (Fig. 5A). Relative to the control mice, both the SI-

sus and SI-res mice spent less time in the center area of the

open field chamber during the OFT (Fig. 5B, C), while no
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significant differences were found in the total distance

traveled (Fig. 5D). Besides, the EPM results showed that

the SI-sus and SI-res mice spent less time in the open arms

(Fig. 5E, F) and had fewer entries into these arms

(Fig. 5G). To explore whether CSDS has a long-lasting

influence, we also tested the anxiety-like behavior after 20

days of recovery from CSDS (Fig. 6A). Both SI-sus and SI-

res mice spent less time in the center area (Fig. 6B, C),

while the total distance traveled remained unaltered during

the OFT (Fig. 6D). The EPM results also showed that the

SI-sus and SI-res mice spent less time in the open arms

(Fig. 6E, F) and had fewer entries to these arms (Fig. 6G)

EPM. Together, these results indicate that CSDS persis-

tently increases the anxiety-like behavior of mice regard-

less of their susceptible or resilient nature.

CSDS-Induced Increase of BLA Neuronal

Excitability is Correlated with Anxiety-Like,

but not Social Avoidance Behavior

Stress-induced anxiety has long been linked to the hyper-

activation of amygdala neurons [20]. We then asked

whether there is a relationship between BLA neuronal

activity and anxiety-like behavior. To this end, we first

measured the anxiety-like behavior using the OFT and

EPM. Four hours later, the neuronal activity was evaluated

by the number of APs in response to step or ramp

depolarizing current injection. The AP numbers (averaged

from 3–5 cells per mouse) were significantly and inversely

correlated with all the parameters of anxiety-like behavior,

including time spent in the center of the OFT and time
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0.133. All data are presented as the mean ± SEM. *P \0.05,

**P\0.01, ***P\0.001.
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spent in open arms of the EPM apparatus (Fig. 7A–D).

However, no significant correlations were found between

AP number and the SI ratio (Fig. 7E, F). Furthermore, there

were no correlations between anxiety-like behaviors and

the SI ratio (Fig. 7G, H). These data therefore support a

link between the increased BLA neuronal activity and

CSDS-related increases in anxiety-like behavior rather than

social avoidance behavior.

Discussion

In the present study, using in vivo fiber photometry and

in vitro electrophysiology, we found that CSDS persis-

tently increased BLA neuronal activity in both SI-sus and

SI-res mice. This increase correlated well with the

concomitant increase of anxiety-like behavior, as found

in both groups. By contrast, it did not correlate with

heightened social avoidance behavior, which was only

evident in the SI-res mice.

Considerable evidence has indicated that aberrant neu-

ronal activity and hyperexcitability in the BLA are
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involved in the occurrence of multiple stress-related

psychiatric disorders, such as social disorder [3] and

anxiety disorder [18]. Our findings that acute social attack

significantly increased the BLA neuronal activity are

consistent with a recent finding showing that BLA activity

is dramatically increased during acute restraint stress, also

assessed by in vivo fiber photometry [32]. However, the

long-term effect of chronic stress on BLA neuronal activity

was not yet known. Here, we found that the increased BLA

neuronal activity persisted 1 day and even 20 days after

exposure to chronic stress. To our knowledge, this is the

first study to measure the long-term changes of BLA

neuronal activity in response to chronic stress in freely-

moving mice. Somewhat surprisingly, our results showed

that the increased BLA activity existed in both SI-sus and

SI-res mice [5, 33]. Confirming this, the ex vivo patch-

clamp results also showed that CSDS increased the

intrinsic excitability in both groups, suggesting that stress

susceptibility defined by social avoidance behavior may

not be associated with BLA activity. In parallel, a study

using magnetic resonance imaging in CSDS mice revealed

that the amygdala volume is comparable in susceptible and

resilient mice [34].

Notably, similar to the increased BLA neuronal activity

in both SI-sus and SI-res mice, we found that the anxiety-

like behavior was also increased by CSDS in both. This is
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123

S.-H. Huang et al.: Amygdala Activity and Stress-related Behaviors 25



in good accordance with a previous study showing that

CSDS causes a prolonged increase of anxiety-like behavior

in both SI-sus and SI-res mice even after long-lasting

stress-free recovery [5]. Numerous studies have shown that

stress-induced anxiety-like behavior results from the

hyperactivation of BLA neurons [20, 28, 29], and these

findings further suggest that the CSDS-induced, persistent

increase of BLA activity contributes to excessive anxiety-

like behavior in mice, regardless of their susceptible or

resilient nature. Since only the SI-sus, but not the SI-res

mice exhibit depressive-like behaviors, CSDS has been

widely used to explore the mechanism of vulnerability to

depression [5]. However, the findings from our and others’

studies imply that the SI ratio may not be appropriate to

differentiate the susceptibility to stress-induced anxiety in

mice [5]. In addition to CSDS, several other stress models,

including learned helplessness [35], chronic mild stress

[36], and exposure to predator odor [37], have also been

used to classify animals into susceptible and resilient

subsets based on their performance in specific behavioral

tasks. For example, a previous study defined susceptibility

by the adrenal gland weight of mice subjected to repeated

restraint stress [38]. There are also studies using the light-

dark behavioral test, another widely-used paradigm for

measuring anxiety-like behavior, to define stress suscepti-

bility (high level of anxiety-like behavior) and resilience

(low level of anxiety-like behavior) [39, 40]. Using

multiple models and behavioral paradigms may help to

precisely identify the individual differences in stress

vulnerability and explore the underlying neuronal

mechanisms.

Mounting evidence has demonstrated that many of the

psychiatric symptoms and biological changes persist even

long after recovery from chronic stress or traumatic events

[41–43]. For example, mice display robust social avoid-

ance behavior four weeks after CSDS [41, 44]. Similarly, it

has been reported that four weeks after CSDS, the social

avoidance behavior of susceptible mice is still increased,

and susceptible and resilient mice still have high anxiety

levels [5]. These findings are consistent with our results

that mice remained at a high anxiety level even after 20

days of recovery. In addition, a recent study has shown that

CSDS increases the dendritic arborization of BLA stellate

neurons after 30 days of stress-free recovery, accompanied

by remarkable social avoidance behavior when exposed to

a fearful stimulus [43]. In line with this, the activity and

intrinsic excitability of BLA neurons were also persistently

increased, arguing for a critical role of BLA activity in

stress-induced anxiety-like behavior. Interestingly, our

fiber photometry results showed that the BLA activity

was significantly decreased in SI-res mice 20 days after

CSDS, suggesting that SI-res mice are more adaptable than

their SI-sus counterparts.
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Fig. 7 Correlations between CSDS-induced increase of BLA neu-

ronal activity and anxiety-like behavior and social avoidance
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step current injection and time in center region in the OFT (A) and
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overlapped in B.
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The increase of BLA activity by chronic stress may

facilitate the transmission of information from the BLA to

its downstream regions, such as the medial prefrontal

cortex (mPFC) and ventral hippocampus (vHPC) [16].

Circuit-specific manipulations have revealed that activation

of BLA neuronal subpopulations projecting to different

downstream regions are responsible for different or even

opposite behaviors. For instance, optogenetic activation of

BLA PNs projecting to the mPFC or vHPC leads to

anxiety-like behavior. In contrast, activation of BLA PNs

that project to the anterodorsal bed nucleus of the stria

terminalis and central lateral amygdala results in an

anxiolytic effect [45, 46]. Consistent with this, our recent

study has shown that chronic stress-induced anxiety-like

behavior is associated with the selective enhancement of

the activity of BLA PNs that project to the vHPC [30].

Notably, studies have shown that activation of the BLA–

mPFC or BLA–vHPC circuit also leads to social avoidance

behavior [47, 48]. Although we did not find any correlation

between social avoidance behavior and the activity of BLA

PNs as a whole, we cannot exclude the possibility that the

stress-related social avoidance behavior may engage speci-

fic BLA circuits. Indeed, increasing evidence has high-

lighted a circuit-specific mechanism in stress resilience.

For instance, activation of the ventral tegmental area

(VTA)–nucleus accumbens (NAc), but not the VTA–mPFC

circuit results in stress susceptibility [49]. Strikingly,

activity of vHPC neurons is decreased in resilient mice,

while vHPC–NAc synaptic transmission is selectively

increased in susceptible mice [50]. Besides, studies have

also emerged to link increased amygdala activity and

amygdala–prefrontal connectivity to resilience to early life

stress [51]. Therefore, it would be rather interesting to

delineate the dynamic changes of neuronal activity of

specific BLA circuits in susceptible and resilient mice.

In summary, the current findings indicate that increased

BLA neuronal activity may not contribute to the patho-

logical process of social disorder. Instead, it may play

essential roles in stress-induced anxiety-like behavior.

These findings provide new insight into the role of

neuronal activity in the amygdala in mediating stress-

related psychiatric disorders.
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