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Abstract The periaqueductal gray (PAG) is a complex

mesencephalic structure involved in the integration and

execution of active and passive self-protective behaviors

against imminent threats, such as immobility or flight from

a predator. PAG activity is also associated with the

integration of responses against physical discomfort (e.g.,

anxiety, fear, pain, and disgust) which occurs prior an

imminent attack, but also during withdrawal from drugs

such as morphine and cocaine. The PAG sends and receives

projections to and from other well-documented nuclei

linked to the phenomenon of drug addiction including:

(i) the ventral tegmental area; (ii) extended amygdala; (iii)

medial prefrontal cortex; (iv) pontine nucleus; (v) bed

nucleus of the stria terminalis; and (vi) hypothalamus.

Preclinical models have suggested that the PAG contributes

to the modulation of anxiety, fear, and nociception (all of

which may produce physical discomfort) linked with

chronic exposure to drugs of abuse. Withdrawal produced

by the major pharmacological classes of drugs of abuse is

mediated through actions that include participation of the

PAG. In support of this, there is evidence of functional,

pharmacological, molecular. And/or genetic alterations in

the PAG during the impulsive/compulsive intake or

withdrawal from a drug. Due to its small size, it is difficult

to assess the anatomical participation of the PAG when

using classical neuroimaging techniques, so its phys-

iopathology in drug addiction has been underestimated

and poorly documented. In this theoretical review, we

discuss the involvement of the PAG in drug addiction

mainly via its role as an integrator of responses to the

physical discomfort associated with drug withdrawal.
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Introduction

The Diagnostic and Statistical Manual of Mental Disorders

(DSM-5) uses the term ‘‘substance use disorders’’ to

encompass 10 different classes of drugs of abuse: alcohol,

caffeine, cannabis, hallucinogens, inhalants, opioids, seda-

tives (hypnotics or anxiolytics), stimulants, tobacco, and

other (or unknown) substances [1]. All these drugs are

similar in that they activate the reward circuit [2, 3] and,

except for hallucinogens and inhalants, the rest induce

withdrawal symptoms. The intake of a substance may

result in a chronic addictive disorder if one of the following

features is present: (i) compulsion to seek the substance;

(ii) its uncontrolled intake; and (iii) the appearance of

feelings of discomfort that include dysphoria, anxiety, pain,

or irritability [4, 5]. During the establishment of drug

addiction, the drug consumption behavior evolves differ-

entially (i.e., not equally for every substance) from

impulsiveness to compulsivity, especially with substances

like alcohol [6]. The above suggests that drug addiction is

not a simple sequence but instead, both impulsive and
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compulsive intake behaviors and the underlying biology

are important [6]. The impulsive intake of substances is an

early phase of the addiction cycle that generates a sense of

pleasure and gratification via the brain reward system and

the reinforcing effects of substance intake; whereas the

compulsive intake is a late phase of the addiction cycle, in

which the alleviation of physical discomfort, which may

range from mild to severe distress, has been proposed to be

elemental [2, 7]. Interestingly, specific environmental

contexts such as visual and olfactory signals may promote

craving and produce difficulties in controlling impulsive

behaviors [8]. The establishment of a compulsivity intake

behavior involves allostatic changes in the neurotransmis-

sion of the brain reward and anxiety systems such as

alterations of dopaminergic function [4, 9–11]. Hence, drug

addiction involves responses to psychiatric perturbations,

stressful situations, and/or physiological challenges that are

integrated to promote adaptation and coping and thus,

homeostasis [12, 13]. Notably, compulsive behaviors

induced by some drugs of abuse (alcohol, cocaine,

morphine, and heroin) may develop before any evidence

of dependency and tolerance [7, 14]; thus, neither depen-

dence nor tolerance may solely explain the complexity of

the drug addiction cycle.

Drug addiction can be cyclic and consists of at least

three main stages: (i) binging/intoxication, in which there

is a strong motivation to take drugs due to their reinforcing

effects; (ii) withdrawal/negative affect, characterized by

the presence of anxiety, irritability, widespread pain,

dysphoria, and hyperkatifeia, among others; and (iii)

anticipation/craving, that may drive to the binging stage

again. Each of these stages encompasses brain circuits that

are anatomically, neurophysiologically, and neurochemi-

cally specific [3, 15–19]. In animal models, addiction-like

behaviors include a regular, predictable, and/or uninter-

rupted use of the substance [7].

The midbrain central gray, also referred to as the PAG

or substantia grisea centralis, is a brainstem structure

bordering the cerebral aqueduct [20]. The PAG, along with

the amygdala, hypothalamus, and the bed nucleus of the

stria terminalis (BNST), form the aversion system [21],

which is activated during acute and chronic exposure to

stressors [13] and is responsible for executing defensive

behaviors against anxiety, pain, and fear, such as the

consumption of a drug in order to avoid the discomfort

associated with withdrawal of the drug [21–27]. During

acute or prolonged withdrawal, the cerebral aversion

system seems to be involved in the increased release of

stress promotors such as glucocorticoids, corticotropin-

releasing factor (CRF), norepinephrine, and dynorphin

[17]. In normal conditions, factors such as neuropeptide Y

(NPY), nociceptin, and endocannabinoids seem to be

involved in maintaining a low stress response [17, 28].

Recently, based on anatomical and functional evidence,

it has been proposed that the PAG plays a fundamental role

in controlling motivated goal-directed behaviors of all

types [29]. Therefore, in this review we aimed to discuss

and propose the participation of the PAG in the patho-

physiology of drug addiction.

Physiology of the Periaqueductal Gray

The PAG is a well-conserved midbrain area in chordate

species [30, 31] and has a similar proportional size (up to

10% of the mesencephalon) in rodents, cats, and humans

[32]. Its functions include food intake [29], pain modula-

tion [33–35], anxiety/panic [23, 36], unconditioned, con-

ditioned, as well as learned behaviors such as fear [37–39],

vocalization [40], and sexual behavior via the integration

of the lordosis reflex in coordination with the medullary

reticular formation and the ventromedial nucleus of the

hypothalamus [41] during mating stimulation [42], and the

integration of autonomic responses [32, 43]. Furthermore,

neurons in the PAG integrate negative phenomena such as

anxiety, stress, and pain with the autonomic, neuroen-

docrine, and immune systems to facilitate responses to

threat [44]. Pain, anxiety, and fear are normal emotions

with great adaptive value in evolutionary selection in

mammals [45]. Brain structures involved in processing

pain, anxiety, and fear under natural circumstances are also

related to the pain, anxiety, and fear associated with the

intoxication/withdrawal induced by drugs of abuse

[46–48]. While fear occurs in response to specific threats,

the source of anxious behavior is usually undefined or

unknown [45]. There is substantial evidence that the PAG

is a key midbrain structure involved in the processing of

pain, anxiety, and fear [49].

The PAG is partitioned into various structural subdivi-

sions disposed like the neuroaxis itself: dorsomedial,

dorsolateral (DL), lateral, and ventrolateral (VL). These

subdivisions also project in other planes among themselves

(anterior and posterior) with different participation around

the integration of defensive behaviors such as pain,

anxiety, and fear [32, 50, 51]. The dorsal and lateral

PAG (D/L-PAG) play a role during combative defensive

reactions and non-opioid-based analgesia [52, 53]. The

D/L-PAG also receives inputs from the amygdala, the

ventromedial hypothalamus, and the medial prefrontal

cortex (mPFC) [54]; whereas the VL-PAG seems to be

important for evoking passive behaviors and opioid

analgesia via the anterior insula and the medial and

dorsomedial PFC [50, 55]. Indeed, tonic immobility-

elicited analgesia is mediated by mu opioid receptors in

the VL-PAG via inhibition of the GABAergic projections

to the rostral ventromedial medulla (RVM) and dorsal

raphe (DR) [56]. On the other hand, glutamatergic neurons
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in the VL-PAG, when activated under physiological

conditions, cause freezing behavior that is also regulated

by mu opioid receptors [57]. Interestingly, hypofunction of

glutamatergic transmission in the VL-PAG has been

proposed to be associated with depressive-like behaviors

[58].

Some studies have proposed the PAG as a structure that

plays a role in the integration of other complex behaviors

such as sadness, fury, pleasure, worry, and fear of painful

stimuli through neuronal processes that involve the partic-

ipation of other brain areas including the amygdala and

hypothalamus [59–61]. In fact, one of the main functions of

the PAG is related to the integration of peripheral and

central afferent inputs, which in turn may result in

homeostatic defensive reactions mainly via activation of

the sympathetic autonomic nervous system (ANS) [59, 62],

which modulates the activity of visceral tissues (e.g., blood

flow and adrenaline release) via its monoaminergic recep-

tors, a and b adrenoceptors. In this sense, the ANS prepares

the organism for the classic fight or flight response by

regulating visceral activity (cardiovascular, metabolic, and

respiratory adaptations) through sympathetic fibers, which

are finely modulated by monoaminergic receptors [63, 64].

Indeed, the interruption of sympathetic activity seems to

involve both monoaminergic auto- and hetero-receptors

[65, 66]. Interestingly, the endocannabinoid [67–69] and

opioid systems [70] are also involved in the modulation of

cardiovascular sympathetic and sensory drives.

Several preclinical and clinical studies have suggested

that stressful experiences that occur throughout life may

contribute crucially to the development and pathogenesis

of several psychiatric disorders such as schizophrenia,

mood disorders, anxiety, erroneous defensive responses,

and affect reward-seeking [44, 71–73], all of which can

promote drug abuse. Moreover, most of the symptoms of

anxiety disorders are accompanied by activation of the

hypothalamic-pituitary adrenal axis [71, 74, 75]. Due to

similarities between the behavioral and autonomic

responses induced by D-PAG stimulation and the semiol-

ogy of panic attacks, it has been suggested that the D-PAG

is deeply involved in the genesis of panic-related disorders

in humans [76]. In support of this hypothesis, chemical or

electrical stimulation of the D-PAG induces panic attacks

in rodents [76]. Likewise, panic-like behaviors can be

evoked by systemic cholecystokinin 2 (CCK2) receptor

agonists, an effect that is prevented by intra-PAG microin-

jection of CCK antagonists [77–79]. Hence, the physiology

of the PAG suggests that this structure plays a key role in

the integration of actions primarily evoked to modulate

discomfort (e.g., anxiety, fear, and painful situations that

are commonly experienced during withdrawal in the

addiction cycle [80–84]). Moreover, there is substantial

evidence (see section 2) for the role of the pain circuit and

its impact in producing negative reinforcement that may

contribute to sustained habitual drug intake, as for the

PAG-pain circuit and cocaine addiction) [5, 85, 86].

Importantly, the diminutive size and form of the PAG

have made its functional analysis very challenging when

using standard noninvasive magnetic resonance imaging

(MRI) techniques [87]. Notably, with the advent of better

imaging tools, this kind of structure will be better

understood. In support of this notion, a very recent

functional MRI (fMRI) study has proposed a cortex-PAG

connection that appears to be essential in alcohol abuse

[88].

The Link Between the PAG and the Reward Circuit

The possible participation of the PAG in the impulsive

intake of substances of abuse should be related to its

interaction with nuclei that are known to be involved in the

reward, such as the nucleus accumbens (NAc), VTA, and

hypothalamus [16], among others such as the substantia

nigra [89–91]. The reward system is defined as a circuit

whose activation leads to positive reinforcement with a

positive hedonic overlay [19]. In such systems, chemical

messengers including serotonin, cannabinoids, opioid pep-

tides, enkephalin, and GABA are involved, directly or

indirectly, in the actions that modulate the activation of the

reward system via dopamine (DA) release in the NAc

[89, 92, 93]. The PAG sends glutamatergic and GABAer-

gic inputs directly to DA-containing and GABA-containing

cells [94] in the VTA [95]. As the VTA is a key element in

the reward system [96, 97], the PAG-VTA circuitry could

also play an indirect role during the early phases of drug

addiction [44]. Laurent et al. [98] found that activation of

the GABAergic synapses between the VL-PAG and the

VTA increases the immobility response that is blocked in

the presence of opioids.

Another fundamental structure in the reward circuit is

the NAc, which is vital for integrating reward, drug

reinforcement, and motivated behavior [99, 100]. More-

over, this small nucleus is important for evaluating the

cost-benefit decision-making in situations involving reward

[99, 100]. It has been proposed that the NAc, together with

the basolateral amygdala (BLA) and D-PAG, form a circuit

in charge of responding to a prolonged stressful situation

[101–103]. The NAc is anatomically separated into shell

and core portions [104], both of which are involved in

decision-making when seeking reward [100] and receive

inputs from numerous areas such as the anterior cortex and

the lateral hypothalamus (LH) [105]. The NAc shell

increases the operant response to a reward-associated cue

[106], participates in the expression of appetitive-type
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behaviors [107], and is more sensitive to the rewarding

effects of cocaine and D1/D2 receptor agonists than the

NAc core [108–110]. The NAc core is essential for the

execution of Pavlovian behaviors since its inactivation

causes indiscriminate responses during a cue-guided risk/

reward paradigm in rats [100].

Another region important for the drug addiction cycle is

the hypothalamus (conformed by lateral, medial lateral,

medial periventricular, and medial zones), which is located

ventrally in the brain and plays an important role in the

regulation of the endocrine system [111]. The LH is

involved in the control of feeding behavior [112]. Inter-

estingly, the L-PAG [113] influences reward and rein-

forcement processes such as seeking appetitive reward by

activation of the orexinergic cell group of the LH [114]. In

addition, the LH projects to the ventrolateral neurons of the

PAG and extended amygdala (EA) and receives afferent

connections from the LH to modulate drug reward and

neuro-adaptive changes that occur with chronic drug

exposure [43, 115]. The ventromedial hypothalamus has

reciprocal projections with the D-PAG that seem to be

involved in the execution of panic-like behaviors [116].

The arcuate nucleus of the hypothalamus has NPY-

containing projections towards the D- and V-PAG.

Besides, the PAG is densely innervated by NPY fibers

[117, 118] and contains very high levels of NPY

[119, 120]. Among the NPY receptor subtypes identified

so far (Y1–Y5), only two have been reported to have

functional effects on the PAG: Y1 and Y2 [121]. These

receptors have been shown to be involved in depression

[122] and alcohol consumption [123]. Likewise, microin-

jection of NPY into the D-PAG and the VL-PAG has

anxiolytic/analgesic effects [124] and may modulate alco-

hol intake [28].

The PFC can be divided into the mPFC, orbitofrontal

cortex, ventrolateral PFC, dorsolateral PFC, and caudal

PFC [125]. Cortical projections to the PAG originate

primarily from the mPFC [126]. The interaction of the L-

and D-PAG with the PFC involves executive functions

[127]. The mPFC is mainly involved in cognitive functions

[128], including reward-related activity [129]. The projec-

tions of the mPFC end in both the DL [130] and VL PAG

[131] and it has been suggested that this mPFC-DL/VL

projection participates in aversive and compulsive behav-

ioral responses [132] as well as pain modulation

[125, 133].

The Link Between the PAG and the Anti-reward

Circuit

The anti-reward system includes the EA, which is com-

posed of the central nucleus of the amygdala (CeA), BNST,

and NAc [19]. The coordinated activity of these regions is

involved in the integration of the negative affective states:

anxiety, irritability, pain, and others [18]. It is important to

note that the function of the above structures is not limited

to the anti-reward system as they participate in other

actions including yawning [134], impulsive behavior [135],

and feeding behavior [136], as well as pain [137] and

others.

The PAG provides inputs to the BNST [138, 139] which

is a critical structure for stress, anxiety [140–142], and fear

responses [143]; and it is enriched mainly in NPY and CRF

neurons [144]. Release of the neurotransmitter NPY has

anti-drinking effects mediated through the Y1 receptor,

which inhibits BNST-CRF neurons [145], and is a key

structure in the withdrawal/negative affect and anticipa-

tion/drug craving [82, 146, 147]. The BNST receives 50%

of its DA contribution from the D- and V-PAG [139, 148]

(Fig. 1), and this could be involved in pain regulation and

anxiety [149]. Furthermore, it has been reported that the

BNST and VL-PAG interaction is involved in the modu-

lation of eating behavior through GABAergic pathways

[136]. The amygdala is a connecting structure in the limbic

system and can be divided into three groups: (i) the BLA,

which includes the lateral, basal, basomedial and basoven-

tral nuclei; (ii) the centromedial amygdala, which includes

the CeA and medial nuclei (M) (the CeA nuclei have four

subdivisions: the capsular, lateral (CeL), intermediate, and

medial (CeM) subdivisions) [150, 151]; and (iii) the

superficial or cortical-like region that includes the cortical

nuclei and the nucleus of the lateral olfactory tract

[152, 153]. The CeA is the main output area from the

amygdala to the PAG at different points of the antero-

posterior axis. For example, the CeM projects mainly to the

rostral and caudal PAG, while the CeL projects only to the

caudal PAG. Further, the D-PAG is selectively targeted by

the CeM and the VL-PAG by the CeL [154]. Lesions in the

BLA have been shown to block flight responses evoked by

stimulation of the D-PAG [102]. In addition, it has been

reported that the CeA/BLA–mPFC–VL-PAG circuit is

involved in pain processing [133, 155], cataplexy [156],

and pain symptoms correlated with depression [157].

Chronic exogenous activation of the reward system may

drive decreases of DA, serotonin, and opioid peptides and

their actions in the ventral striatum-VTA as an adaptive

response to lessen the effects of drugs. If this exogenous

activation occurs, negative reinforcement such as intrusive

thinking and anxiety may increase the probability of

searching for drugs [11, 17, 158]. It has been suggested that

these negative reinforcement actions are integrated by an

anti-reward system [17] that would be complementary to

the reward system to achieve coordinated activity under

normal conditions, but that could also contribute to the

seeking and binging of drugs during the drug addiction

process. These reward and anti-reward circuits do not work
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independently; both are necessary for the establishment of

addiction.

The PAG is involved in the execution of various

emotional conditions/behaviors such as pain, anxiety, and

fear; but it has been more recently addressed as a brain area

participating in drug addiction. However, further under-

standing of its contribution during the negative affective

state seen during drug-withdrawal is required

[28, 85, 86, 159]. The PAG afferent and efferent nerve

fibers with the nuclei involved in drug addiction are

summarized in Fig. 1.

Links Between the PAG and Substances of Abuse
and Appetitive/Consummatory Behaviors

As noted above, the PAG is a key integrating structure for

executing defensive responses via opioid receptors [160];

and some groups have reported possible participation of the

PAG in the expression of several signs of withdrawal from

diverse drugs of abuse such as morphine [14, 80, 161, 162].

In fact, morphine injections into the PAG produce condi-

tioned place preference, suggesting that the PAG may be

involved in the reinforcing actions of opioids during the

early (impulsive) phase [163]. Moreover, the PAG has been

reported to mediate reward information that promotes food

intake, whereas PAG inhibition has anorexic effects in

hungry rats [164]. In the next section, we discuss the

preclinical and clinical evidence available involving the

role of PAG activity in the actions of the major pharma-

cological classes of drugs of abuse (Table 1). In addition,

we extend the discussion to some appetitive consummatory

behaviors.

Alcohol

Alcohol intake produces euphoria, disinhibition, anxiety-

reduction, sedation, and hypnosis that are associated with

Fig. 1 Interaction of the PAG with other brain nuclei potentially

involved in drug addiction. A Inputs to the PAG from different nuclei.
The dorsal and ventral PAG (orange lines) receive glutamatergic

inputs from the mPFC; the D-PAG and VL-PAG receive GABAergic

inputs (blue lines) from both CeA and VTA (blue lines); the VL-PAG

receives GABAergic projections from both the BNST and the

hypothalamus; the arcuate nucleus of the hypothalamus has NPYergic

projections to the D- and V-PAG (black lines); the VTA projects to

the VL-PAG via glutamatergic neurons (orange line); the Pn has a

cholinergic projection to the VL-PAG (purple line). B Outputs from

the PAG to different nuclei. The BNST and CEA receive dopamin-

ergic inputs from both the dorsal and ventral PAG (red lines); the VL-

PAG sends glutamatergic projections to the VTA (orange lines).

BNST, bed nucleus of the stria terminalis; CeA, central nucleus of the

amygdala; D-, L-PAG, dorsal and lateral periaqueductal gray; mPFC,

medial prefrontal cortex; Pn, pontine nucleus; VL-PAG, ventrolateral

periaqueductal gray; VTA, ventral tegmental area.
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its role as a positive allosteric modulator of the GABAA

receptor [165]. Interestingly, the alcohol hangover involves

severe physical discomfort which includes anxiety, pain

(mainly headache), and nausea [166]. It is popularly

believed that the physical discomfort induced by the

alcohol hangover decreases with low alcohol consumption

on the next day [167]. In fact, the alcohol hangover may

slightly promote a faster recurrence of alcohol consump-

tion [81]. The above suggest that, during alcohol relapse in

some consumers, escaping from the physical discomfort

induced by withdrawal may be a promoting stimulus.

Remarkably, there is increased anxiety after alcohol

consumption that can be explained by a decrease in the

inhibitory control of GABA over the PAG, accompanied

by an increase in the excitatory glutamatergic tone

[168–170]. Microinjections of NMDA (N-methyl-D-aspar-

tate) or AMPA (a-amino-3-hydroxy-5-methyl-4-isoxa-

zolepropionic acid) antagonists into the D-PAG during

withdrawal decrease alcohol consumption [169]. Likewise,

in brain slices from animals in a state of alcohol

withdrawal, the glutamatergic transmission mediated by

NMDA or AMPA receptors is altered in the PAG, as

spontaneous excitatory postsynaptic potentials are

decreased compared to controls [171]. Bonassoli et al.

[172] injected carboxy-PTIO [a nitric oxide (NO) scav-

enger] or L-NAME, a nonselective NO synthase inhibitor,

into the D-PAG and both drugs decreased the anxiogenic

effects of alcohol withdrawal, suggesting that the NO

pathway plays an important role during this stage [172]. In

addition, it has been reported that during alcohol

withdrawal, the blockade of NPY-Y1 receptors in the

D-PAG induces anxiety and alcohol relapse [28]. Indeed, it

has been reported that acute exposure to alcohol increases

the activity of dopaminergic neurons in the VL-PAG, while

chronic exposure to alcohol does not modify the activity of

these neurons [173]. McClintick et al. [174] has suggested

that early-age drinking of alcohol, specifically during

adolescence, leads to changes in the expression of key

genes in the PAG. They reported alterations in 1,670 of

12,123 detected genes in the PAG. The main decreased

alterations caused by alcohol intake were in the GABAer-

gic, serotoninergic, cholinergic, dopaminergic, and opioid

systems, while the expression of hypocretin (orexin)

neuropeptide precursor (Hcrt) increased in these neuronal

populations [174]. Together, these changes may increase

the susceptibility for developing anxiety, pain, and fear

(i.e., physical discomfort) [174] which could facilitate

compulsive alcohol intake.

Interestingly, alcohol intake is used by some patients as

a pain reliever [175]. Egli et al. [176] have proposed a

genetic and functional link between pathological pain and

the development of alcohol dependence, as the neurocir-

cuitry related to alcohol dependence is closely connected to

the neurocircuitry for pain. For example, the PAG is not

only involved in the direct spinothalamic processing of

pain as well as in indirect processing via the amygdala tract

[176]; but also, in the negative emotional states of drug

addiction via its projections to the BNST and CeA (Fig. 1).

In addition, Avegno et al. [155] reported that chronic

alcohol exposure decreases GABAergic signaling from the

Table 1 Role of the PAG in the actions of the major pharmacological classes of drugs of abuse.

Drug of

abuse

Substance or receptor

involved

PAG subdivision involved/outcome References

Alcohol NMDA or AMPA

receptor antagonists

Intra-D-PAG injection of NMDA/AMPA receptor antagonists is anxiolytic and

inhibits alcohol intake

[169]

carboxy-PTIO and

L-NAME

NO inhibition in DL-PAG decreases the anxiogenic effects of alcohol withdrawal [172]

NPY-Y1 Intra-D-PAG injection of NPY-Y1 is anxiolytic and reduces alcohol consumption [28]

Caffeine Caffeine fMRI shows that the anxiogenic actions of caffeine are associated with PAG

activation

[179]

Cannabis CB1 Activation of CB1 in D-PAG has panicolytic-like effects, analgesia, anti-aversive

effects, and prevention of hyperlocomotion

[190, 194–197]

Opioids Morphine VL-PAG exhibits hyperexcitation of GABAergic neurons,

astrocyte activation, and release of pro-inflammatory cytokines during opioid

withdrawal

[194, 197, 201, 202]

Sedatives Bicuculline or

flumazenil

(GABAA)

Intra D-PAG injection of benzodiazepines has anti-panic effects [203]

Stimulants Cocaine Cocaine withdrawal produces hyper-responsiveness of VL-PAG neurons [204]

Cocaine fMRI images show that PAG is involved in cocaine craving [86]

Tobacco Nicotinic acetylcholine

receptors

Anti-depressive effects of nicotine involve the NAc-DR-PAG circuit; its

anxiolytic effects include actions on the DR and PAG

[205–207]

123

1498 Neurosci. Bull. October, 2021, 37(10):1493–1509



CeA to the PAG and alters the melanocortin system in the

CeA, phenomena that could be related to the hyperalgesia

induced during alcohol withdrawal.

A recent fMRI study has suggested that the PAG is

negatively involved in the physical and social pleasure

expectancy in alcohol drinkers exposed to alcohol cues,

whereas the medial orbitofrontal cortex (mOFC) is posi-

tively involved [177]. More recently, another fMRI study

proposed that the connection between the mOFC and

D-PAG is predominantly involved in alcohol abuse [88].

Hence, different neurotransmitters, neuropeptides, and

gasotransmitters modulate the PAG during alcohol with-

drawal, while alcohol exposure may induce functional,

molecular, and genetic changes in the PAG, suggesting that

this structure is a key modulator of alcohol intake

behaviors. This idea has been recently confirmed using

fMRI [88].

Caffeine

Caffeine is an extremely popular psychostimulant drug

consumed all over the world in diverse presentations that

include fresh or hot beverages, even mixed with cola-

drinks and taurine. Exposure to caffeine increases DA in

the NAc-shell [178], which explains its acute reinforcing

effects. Caffeine also causes diastolic hypertension and

exerts anxiogenic actions in humans [179]. It is popularly

consumed early in the morning to generate a sensation of

alertness (increased attention) and to avoid somnolence

[180], actions that are associated with its anxiogenic

effects. By fMRI, it has been shown that the anxiogenic

action of caffeine involves activation of the PAG [179]. It

is possible that this anxiogenic effect, induced via PAG

activation, contributes to the desired effects in consumers

(inhibition of somnolence and increased alertness and

attention) [179]. However, it remains to be determined

whether PAG inhibition also decreases caffeine intake.

Cannabis

Cannabinoids (phyto, endogenous, and synthetic) interact

with type 1 (CB1) and 2 (CB2) cannabinoid recep-

tors. Although the behavioral effects of cannabinoids have

been classically associated with CB1 receptors mainly

expressed in the brain [181], diverse studies have reported

a potential role for CB2 [182]. Other putative receptors

strongly associated with the endocannabinoid system (e.g.,

GPR12, GPR18, and GPR55) have also been associated

with multiple cognitive processes such as learning and

memory and food intake. [183–188].

Given that mainly glutamatergic and to a lesser extent

GABAergic PAG projections to the VTA induce

stimulation and DA release [94], substances that increase

the activity of these neurons would be expected to trigger

reinforcing actions through possible integration with the

reward system. Interestingly, cannabinoids acting at an

area that receives PAG inputs and projects PAG outputs

(i.e., the tail of the VTA/rostromedial tegmental nucleus)

may also facilitate CB1-mediated DA release from the

VTA [189] to the NAc [92]. Casarotto et al. [190] reported

that CB1 and transient receptor potential vanilloid 1

receptor (TRPV1; responsible for the painful sensation

caused by capsaicin or heat) are expressed in the D-PAG

and are frequently co-localized at the same synapses

[190, 191]. In Casarotto’s study, stimulation of CB1 in the

D-PAG had panicolytic actions, whereas stimulation of

TRPV1 had the opposite effect [190]. The above opposing

effects may explain, at least partially, why some consumers

report a subjective feeling of tranquility and others develop

panic attacks [192, 193], and both actions may involve the

cannabinoid targets CB1 and TRPV1, respectively, in the

PAG.

Exposure to stressful conditions or electrical stimulation

of the PAG raises endocannabinoid levels [194, 195].

Moreover, CB1 receptor agonist injection and increased

anandamide in the D-PAG alleviate physical discomfort by

analgesia [195, 196], anxiolysis, and anti-aversive actions

[194]. Other studies have indicated that the CB1 receptor

agonist HU210, administered either systemically or specif-

ically in the D-PAG, increases plasma corticosterone levels

and prevents the hyperlocomotion induced by aversive

stimuli [197]. CB1 receptors seem to be involved only in

the anti-hyperlocomotion action of HU210, while the

increase in plasma corticosterone levels is not blocked by

rimonabant (a non-selective CB1 antagonist) [197]. Rimon-

abant per se increases corticosterone [197], suggesting a

non-cannabinoid effect that remains to be elucidated. As

GPR55 is a target for rimonabant [198] and is a receptor

expressed in several areas (including the PAG) involved in

learning, pain, and anxiety [183, 199, 200], its participation

in the reward and anti-reward systems needs further

analysis.

In summary, cannabinoids reach the PAG to produce

analgesia, anxiolysis, fear inhibition, and anti-aversive

affects (alleviation of physical discomfort). In addition,

cannabinoids may modulate DA release in the NAc via

activation of CB1 receptors in areas with reciprocal

connectivity with PAG that regulate VTA neurons. All

these actions may influence both the impulsive and

compulsive behaviors of drug addiction.

Opioids

As a key region in the pain circuit, the PAG is known for

its role in mediating negative emotions [208]. The PAG is
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rich in opioid receptors and enkephalins [55]. Conse-

quently, opioid addiction (e.g., morphine) critically

involves enkephalins and the PAG area. In support of this

notion, several studies have shown that: (i) there are

several alterations in the PAG during morphine with-

drawal, including hyperactivation of GABAergic neurons

in the VL-PAG and astrocyte activation, and the release of

pro-inflammatory cytokines such as TNFa [201, 202]; (ii)

intra-PAG administration of an enkephalin analog sup-

presses the signs of morphine withdrawal [209]; (iii) intra-

PAG infusion of morphine produces physical dependence

after a naloxone challenge (an opioid receptor antagonist)

[14]; and (iv) intra-PAG injection of morphine produces

conditioned place preference [163]. Thus, the PAG is

important in both the physical dependence and reinforcing

actions of opioids. The needed dose of morphine to

produce conditioned place preference via PAG injections

was ten-fold higher (i.e., 5 lg vs. 0.2 lg, respectively) than
via VTA [163]. This observation perhaps explains why in

previous reports, animals did not exert self-injections into

the PAG, but do into the VTA [14].

An extensively studied (and thus, not further discussed

here) link between analgesia and addiction involves the

opioid system [210–212]. Indeed, the great risk in pre-

scribing opioid analgesics is the rapid development of

addiction [210, 212]. Both analgesia mediated by opioids

[149] and by placebo require opioid receptors in the PAG

[213, 214]. Intriguingly, morphine withdrawal produces

extreme anxiety accompanied by a plethora of physically

uncomfortable disturbances, phenomena linked to PAG

sensitization [215]. It has been classically reported that

painful stressors are strong factors in relapsing opioid-

related addiction [216]. Moreover, chronic use of opioids

drives hyperalgesia and negative emotional states which

have been proposed to contribute to the compulsive phase

of drug addiction [84].

Hence, PAG is a key region highly altered during opioid

withdrawal and may be responsible for some of the

compulsive actions in the drug addiction. But also, simple

intra-PAG injections of opioids (e.g., morphine) produce

reinforcing actions (e.g., conditioning place preference).

Sedatives, Hypnotics, or Anxiolytics

Electrical stimulation of D-PAG evokes fear, panic attacks,

intrusive ideas about death, among other negative feelings

in humans [37]. Notoriously, tThe panicolytic, but not the

anxiolytic action of alprazolam (a benzodiazepine) is

prevented by intra-D-PAG injection of bicuculline or

flumazenil, suggesting the participation of GABAA recep-

tors in this brain structure [203]. Moreover, a serotonin-

ergic circuit integrating the DR nucleus and VL-PAG, and

controlled by the BLA, has been proposed as a natural anti-

panic system that is facilitated by chronic antidepressants

[217]. Therefore, part of the alleviative actions of this kind

of compounds may be directly and/or indirectly associated

with its actions in the PAG.

Stimulants

Cocaine is a non-selective inhibitor of monoamine trans-

porters; thus, this drug potentiates monoaminergic trans-

mission (DA, serotonin, and norepinephrine) and increases

DA levels in the NAc [218] and amygdala [219, 220].

Recently, Li et al. [149] characterized the DA/glutamate

neurons in the VL-PAG that are involved in pain integra-

tion and opiate anti-nociception. The reciprocal PAG-EA

connections [138, 139, 221] are dopaminergic and could be

involved in the expression of withdrawal/negative affect

symptoms of methamphetamine [222].

It is interesting to consider that social stress seems to

strongly promote cocaine intake [223, 224]. In fact, stress

induced by social defeat or cocaine intake produces Fos-

like immunoreactive (Fos-LI) augments in PAG, DR and

locus coeruleus [223]. These changes may be related to

cocaine sensitization [224]. Prolonged use of cocaine

attenuates the dopamine efflux in the NAc and promotes

dose-dependent anxiety and anhedonia [204, 225]. More-

over, after a cocaine binge, the PAG neurons are hyper-

responsive to tactile stimulation in rats [204]. In humans,

Zhang et al. [85] reported alterations in functional connec-

tivity between the PAG, hypothalamus, and D-mPFC in

cocaine-dependent subjects compared to healthy controls.

Furthermore, a higher activation of the PAG and connec-

tivity of the PAG with the vmPFC was detected been

reported during exposure to cocaine cues [86].

The PAG-vmPFC connectivity is correlated with tonic

cocaine craving and biological sex differences have been

confirmed by a slope test [86]. While PAG-vmPFC

connectivity reflects tonic cocaine craving in men, the

ventromedial PAG appears to play a role in influencing the

PAG response to alleviate cocaine craving in women.

These suggest that PAG may be a key structure involved in

cocaine withdrawal and cocaine craving [86].

Self-administration of other stimulants such as metham-

phetamine produce biochemical adaptations in DA neurons

in the PAG, but when methamphetamine-seeking is

combined with exercise (e.g., wheel-running) there is a

reduction in the biochemical alterations in the PAG and in

the methamphetamine-seeking, suggesting that exercise

plays a neuroprotective role via the prevention of PAG

alterations [222]. For stimulants, the PAG seems to be

involved in substance-seeking, while biochemical changes

in DA neurons in the PAG may contribute to the

consolidation of the drug addiction cycle.
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Tobacco

Nicotine interacts with high affinity with the a4 subunit

[226] of the nicotinic acetylcholine receptor (nAChR),

which is ubiquitously expressed in the brain [227].

nAChRs are expressed in the mesocorticolimbic dopamin-

ergic system, which is mainly implicated in the reinforcing

action of tobacco consumption [228, 229]. The background

of nicotine addiction has several components, including

pharmacological, genetic, and environmental factors [230].

Pharmacologically, nicotine interacts as an agonist for the

different subunits of nAChRs [226]. The nAChRs consist

of an assembled complex with five subunits selected from

nine a subunits (a2 to a10) and three b subunits (b2 to b4)
[230].

Different combinations of these subunits produce the

different subtypes of nAChR, the a4b2 subtype being the

main receptor that mediates nicotine addiction [231, 232].

Activation of nAChRs modulates synaptic transmission,

since it increases the probability of release of neurotrans-

mitters, including DA, GABA, glycine, glutamate, nore-

pinephrine, and ACh [233–236]. In fact, activation of

nAChRs in midbrain DA neurons mediates DA release in

the NAc shell [237] which explains (at least in part) the

reinforcing actions of nicotine [238]. The ACh that

endogenously regulates midbrain DA is released from the

mesopontine nuclei in a circuit that involves PAG neurons

[238]. The PAG receives cholinergic inputs from the

pontine tegmentum [239] and they contribute to maintain-

ing the tonic activity of its GABAergic neurons [233]. On

the other hand, a7 nAChRs have been reported to be

expressed in VL-PAG cholinergic neurons that project to

the RVM [240, 241]. Activation of these cholinergic

projections is involved in pain inhibition [233]. Interest-

ingly, the VL-PAG neurons are also involved in opioid-

mediated analgesia [62], which is mediated via inhibition

of GABAergic neurons in the PAG [242]. The above

dichotomy strongly supports the integrative role of the

PAG in the physiology of pain and analgesia via stimu-

lation and inhibition of different nuclei by its cholinergic

and GABAergic projections, respectively [233, 241].

Some emotions, such as fear and anxiety induce

functional changes in the PAG [32, 243]. Likewise,

depression can modify the genetic profile of the VL-PAG

via mechanisms that remain to be elucidated [244].

Interestingly, nicotine has been shown to have antidepres-

sant effects in several animal models [245–248]. The link

between the antidepressant effects induced by nicotine and

the nAChRs in the PAG is unknown. However, depression

is a sign of nicotine withdrawal [249]. A plausible

explanation of this link may be the actions mediated by

the important cholinergic control of serotoninergic neurons

from the DR to the NAc [205]. It is important to note that

DR neurons are under dual modulation by PAG DA/

glutamate neurons with repercussions for anxiety and

analgesia [207]. Moreover, nicotine induces anxiolytic

effects via DR neurons [206].

Although the participation of the PAG in the reinforcing

mechanisms of nicotine are obscure, like other main

pharmacological classes of addictive drugs, its direct and/

or indirect actions in the PAG drives pain inhibition and

anxiolysis, which contribute to the alleviation of physical

discomfort induced by several conditions including nico-

tine withdrawal.

PAG involvement in appetitive behaviors and food

intake

PAG activation promotes food intake and reward process-

ing [159], as it has extensive reciprocal connections with

brain circuits that mediate appetitive processes and con-

summatory behaviors (prefrontal cortex, LH, BNST, amyg-

dala, parabrachial nucleus, VTA, and DR)

[29, 136, 250, 251]. The food reward depends on the AL,

DL, and VL PAG [136, 164]. It has been reported that these

columns of the PAG contain synaptic terminals that release

relaxin and oxytocin [252], peptides with a modulatory

effect on feeding [253, 254]. There is a reciprocal relation-

ship between the DR and the PAG since they play roles in

multiple behaviors such as food consumption, anxiety,

withdrawal, and depression [29]. On the other hand, it has

been shown that the suppression of GABAergic neuronal

activity in the VL-PAG, either directly or by long-projec-

tion GABAergic inputs from the BNST or LH, is sufficient

to induce feeding behavior and, on the contrary, activation

of these cells suppresses this behavior [136].

A link between drug-seeking and food-seeking has been

reported [255, 256]. DA, which is essential for activation of

the reward system, is also key for activating the ‘‘motiva-

tion system’’ [255, 256]. An imbalance in the dopaminergic

system has been associated with both the compulsion for a

drug and the compulsion to eat food [256, 257]. Interest-

ingly, both food intake and reward/aversion processes are

under fine modulation by the endocannabinoid system and

putative cannabinoid receptors [186, 187, 258–260]. Under

these circumstances, the PAG might serve and participate

as an interface between the endogenous opioid system and

the hedonic aspects of food reward [261–264]. Actually,

the PAG is required for the normal consumption of food

[29, 136] and its participation in appetitive and consum-

matory behaviors was recently discussed by Silva and

McNaughton in an excellent critical review [29]. Our view

completely agrees with Silva and McNaughton about the

key role of the PAG in motivated behaviors and we support

their proposal with the inclusion of the drug addiction cycle

among the phenomena in which the PAG is involved.
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Conclusions

Especially due to its small size, anatomical location, and its

indirect participation in multiple kinds of motivated

behaviors, the contribution of the PAG in the consolidation

of drug addiction remains elusive and underestimated. We

propose that, mainly by promoting the alleviation of

physical discomfort (mainly pain, anxiety, and fear) linked

to substance-withdrawal, the PAG may contribute to the

mechanisms underlying relapse (compulsive intake). How-

ever, the participation of the PAG in the initial phase

(impulsive intake) of drug intake cannot be excluded and

requires further investigation.
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senVanDenBrink A, et al. Analysis of anandamide- and

lysophosphatidylinositol-induced inhibition of the vasopressor

responses produced by sympathetic stimulation or noradrenaline

in pithed rats. Eur J Pharmacol 2013, 721: 168–177.

69. Marichal-Cancino BA, Altamirano-Espinoza AH, Manrique-

Maldonado G, MaassenVanDenBrink A, Villalón CM. Role of

pre-junctional CB1, but not CB2, TRPV1 or GPR55 receptors in

anandamide-induced inhibition of the vasodepressor sensory

123

P. Va�zquez-Leo�n et al.: The Periaqueductal Gray and Its Extended Participation 1503



CGRPergic outflow in pithed rats. Basic Clin Pharmacol Toxicol

2014, 114: 240–247.

70. Wong TM, Shan J. Modulation of sympathetic actions on the

heart by opioid receptor stimulation. J Biomed Sci 2001, 8:

299–306.

71. Heim C, Nemeroff CB. The impact of early adverse experiences

on brain systems involved in the pathophysiology of anxiety and

affective disorders. Biol Psychiatry 1999, 46: 1509–1522.

72. Wright KM, Jhou TC, Pimpinelli D, McDannald MA. Cue-

inhibited ventrolateral periaqueductal gray neurons signal fear

output and threat probability in male rats. Elife Sci 2019, 8:

e50054.

73. Wright KM, McDannald MA. Ventrolateral periaqueductal gray

neurons prioritize threat probability over fear output. Elife 2019,

8: e45013.

74. Risbrough VB, Stein MB. Role of corticotropin releasing factor

in anxiety disorders: A translational research perspective. Horm

Behav 2006, 50: 550–561.

75. Mathew SJ, Price RB, Charney DS. Recent advances in the

neurobiology of anxiety disorders: Implications for novel

therapeutics. Am J Med Genet C Semin Med Genet 2008,

148C: 89–98.

76. Bertoglio LJ, de Bortoli VC, Zangrossi H Jr. Cholecystokinin-2

receptors modulate freezing and escape behaviors evoked by the

electrical stimulation of the rat dorsolateral periaqueductal gray.

Brain Res 2007, 1156: 133–138.

77. Bertoglio LJ, Zangrossi H Jr. Involvement of dorsolateral

periaqueductal gray cholecystokinin-2 receptors in the regula-

tion of a panic-related behavior in rats. Brain Res 2005, 1059:

46–51.

78. Netto CF, Guimarães FS. Anxiogenic effect of cholecystokinin

in the dorsal periaqueductal gray. Neuropsychopharmacology

2004, 29: 101–107.

79. Zanoveli JM, Netto CF, Guimarães FS, Zangrossi H Jr. Systemic
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188. Allende G, Chávez-Reyes J, Guerrero-Alba R, Vázquez-León P,

Marichal-Cancino BA. Advances in neurobiology and pharma-

cology of GPR12. Front Pharmacol 2020, 11: 628.

189. Barrot M, Sesack SR, Georges F, Pistis M, Hong S, Jhou TC.

Braking dopamine systems: A new GABA master structure for

mesolimbic and nigrostriatal functions. J Neurosci 2012, 32:

14094–14101.

190. Casarotto PC, Terzian AL, Aguiar DC, Zangrossi H, Guimarães
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