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Abstract Migraine is a common and debilitating headache

disorder. Although its pathogenesis remains elusive,

abnormal trigeminal and central nervous system activity

is likely to play an important role. Transient receptor

potential (TRP) channels, which transduce noxious stimuli

into pain signals, are expressed in trigeminal ganglion

neurons and brain regions closely associated with the

pathophysiology of migraine. In the trigeminal ganglion,

TRP channels co-localize with calcitonin gene-related

peptide, a neuropeptide crucially implicated in migraine

pathophysiology. Many preclinical and clinical data sup-

port the roles of TRP channels in migraine. In particular,

activation of TRP cation channel V1 has been shown to

regulate calcitonin gene-related peptide release from

trigeminal nerves. Intriguingly, several effective anti-

migraine therapies, including botulinum neurotoxin type

A, affect the functions of TRP cation channels. Here, we

discuss currently available data regarding the roles of

major TRP cation channels in the pathophysiology of

migraine and the therapeutic applicability thereof.

Keywords Migraine � TRPV1 � TRPM8 � TRPA1 �
TRPV4 � Calcitonin gene-related peptide � Trigeminal

ganglion � Neurogenic inflammation

Introduction

Migraine is one of the most debilitating neurological

disorders, characterized by recurrent headache attacks

[1, 2]. The concept that migraine is a channelopathy has

been substantiated by the fact that familial hemiplegic

migraine types 1 and 3 are caused by mutations in the

genes encoding the a1 subunit of the CaV2.1 P/Q-type

voltage-gated Ca2? channel (CACNA1A) [3] and the a1
subunit of the neuronal NaV1.1 voltage-gated Na? channel

(SCN1A) [4], respectively. Furthermore, genetic abnormal-

ities of the two-pore-domain K? channel, TRESK, have

been shown to cause a familial form of migraine with aura.

Unlike the CaV2.1 and NaV1.1 channels, the TRESK

channel is strongly expressed in trigeminal ganglion (TG)

neurons, pointing to the importance of peripheral trigem-

inal nociception in migraine pathophysiology. Transient

receptor potential (TRP) channels are non-selective cation

channels that transduce various noxious stimuli into pain

signals [5]. They are expressed in TG neurons, and some

are associated with the functions of calcitonin gene-related

peptide (CGRP) [6, 7], a key target molecule of migraine

therapy [8]. Considerable data support the role of TRP

channels in migraine, so TRP channel modulation may be a

promising therapeutic strategy for its treatment. In addi-

tion, migraine attacks are known to be provoked and

worsened by environmental factors [1, 2]. TRP channels

may also be involved in the trigger mechanism of attacks,

because they sense changes in ambient temperature [9] and

environmental pollutants [10]. Here, we discuss the roles of
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TRP channels in the pathophysiology of migraine and the

potential of TRP-based approaches to migraine therapy.

Migraine Pathophysiology

Migraine, a chronic neurological disorder that affects[10%of

the general population [1, 2], is clinically characterized by

recurrent attacks ofmoderate to severe headache lasting 4–72 h

without treatment. Attacks are usually accompanied by nausea,

vomiting, and heightened sensitivity to light and sound. The

Global Burden of Disease study has recently identified

migraine as the most disabling neurological disorder and the

second leading cause of years lived with disability worldwide

[11]. Its pathophysiological mechanisms involve both the

central and peripheral nervous systems. In 25%–30% of

patients, some attacks are accompanied by an aura phase,

whichmanifests with transient visual, sensory, and language or

brainstem disturbances [12]. The aura is now believed to be

caused by cortical spreading depolarization/depression (CSD),

a slowly propagating wave of rapid, near-complete depolar-

ization of brain cells that lasts for about 1 min and silences

electrical activity for several minutes [13]. Moreover, many

patients experience prodromes such as fatigue and changes in

appetite hours before an attack. Neuroimaging data show

abnormal activation of the hypothalamus during prodromes

[14, 15]. On the other hand, intravenous administration of

CGRP has been shown to induce attacks specifically in

migraine patients [16, 17]. CGRPdoes not readily permeate the

blood-brain barrier, thus making it likely that the neuropeptide

acts at peripheral sites, such as the TG, the dura mater, and

meningeal vessels in this setting. This tenet is endorsed by the

fact that monoclonal antibodies targeting CGRP or its receptor,

whichdonot cross the blood-brain barrier either, are efficacious

in the prophylaxis of attacks [8]. Hence, peripheral CGRP

actions clearly play a crucial role in the development of

migraine attacks.

It remains elusive how migraine headaches are gener-

ated. However, it has been postulated that the release of

neuropeptides such as CGRP and substance P (SP) by

trigeminal nerve fibers causes neurogenic inflammation

and subsequent sensitization [18]. These alterations may be

responsible for the relatively long and severe headaches

associated with migraine. Furthermore, animal studies have

demonstrated that CSD can generate a nociceptive stimulus

capable of activating the trigeminal system [19–21], which

would account for the temporal relation between the aura

and the headache phases. Recent studies have clarified that

CSD also induces dural macrophage activation, mast cell

degranulation, and dilatation of the pial and dural vessels,

all of which seem to be causes of headache [22, 23].

In particular, meningeal mast cells seem to be relevant

in consideration of their proximity to the meningeal

nociceptors and their ability to release a plethora of pro-

inflammatory and pro-algesic substances [24]. Migraine

symptoms are affected by environmental factors. In some

patients, attacks are triggered by changes in ambient

temperature or atmospheric pressure [9]. Moreover,

migraine headaches are exacerbated by light [25], sound,

and chemical irritants, such as cigarette smoke [10]. These

observations highlight the role of the information detected

by sensory neurons in migraine pathophysiology.

Involvement of TRP Channels in Migraine

The trp gene was originally discovered in a Drosophila

mutant with defective vision [26]. Subsequently, this gene

was found to encode a protein that plays an important role

in phototransduction. Light-activated rhodopsin induces

phospholipase C to hydrolyze phosphatidylinositol 4,5-

bisphosphate (PIP2) which leads to increased Ca2? per-

meability of the TRP channel causing the depolarization of

photoreceptor cells [27]. The ancestral TRP channel, which

possesses six transmembrane domains, is regarded as an

ion channel prototype that transduces environmental stim-

uli into Ca2? signaling.

In 1997, Caterina et al. [28] isolated a cDNA clone

encoding a capsaicin receptor with non-selective cation

channel activity. This receptor was initially referred to as

vanilloid receptor 1 (VR1) because a vanilloid moiety of

capsaicin was an essential component responsible for the

activation of this novel receptor. Concomitantly, it was

revealed that VR1 was structurally related to the TRP

channel family. Hence, VR1 was later renamed TRP cation

channel V1 (TRPV1). From the functional viewpoint, the

gating of TRPV1 is driven by noxious heat ([ 42�C) which
helps us understand why the sensation induced by capsaicin

ingestion is perceived as ‘‘hot’’ and ‘‘burning’’. With the

subsequent increase in the number of mammalian TRP

family members, they are now classified into six subfam-

ilies – TRPC, TRPV, TRPM, TRPML, TRPP, and TRPA

[29, 30]. Some of them were found to be activated by

specific temperature ranges [31]. These thermosensitive

TRP channels are expressed in primary sensory neurons,

which include TG neurons, to confer the ability to detect

changes in ambient temperature. Besides, most TRP

channels serve in nociceptors as a transducer of noxious

stimuli other than non-physiological temperature changes

into pain signals [5]. TRPV1 is activated by protons

[32, 33] and TRPA1 by reactive oxygen species (ROS)

[34]. It should be pointed out that both of these substances

have been implicated in the pathogenesis of various pain

disorders including migraine [35]. Furthermore, TRP

channels are known to be sensitized under pathological

conditions. For example, the sensitization of TRPV1 to
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heat is responsible for the thermal hyperalgesia associated

with carrageenan-induced inflammation [36].

Taken together, TRP channels are involved in the detection

of environmental changes and trigeminal nociception. In

migraine pathophysiology, where neurogenic inflammation is

considered to play an important role [37], TRP channel

activity is likely to be upregulated, so blocking such

sensitization would be a potential therapeutic strategy. For

these reasons, the relationship between TRP channels and

migraine has attracted attention [30, 38, 39]. Tremendous

amounts of data on mammalian TRP channels have been

accumulated since the discovery of VR1/TRPV1. In this

article, we focus on the roles of TRPV1, TRPA1, TRPM8,

and TRPV4 in the pathophysiology of migraine, because

relatively sufficient data relevant to migraine are available for

these four channels (Fig. 1).

TRPV1

TRPV1 Localization and Function in the Trigeminal

System

TRPV1 is expressed mainly in small- and medium-sized

TG neurons [6, 40, 41]. Approximately 10%–20% of TG

neurons are reported to be positive for TRPV1 with slight

species differences [6, 40–42]. Moreover, a subset of

TRPV1-positive neurons is known to contain CGRP

[6, 41], and TRPV1 stimulation induces CGRP release

[43–45]. The coexistence of TRPV1 and CGRP has also

been confirmed in dural trigeminal fibers [6, 7]. The dura

mater is considered to be an important disease locus of

migraine [46]. Clinical features of attacks, such as a

throbbing headache exacerbated by physical activity,

nausea, and photophobia, have also been reported in

patients with meningitis [46]. Sumatriptan, which is widely

used in acute migraine therapy, was developed with

success in animal studies using plasma protein extravasa-

tion and vasodilation in the dura mater as surrogate

markers [37]. Although the exact role of TRPV1 in

migraine pathogenesis remains obscure, the simplistic

view that the headaches are caused by nociceptive stimuli

to TRPV1-expressing nociceptors is not tenable, because

the TRPV1 antagonist SB-705498 was not effective as an

acute therapy in a clinical study [30, 47]. In the trigeminal

nervous system, the CGRP receptor components calcitonin

receptor-like receptor and receptor activity-modifying

protein 1 are expressed in thinly-myelinated Ad-fibers,
whereas CGRP is present in unmyelinated C-fibers

[48, 49]. This implies that C-fiber-derived CGRP would

Fig. 1 Major functions of TRPV1, TRPM8, TRPA1, and TRPV4

channels relevant to migraine pathophysiology. BoNT-A, botulinum

neurotoxin type A; CSD, cortical spreading depression; NGF, nerve

growth factor; PGE2, prostaglandin E2; ROS, reactive oxygen

species; TRP, transient receptor potential.
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act on CGRP receptors located on Ad-fibers. CGRP itself

does not directly cause migraine; rather it induces migraine

attacks in a delayed manner [16, 17]. Several lines of

evidence show that CGRP is involved in sensitization

[50–53]. CGRP-induced sensitization is known to play a

role in the potentiation of N-methyl-D-aspartic acid

receptor functions through protein kinase A-mediated

phosphorylation [54–57]. Both CGRP and glutamate are

increased in the cerebrospinal fluid from patients with

chronic migraine [58]. Thus, it has speculated that TRPV1

contributes to trigeminal sensitization by promoting the

release of CGRP from C-fibers (Fig. 2). This paradigm

would be compatible with the failure of TRPV1 blockade

to abort migraine attacks because TRPV1 activation is

positioned as an upstream event in the development of

attacks. Consequently, TRPV1 inhibition after an attack

had begun would be too late to relieve the headache.

CSD and TRPV1 Functions

CSD is known to activate the MAP kinase extracellular

signal-regulated kinase (ERK) in TG neurons [21]. Since

this activation is disrupted by the TRPV1 inhibitor

capsazepine, TRPV1 is likely to be activated by CSD

[21]. TRPV1 is known to be expressed in those central

nervous system regions relevant to migraine pathophysiol-

ogy, such as the hippocampus, basal ganglia, thalamus, and

hypothalamus [59]. Mechanically-induced CSD is not

inhibited by TRPV1 blockade with A-993610, implying

that TRPV1 activity does not play a significant role in the

process of eliciting CSD [60]. However, repetitive cap-

saicin stimulation of the trigeminal region has been shown

to lower the threshold of CSD induction by suppressing

GABAergic activity [61]. It is inferred that repeated

trigeminal nociceptive stimulation renders the cerebral

cortex susceptible to CSD induction. An important clinical

implication of this finding is that clustering of migraine

aura attacks may increase the likelihood of recurrence.

Therapeutic Strategies in Migraine with Regard

to TRPV1 Functions

TRPV1 functions are known to be modified by inflamma-

tory mediators. Prostaglandin E2 sensitizes TRPV1 chan-

nels through protein kinase A-induced phosphorylation of

the scaffold protein named A-kinase anchoring protein 150

[62]. Bradykinin enhances TRPV1-mediated currents in a

protein kinase C-dependent manner [63]. complete Fre-

und’s adjuvant promotes the translocation of TRPV1 to the

cell surface via cyclin-dependent kinase 5-mediated

TRPV1 phosphorylation at threonine 407 [64] and

increases TRPV1 channel activity via small ubiquitin-like

modifier (SUMO)ylation at lysine 822 [65]. Although

nerve growth factor (NGF) promotes neuronal growth

during development, it also serves as an inflammatory

mediator with pro-algesic actions [66]. Of particular

relevance, NGF is increased in the plasma and cere-

brospinal fluid of patients experiencing chronic daily

headaches [67]. NGF increases TRPV1 expression by

activating p38 MAP kinase [68], which is mediated by the

ubiquitin ligase MYCBP2 [69]. Furthermore, ligation of

NGF to the TrkA receptor leads to TRPV1 phosphorylation

at tyrosine 200 via Src kinase, causing increased insertion

of TRPV1 into the plasma membrane [70]. Toll-like

receptors (TLRs) are involved in innate immunity [71, 72],

and TLR4 coexists with TRPV1 in TG neurons [73].

Recent evidence has shown that TLR4 inhibits the

endocytosis of TRPV1, thus increasing its cell-surface

expression level [74]. Collectively, in migraine manage-

ment, anti-inflammatory measures would be favorable for

restricting TRPV1 activity.

Fig. 2 Possible action of

TRPV1 on CGRP release from

trigeminal terminals. TRPV1

activation (1) leads to CGRP

release from C-fibers (2). Sub-

sequently, CGRP acts on the

CGRP receptor expressed on the

surface of Ad-fibers (3), result-
ing in the development of sen-

sitization (4). Such sensitization

of the trigeminal system may be

responsible for the generation of

the headache. CGRP, calcitonin

gene-related peptide.
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Botulinum neurotoxin type A (BoNT-A) is used to treat

chronic migraine. Electrophysiological analyses have

revealed that BoNT-A selectively inhibits the C-fibers of

meningeal nociceptors [75]. There is anatomical evidence

for meningeal nociceptors that send collaterals to the scalp,

which provides a rationale for the ability of subcutaneously

injected BoNT-A to affect dural trigeminal functions

[76–78]. Furthermore, TRPV1 and TRPA1 functions are

blocked by BoNT-A [79]. In agreement with these findings,

BoNT-A decreases TRPV1 expression in the TG and

trigeminal nerve fibers, while P2X3 expression is unaf-

fected [80]. BoNT-A-treated mice are less responsive to

capsaicin [80] and in primary cultures of TG neurons,

TRPV1 cell-surface expression levels are reduced by

BoNT-A treatment. Site-directed mutagenesis of TRPV1

at tyrosine 200 leads to a remarkable decrease in its

expression, and this effect is reversed by proteasome

inhibition. The last finding raises the possibility that

TRPV1 that cannot be normally inserted into the plasma

membrane is degraded by the cytoplasmic proteasome

system (Fig. 3). The TRPV1 antagonist SB-705498 was

not only abandoned as an acute anti-migraine therapy, but

hyperthermia was found to be its unfavorable side-effect

[30, 47]. By contrast, BoNT-A-mediated TRPV1 inhibition

has the major advantage of not causing hyperthermia.

TRPM8

TRPM8 as a Cold Sensor

TRPM8 was discovered as a non-selective cation channel

responsive to cold (8�C–25�C) and menthol [81, 82].

Regarding its activation, there is an interaction between

these stimuli, such that exposure to menthol elevates the

threshold temperature for cold stimulation [81, 82]. Intrigu-

ingly, PIP2, which negatively regulates TRPV1 functions,

conversely enhances TRPM8 activity. Hence, phospholi-

pase C activation following TRPM8 stimulation downreg-

ulates TRPM8 functions, thus causing rapid desensitization

[83–85]. Genetic ablation studies have corroborated that

TRPM8 plays a crucial role in cold sensation [86, 87].

Unlike TRPV1, TRPM8 expression is restricted to primary

sensory neurons in the nervous system [82]. In the TG,

TRPM8 is mainly expressed in small neurons [78, 88, 89].

Functional Roles of TRPM8 in Pain Disorders

and Migraine

TRPM8 seems to have dual implications for pain; it is

involved in the development of cold allodynia, whereas

cold stimulation in the temperature range that activates

TRPM8 provides innocuous and soothing sensations.

Nerve injury-associated and complete Freund’s adjuvant-

induced cold allodynia is attenuated in TRPM8-knockout

mice [87]. In accord with this, there is a movement for

therapeutic application of TRPM8 antagonists to pain

disorders [90]. On the other hand, TRPM8 has been found

to mediate the analgesic effects of moderate cooling

against the painful stimulus induced by formalin adminis-

tration [86]. From the clinical viewpoint, menthol applica-

tion can relieve migraine headaches [91, 92]. It has been

pointed out that menthol has differing effects on capsaicin-

induced pain depending on the time between exposure to

capsaicin and menthol [93]. Hence, it is inferred that

TRPM8 is involved in either sensing unpleasant cold

stimuli or mediating the effects of cold analgesia in a

context-dependent manner. Since its discovery, TRPM8

has been found to be co-expressed with TRPV1 in a subset

of TG neurons [81]. Although the significance of this

coexistence remains to be fully elucidated, TG neurons co-

expressing TRPM8 and TRPV1 may be involved in

eliciting noxious pain [94]. The co-expression frequency

of TRPV1 and TRPM8 in TG neurons is increased in

inflammatory soup-induced meningeal inflammation [78].

While this may favor the occurrence of cold allodynia, the

increased coexistence concomitantly provides a greater

chance for the ability of TRPM8 stimulation to antagonize

TRPV1 functions (Fig. 4). In support of the latter, TRPM8

activation with icilin alleviates thermal allodynia in

inflammatory soup-induced meningeal inflammation [78],

reminiscent of the efficacy of menthol in acute migraine

attacks as noted above [91, 92].

TRPM8 Gene Polymorphism Determines the Sus-

ceptibility to Migraine Development

The relationship between TRPM8 and migraine has been

attracting particular attention because genome-wide asso-

ciation studies have reproducibly shown that single

nucleotide polymorphisms of the TRPM8 gene

(rs10166942[C/T] and rs17862920[T/C]) determine an

increased risk of migraine [95–97]. TRPM8 mRNA

expression from the chromosome harboring

rs10166942[C] was found to be lower than that derived

from the chromosome harboring rs10166942[T] in dorsal

root ganglion samples, and rs10166942[C] carriers are

significantly less sensitive to cold pain than non-carriers

[98]. Although the exact mechanism of this allelic expres-

sion imbalance is unclear, impaired transcription and/or

transcript instability might be involved. Intriguingly,

TRPM8 channels are subject to a variety of post-transcrip-

tional modifications [99]. Epidemiologically,

rs10166942[T] carriers are associated with reduced

migraine risk compared to rs10166942[C] carriers. Hence,

increased TRPM8 activity seems to favor the risk of
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developing migraine. This is consistent with preclinical

findings in rats showing that icilin applied to the dura

results in cutaneous allodynia [100]. Furthermore, migraine

patients carrying rs10166942[T] are more likely to have

chronic migraine and allodynic symptoms [101] indicating

that TRPM8-related single nucleotide polymorphisms can

affect the clinical phenotypes of migraine as well.

TRPA1

TRPA1 as a Polymodal TRP Cation Channel

TRPA1 (also known as ANKTM1), the sole member of the

TRPA subfamily, was cloned from cultured human fetal

lung fibroblasts [102]. TRPA1 is co-expressed with TRPV1

in a subpopulation of non-myelinated or thinly myelinated

C- or Ad-fiber neurons in the dorsal root ganglion, TG, and

vagus ganglion [103]. TRPA1 expression has been iden-

tified in both peptidergic sensory neurons (enriched in

CGRP, SP, and neurokinin A) and non-peptidergic, IB4-

binding neurons [104]. There is direct evidence for the

involvement of TRPA1 in pain disorders. A gain-of-

function mutation in TRPA1 (p.Asp855Cys) has been

identified as the cause of familial episodic pain syndrome

characterized by recurrent episodes of debilitating upper

body pain, triggered or exacerbated by fatigue, cold

exposure, fasting, and weather changes [105]. TRPA1

was originally identified as a noxious cold-sensitive cation

channel activated by temperatures below 16�C [106]. In

addition, TRPA1 is sensitive to pungent food ingredients

(e.g., allyl isothiocyanate [mustard oil], cinnamaldehyde

Fig. 3 Impaired sorting of

TRPV1 to the plasma mem-

brane reduces the TRPV1

expression level. A Normally,

TRPV1 is translocated to the

plasma membrane via exocyto-

sis. B BoNT-A inhibits the

exocytosis-mediated sorting of

TRPV1 to the plasma mem-

brane. TRPV1 proteins that

reside in the cytoplasm are

subjected to proteolysis by the

proteasome system, leading to

reduced expression of TRPV1.

BoNT-A, botulinum neurotoxin

type A.
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[cinnamon], allicin [garlic], and eugenol [clove bud oil

compounds]), environmental irritants, and industrial pol-

lutants, as well as endogenous substances (e.g., bradykinin,

ROS, nitric oxide [NO], and lipid oxidation products)

[107, 108], some of which are known to trigger migraine

attacks.

Is TRPA1 a Crucial Molecule for Migraine Head-

ache Generation?

A growing number of studies have implicated TRPA1 in

the development of migraine headache [109], and this is

supported by the finding from the ‘‘headache tree’’. It has

long been known that exposure to Umbellularia califor-

nica, a tree native to southwestern Oregon and northern

California, causes headache crises. Umbellulone, the major

volatile component of its leaves, was found to increase the

intracellular Ca2? concentration in TRPA1-transfected

HEK293 cells in a concentration-dependent manner, and

umbellulone-evoked currents in mouse TG neurons were

abrogated by TRPA1 knockout [110]. These findings

indicate that umbellulone is a TRPA1 agonist. Further-

more, umbellulone administration evokes CGRP release

from TG neurons and dural trigeminal nerves, increases

meningeal blood flow [110], and facilitates CSD propaga-

tion [111]. Regarding the involvement of TRPA1 in CSD

induction, a recent study using brain slices demonstrated

that local ROS application (H2O2) promotes cortical

responsiveness to CSD in a way that involves TRPA1

and CGRP [112]. Consistent with this, cortical neurons

have been shown to express TRPA1 [112, 113] and CGRP

[114]. However, in this paradigm, it is unclear how ROS is

generated within the cerebral cortex at the initial step.

Another possible scenario for the involvement of these

three key players in determining CSD susceptibility might

be that CSD stimulates meningeal nociceptors [20], thereby

causing TRPA1/TRPV1 activation [21], CGRP release, and

neurogenic inflammation in the dura mater [22, 23], thus

lowering the threshold for CSD induction [61]. In this

model, it is envisioned that ROS production in meningeal

nociceptors is induced by CSD [115] and/or TRPV1

activation [116], where TRPV1-generated ROS might be

able to activate TRPA1 in an autocrine and/or paracrine

manner. The involvement of ROS-induced TRPA1 activa-

tion has also been reported in a trigeminal neuropathic pain

model, where chemokine (C-C motif) ligand 2-medated

mobilization of macrophages/monocytes plays a pivotal

role [117]. Moreover, it has been shown that ROS

production downstream of TRPA1 activation in Schwann

cells may contribute to the development of neuropathic

pain [118].

TRPA1 and Environmental Migraine Triggers

In addition, some substances cause headaches in suscep-

tible individuals. Acrolein is known to be a major irritant in

cigarette smoke and an established migraine trigger [10].

The intranasal application of acrolein also evokes CGRP-

dependent meningeal vasodilation via TRPA1 activation

[119]. Furthermore, acrolein exposure produces chronic

migraine phenotypes, such as peri-orbital allodynia, c-Fos

induction in the trigeminal nucleus caudalis, and altered

behavior in rats [120]. Therapeutically, the acrolein-

induced increase in meningeal blood flow is attenuated

Fig. 4 Altered actions of

TRPM8 in different situations.

A TRPM8 activation in TG

neurons exclusively expressing

TRPM8 channels is believed to

generate only innocuous sensa-

tions. B TRPM8 activation of

TG neurons expressing both

TRPV1 and TRPM8 causes

noxious sensations. C When

TRPV1/TRPM8-expressing TG

neurons are subjected to TRPV1

activation in the dura, TRPM8

activation in their extracranial

collateral axons can exert an

analgesic effect, thus assuaging

pain.
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by sumatriptan and valproic acid [120], the latter of which

is known to be a prophylactic drug for migraine [121].

Hence, these anti-migraine drugs seem to exert an

inhibitory action on TRPA1 itself or its downstream events.

Migraine attacks are provoked by NO donors, such as

nitroglycerin and glyceryl trinitrate [122]. Glyceryl trini-

trate has been reported to cause facial allodynia by

inducing the TRPA1-mediated generation of reactive

oxygen and carbonyl species within the TG [123]. Fur-

thermore, endogenous NO and hydrogen sulfide contribute

to CGRP release by activating TRPA1 in sensory nerves

[108], which promotes nociceptive firing in the primary

afferents underlying migraine pain under neuroinflamma-

tory conditions [124].

TRPA1 as a Therapeutic Target of Migraine

Intriguingly, a number of anti-migraine drugs have been

shown to desensitize or inhibit TRPA1 activity [108]. In

particular, isopetasin (a major constituent of butterbur

extracts) is reported to desensitize TRPA1, which may

account for the anti-migraine action of butterburs [125].

Caffeine has been demonstrated to suppress human TRPA1

channels by an unknown mechanism [126]. Paracetamol

(acetaminophen) has been demonstrated to exert an anti-

nociceptive effect by desensitizing TRPA1 [127, 128].

Lastly, extracranial administration of BoNT-A inhibits

meningeal nociceptors by reducing the expression of

TRPA1 as well as TRPV1 [79]. However, it should be

noted that it takes 7 days for BoNT-A to reduce the cell-

surface expression of TRPV1 and TRPA1 in the dural

nerve endings of meningeal nociceptors [79, 80]. Hence,

the development of BoNT-like drugs with a more rapid

onset of action is awaited.

TRPV4

TRPV4 is a Unique Polymodal TRP Cation Channel

Discovered as an Osmotic Sensor

TRPV4 (also called VR-OAC [vanilloid receptor-related

osmotically activated ion channel], VRL-2 [vanilloid

receptor-like channel 2], TRPL2 [transient receptor-like

channel 2], and OTRPC4 [osmosensory protein 9-like TRP

channel, member 4]) was originally cloned as the vanilloid

receptor-related channel activated by osmotic changes; it is

strongly expressed in the kidney, liver, and heart

[129, 130]. TRPV4 is a mammalian homolog of OSM-9

in Caenorhabditis elegans [130–133], and TRPV4 expres-

sion has been found to restore the osmotic avoidance

response in OSM-9-deficient worms [134]. TRPV4 is now

known to play an evolutionarily-conserved role in the

transduction of osmotic and mechanical stimuli

[29, 135, 136].

TRPV4 is a polymodal receptor with pleiotropic func-

tions and widespread expression in various cell types/

tissues throughout the body [103, 137]. It can be activated

by various stimuli including physical factors (altered

osmolarity, moderate heat [27�C–34�C] and mechanical

stimuli such as membrane stretch and shear stress),

chemical factors (endocannabinoids, arachidonic acid and

its metabolites, and 4a-phorbol esters), and protons

[103, 138–141].

Function and Localization of TRPV4 in Relation

to Pain Disorders

TRPV4 is also involved in a plethora of pain conditions

[29], encompassing mechanically-evoked [132, 142],

inflammatory [143], neuropathic [144], visceral [145],

and trigeminal pain conditions [146, 147]. Moreover,

ultraviolet B-induced TRPV4 activation in the epidermis

may be responsible for the development of sunburn pain

[148]. A recent study has disclosed that the Piezo1–TRPV4

axis is involved in the exacerbation of pancreatitis via

sustained elevation of intracellular Ca2?, thus highlighting

the role of TRPV4 in visceral pain [149]. TRPV4 activation

is known to potentiate the tetrodotoxin-sensitive Na?

current [150] and TRPV1 function [151] in TG neurons.

Thus, TRPV4 also seems to serve as a pain enhancer in TG

neurons.

TRPV4 expression has been reported not only in

primary sensory neurons [147, 152] but also in satellite

glial cells [153]. TRPV4 expression has also been recog-

nized in the central nervous system [154]. TRPV4 mRNA

has been found in neurons [132, 155], astrocytes [156], and

microglia [157]. Astroglial TRPV4 has been shown to

mediate brain edema after traumatic injury [158], a

condition frequently encountered in familial hemiplegic

migraine [159].

Emerging Evidence for the Importance of TRPV4

as a Novel Therapeutic Target for Migraine

Evidence for the role of TRPV4 in migraine pathophysi-

ology is still scarce. However, its activation in response to

mechanical stress and osmolarity changes fits into several

aspects of migraine. For example, TRPV4 sensitization

may be responsible for the worsening of migraine head-

aches by routine physical activity [160]. Also, trigeminal

afferents are known to be sensitized by dural application of

solutions with either increased or decreased osmolarity

[161, 162]. In agreement with this, in vivo electrophysio-

logical patch-clamp recordings demonstrated TRPV4-like

currents in dural afferents in response to the application of
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hypotonic solutions and the TRPV4 activator 4a-PDD
[163]. Furthermore, activation of TRPV4 within the dura of

freely-moving animals induces migraine-like behaviors

(cephalic and extracephalic allodynia) that are inhibited by

a TRPV4 antagonist [163]. Formalin injection into the

whisker pad has been found to induce trigeminal nocifen-

sive behavior by activating Ca2? entry through TRPV4

[147]. Mechanistically, concomitant exposure to formalin

and high humidity seems to activate the TRPV4–p38 MAP

kinase pathway [164].

In rat sensory neurons, immunoreactive TRPV4 is co-

expressed with protease-activated receptor 2 (PAR2), SP,

and CGRP, all of which are associated with migraine

pathophysiology [165]. In particular, PAR2 activation in

the meninges has been found to cause migraine-like pain

behaviors [166]. Since PAR2 is known to underpin

sustained activation of TRPV4 [167], a vicious cycle can

be formed between these two molecules. Hence, the

involvement of the PAR2–TRPV4 pathway in migraine

pathophysiology may warrant further investigations.

Collectively, these findings raise the possibility that

TRPV4 blockade can be a promising novel therapeutic

strategy against migraines. A novel small molecule dual-

channel inhibitor of TRPV4 and TRPA1 has been devel-

oped for attenuation of inflammation and pain including

trigeminal irritant pain [143, 168].

Concluding Remarks

We reviewed the possible roles of four thermosensitive

TRP channels in the pathophysiology of migraine. It is

apparent that each of these channels operates as a detector

of specific noxious stimuli. As discussed in this article,

numerous preclinical and clinical data are available that

support their various roles in migraine. The efficacy of

BoNT-A in the management of chronic migraine implies

that TRPV1 and TRPA1 are bona fide therapeutic targets of

migraine. Notwithstanding, there is no definite proof that

TRP channels mediate migraine headaches because TRP

channel blockade has never been successful as a migraine

therapy. Considering that migraine is a paroxysmal disor-

der, it is necessary to develop TRP antagonists with a rapid

onset of action. Concomitantly, they should not have any

adverse effect on body temperature in terms of clinical

application. A better understanding of the relationship

between TRP channels and CGRP, as well as adequate

control of inflammatory conditions, may be key to

maximizing the effectiveness of TRP channel-based anti-

migraine therapies. Furthermore, TRP channel overactivity

can profoundly affect cellular functions, for example, via

mitochondrial toxicity [169, 170]. Hence, proper

management of TRP channel activity would be protective

against neuropathic changes.
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