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Abstract Metformin (MET), an antidiabetic agent, also

has antioxidative effects in metabolic-related hypertension.

This study was designed to determine whether MET has

anti-hypertensive effects in salt-sensitive hypertensive rats

by inhibiting oxidative stress in the hypothalamic paraven-

tricular nucleus (PVN). Salt-sensitive rats received a high-

salt (HS) diet to induce hypertension, or a normal-salt (NS)

diet as control. At the same time, they received intracere-

broventricular (ICV) infusion of MET or vehicle for 6

weeks. We found that HS rats had higher oxidative stress

levels and mean arterial pressure (MAP) than NS rats. ICV

infusion of MET attenuated MAP and reduced plasma

norepinephrine levels in HS rats. It also decreased reactive

oxygen species and the expression of subunits of NAD(P)H

oxidase, improved the superoxide dismutase activity,

reduced components of the renin-angiotensin system, and

altered neurotransmitters in the PVN. Our findings suggest

that central MET administration lowers MAP in salt-

sensitive hypertension via attenuating oxidative stress,

inhibiting the renin-angiotensin system, and restoring the

balance between excitatory and inhibitory neurotransmit-

ters in the PVN.

Keywords Hypertension � Paraventricular nucleus � Sym-

pathoexcitation � Metformin � Oxidative stress

Introduction

Activation of the sympathetic nervous system is one of the

major reasons for the occurrence and development of

hypertension [1]. The hypothalamic paraventricular

nucleus (PVN) is responsible for sympathetic drive and

cardiovascular control [2]. The PVN controls the level of

sympathetic outflow mainly by the integration of neurohu-

moral activity [3]. As potent intracellular second
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messengers, reactive oxygen species (ROS), especially

superoxide anion, mediate the signaling pathways causing

hypertension [4]. It has been established that NAD(P)H

oxidase plays a major role in ROS production during the

development of hypertension [5]. In addition, angiotensin

II (ANG II)-induced hypertension has been linked to the

promotion of ROS formation in the PVN [6, 7]. Therefore,

reduction of oxidative stress is important in the prevention

and treatment of hypertension. The renin-angiotensin

system (RAS) is an important mediator that contributes

to cardiovascular diseases [8]. As the main bioactive

component of the RAS, ANG II acts in the central nervous

system via binding to the ANG II type 1 receptor (AT1-R),

whereby it contributes to sympathoexcitation and the

hypertensive response [9]. Neurotransmitters in the PVN

such as glutamate, norepinephrine (NE), and gamma-

aminobutyric acid (GABA) are involved in the develop-

ment of hypertension [10]. NE and glutamate are vital

excitatory neurotransmitters, while GABA is a major

inhibitory neurotransmitter in the PVN [11]. Many studies

have indicated that sympathoexcitation and hypertension

are due to high levels of excitatory neurotransmitters and

low levels of inhibitory neurotransmitters in the PVN [12].

Therefore, ROS, the RAS, and neurotransmitters in the

PVN are all involved in the pathogenesis of hypertension.

Metformin (MET), the oldest and most widely used

glucose-lowering drug, is likely to also be effective in the

prevention of cardiac and vascular disease [13], having

been shown to reduce oxidative stress levels in patients

[14, 15]. In addition, Tain et al. [16] have reported that

prenatal MET therapy in rats prevents the hypertension of

developmental origin induced by a maternal high-fructose

plus a high-fat diet via the regulation of nutrient-sensing

signals, uric acid, oxidative stress, and the nitric oxide

pathway [16]. Importantly, MET has been reported to

markedly decrease blood pressure in rats [17, 18]. Both

peripheral and intracerebroventricular MET administra-

tions decrease blood pressure in hypertensive rats, due to

its inhibition of sympathetic activity [19, 20]. But the

specific mechanisms are unclear. Considerable evidence

has shown that MET can cross the blood-brain barrier to

accumulate in the hypothalamus and directly affect the

central nervous system [21, 22]. Thus we hypothesized that

the antihypertensive effect of MET may be associated with

the regulation of central sympathetic outflow and neuroen-

docrine responses. In this study, we investigated the

protective action of MET against salt-sensitive hyperten-

sion and determined if this was attributable to reduced

oxidative stress and sympathetic activity in the PVN. We

also determined the involvement of the RAS and neuro-

transmitters in the effect of MET.

Methods

Ethics Statement

All procedures involving animals were approved by the

Animal Care and Use Committee of Xi’an Jiaotong

University (Xi’an, China) and performed according to the

Guidelines for the Care and Use of Experimental Animals

of the United States National Institutes of Health.

Animals and Experimental Protocols

Eight-week-old male Dahl salt-sensitive rats from the

laboratory of Professor Jian-Jun Mu (Department of

Cardiology, The First Affiliated Hospital of Xi’an Jiaotong

University) were housed in a room with a 12-h light/dark

cycle and temperature and humidity control. They were

allowed access to standard chow and tap water ad libitum.

They were fed for 6 weeks with a high-salt diet (HS, 8%

NaCl) or a normal-salt diet (NS, 0.3% NaCl). All rats were

anesthetized by intraperitoneal (i.p.) injection of a

ketamine (80 mg/kg) and xylazine (10 mg/kg) mixture.

The animals were placed in a stereotaxic frame, and the

skull was leveled between bregma and lambda. A

minipump (Alzet Model 2006, Durect Corp., Cupertino,

CA) was placed subcutaneously on the back of each rat.

The coordinates used for intracerebroventricular (ICV)

cannulation were 0.5 mm posterior to bregma, 1.5 mm

lateral to the midline, and 2.7 mm below the skull surface

[23]. MET (25 lg/day) or vehicle (artificial cerebrospinal

fluid) was continuously infused ICV for 6 weeks [24]. At

the end of the experiment, rats were anesthetized with i.p.

injection of a ketamine (80 mg/kg) and xylazine (10 mg/

kg) mixture and euthanized by decapitation in order to

collect blood and brain tissue for immunological and

molecular biological assessment.

Mean Arterial Pressure Measurement

Blood pressure and heart rate (HR) were determined by

tail-cuff occlusion using an acute method as previously

described [25, 26]. Arterial pressure was measured nonin-

vasively via a tail-cuff and its recording system (BP100A,

113 Chengdu Techman Software Co., Ltd, China). Unanes-

thetized rats were warmed to an ambient temperature of

30�C by placing them in a holding device mounted on a

thermostatically-controlled warming plate. All animals

were habituated to the blood pressure system and to the

holders daily for one week prior to the initiation of

experimental measurements. Each rat was allowed to adapt

to the cuff for 10 min before measurement. Blood pressure
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values were averaged from six consecutive cycles per day

from each rat.

At the end of week 10, the rats were anesthetized by i.p.

injection of a ketamine (90 mg/kg) and xylazine (10 mg/

kg) mixture. A polyethylene catheter was inserted into the

carotid artery to measure mean arterial pressure (MAP) and

HR. The catheter was pre-filled with 0.1 mL heparinized

saline (50 units/mL) and connected to a pressure transducer

attached to a digital BP monitor and polygraph (BL420,

Chengdu Techman Software Co. Ltd, China). MAP and

HR data were collected for 30 min and averaged.

Biochemical Assays

Plasma NE levels were measured using ELISA kits

(Invitrogen, Carlsbad, CA) according to the manufacturer’s

instructions. SOD activity in the PVN was assessed using

an ELISA kit (Nanjing Jiancheng BioEngineering Institute,

Nanjing, China) following the manufacturer’s instructions.

The standards or sample diluents were added and incubated

in wells of a microtiter plate pre-coated with a specific

antibody. Conjugate was added and incubated for 1 h at

37�C and then washed. The reactions were stopped with

stop solution, and read at 405 nm for NE and 450 nm for

SOD using a microtiter plate reader (MK3, Thermo Fisher

Scientific, Waltham, MA) [27].

High-Performance Liquid Chromatography

(HPLC)

The levels of NE, glutamate, and GABA in the PVN were

measured using HPLC with electrochemical detection

(Waters-2465, Waters Corp., Milford, MA) as previously

described [11, 28, 29]. Briefly, samples or standards were

derivatized with o-phtaldialdehyde; 20 lL of the resulting

mixture was automatically loaded onto a Novapark C18

reverse-phase column (150 mm 9 4.6 mm, 4 lm particle

size, Waters), using a refrigerated autoinjector. The mobile

phase consisted of 0.05 mol/L NaH2PO4 (pH 6.8) with 20%

methanol, and the flow rate was 1 mL/min delivered by a

Waters pump. The concentrations of NE, glutamate and

GABA were detected and analyzed using Empower 3

analytical software (Waters).

Real-Time Polymerase Chain Reaction

Total RNA was isolated using RNeasy kits (Qiagen,

Duesseldorf, Germany) according to the manufacturer’s

instructions, and 1 lg of purified RNA was reverse

transcribed with a high-capacity cDNA reverse transcrip-

tion kit (Bio-Rad Laboratories, Inc., Hercules, CA). The

mRNA levels were analyzed by quantitative real-time PCR

using specific primers. The primers for NADPH oxidase

(NOX)-2, NOX-4, and glyceraldehyde-phosphate dehydro-

genase (GAPDH) were as follows: NOX-2 Forward 50-
CTGCCAGTGTGTCGGAATCT-30, Reverse 50-TGTGAA
TGGCCGTGTGAAGT-30; NOX-4 Forward 50-GGATCA
CAGAAGGTCCCTAGC-30, Reverse 50-AGAAGTTCAG
GGCGTTCACC-30; GAPDH Forward 50-AGACAGCCGC
ATCTTCTTGT-30, Reverse 50-CTTGCCGTGGGTAGA
GTCAT-30. The quantitative fold changes in mRNA

expression were determined relative to GAPDH mRNA

levels in each group [7].

Immunofluorescence and Immunohistochemistry

Rats were anesthetized with a ketamine (80 mg/kg) and

xylazine (10 mg/kg) mixture (i.p.) and transcardially

perfused with phosphate-buffered saline (PBS) and 4%

paraformaldehyde. Samples were fixed overnight in 4%

paraformaldehyde at 4�C, and then immersed in 30%

sucrose for at least 2 days. Samples were embedded in

OCT and cut into several 14-lm transverse sections, about

21.80 mm from bregma, on a sliding microtome; sections

were mounted on slides and stored at - 80�C.
Sections were then washed in PBS for 20 min,

permeabilized in 0.2% Triton in Tris-buffered saline for

1 h, blocked using 5% normal goat serum with 0.2% Triton

in Tris-buffered saline for 1 h, and incubated with primary

antibody in blocking buffer at 4�C overnight. The primary

antibodies used were: anti-NOX-2 (1: 300, sc-20782, Santa

Cruz Biotechnology, Dallas, TX), anti-angiotensin-con-

verting-enzyme (ACE, 1:200, bs-0439R, Biosynthesis

Biotechnology, Beijing, China), and anti-glutamate decar-

boxylase 67 (GAD67, 1:300, sc-7512, Santa Cruz Biotech-

nology). After washing in PBS, sections were further

incubated with biotinylated secondary antibodies (at 1:300

dilution, ABC staining system kit, Santa Cruz, CA), Alexa

594-labeled anti-mouse secondary antibody (1:200, red

fluorescence) (Invitrogen, Carlsbad, CA) for 60 min at

room temperature [30].

Superoxide generation in the PVN was determined using

fluorescence-labeled dihydroethidium, as previously

described [31]. All sections were imaged on a Nikon

Eclipse 80i microscope (Nikon, Tokyo, Japan).

Western Blotting Analysis

The PVN tissue was homogenized in lysis buffer and

Western blotting was performed as previously described

[28, 32]. The protein concentration was measured, loaded

onto a SDS-PAGE gel, and transferred to a polyvinylidene

fluoride membrane. The membrane was then incubated

overnight at 4�C with the primary antibodies anti-NOX-4

(1:200, sc-21860, Santa Cruz Biotechnology), anti-SOD

(1:300, FL-154, Santa Cruz Biotechnology), anti-AT1-R
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(1:300, sc-579, Santa Cruz Biotechnology), anti-tyrosine

hydroxylase (TH; 1:300, sc-14007, Santa Cruz Biotech-

nology), anti-GAD67 (1:300, sc-7512, Santa Cruz Biotech-

nology), and anti-b-actin (1:500, Thermo Scientific). After

four washes with wash buffer for 10 min each, blots were

incubated for 1 h with horseradish peroxidase-conjugated

anti-mouse or anti-rabbit secondary antibody (1:5,000,

Santa Cruz Biotechnology). Protein loading was controlled

by probing all blots with b-actin antibody (Thermo

Scientific) and normalizing their protein intensities to that

of b-actin. Band densities were analyzed with NIH ImageJ

software.

Statistical Analysis

All data are presented as mean ± SEM and P\ 0.05 was

considered statistically significant. Statistical analyses were

performed using Prism version 5.0 (GraphPad Software,

Inc., La Jolla, CA). MAP was analyzed by repeated

measures ANOVA. One-way ANOVA with Tukey’s post

hoc test was applied to analyze protein levels in the PVN,

plasma NE, numbers of positive neurons, fluorescence

intensity, and western blotting data. Two-way ANOVA

followed by Bonferroni’s post hoc was used to analyze

cardiovascular and autonomic parameters (MAP and HR)

after ICV infusion of vehicle or MET.

Results

MET Decreases Blood Pressure in Hypertensive

Rats

The HS diet elicited sustained elevation of MAP and HR

compared with the NS group. Chronic ICV infusion of MET

significantly attenuated the salt-induced increase in MAP in

hypertensive rats, but not in the NS diet groups. However,

there were no significant infusion-related changes in HR in

the NS and HS groups (Fig. 1A and Table 1).

MET Reduces Plasma Norepinephrine Levels

in Hypertensive Rats

Salt-induced hypertensive rats had significantly higher

levels of plasma NE (Fig. 1B) than those on an NS diet.

ICV infusion of MET reduced the levels of plasma NE

(Fig. 1B) in the hypertensive rats.

MET Attenuates Oxidative Stress in the PVN

of Hypertensive Rats

The HS diet induced significantly higher levels of NOX-2

immunoreactivity (Fig. 2A, B), NOX-4 protein expression,

and fluorescence-labelled dihydroethidium (Figs. 2C and

4A, B) than the NS diet. ICV infusion of MET attenuated

these changes in hypertensive rats (Figs. 2 and 4A, B). In

addition, the NOX-2 (Fig. 3A) and NOX-4 (Fig. 3B)

mRNA expression was significantly higher in HS rats than

in NS rats. ICV infusion of MET decreased the NOX-2 and

NOX-4 mRNA expression in hypertensive rats (Fig. 3A,

B). Furthermore, the decreased SOD protein expression
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Fig. 1 Effects of ICV infusion

of metformin (MET) on mean

arterial pressure (MAP) and

plasma norepinephrine (NE)

levels in rats on a normal-salt

(NS, 0.3% NaCl) or a high-salt

(HS, 8% NaCl) diet. A MAP

changes in the different groups.
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Table 1 Effects of ICV infusion of vehicle or MET on MAP and HR

in rats on an NS or a HS diet (n = 7).

Group MAP (mmHg) HR (beats/min)

NS?ICV vehicle 102.2 ± 6.5 372.2 ± 17.8

NS?ICV MET 99.6 ± 5.6 366.8 ± 18.3

HS?ICV vehicle 156.5 ± 10.1* 430.3 ± 19.6*

HS?ICV MET 124.7 ± 9.7*� 417.9 ± 22.1*

ICV, intracerebroventricular; MET, metformin; MAP, mean arterial

pressure; HR, heart rate; NS, normal-salt; HS, high-salt. Values are

mean ± SEM. *P\0.05 vs NS rats (NS ? ICV vehicle or NS ? ICV

MET); �P\ 0.05 HS ? ICV vehicle vs HS ? ICV MET.

60 Neurosci. Bull. February, 2019, 35(1):57–66

123



(Fig. 2C) and activity (Fig. 4C) in the PVN in HS rats were

reversed by MET treatment.

MET Reduces RAS Components in the PVN

in Hypertensive Rats

The HS rats had higher PVN levels of ACE immunoreac-

tivity (Fig. 5A, B) and AT1-R protein expression (Fig. 5C)

than NS rats. This elevation in ACE (Fig. 5A, B) and AT1-

R (Fig. 5C) expression was attenuated by ICV infusion of

MET.
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MET Restores Neurotransmitters in the PVN

in Hypertensive Rats

Higher PVN levels of NE (Fig. 6A) and glutamate

(Fig. 6B) and a decreased level of GABA (Fig. 6C) were

found in HS rats than in NS rats. MET treatment prevented

the increase in NE (Fig. 6A) and glutamate (Fig. 6B), and

the decrease in GABA (Fig. 2B) in the PVN in HS rats.

Moreover, the PVN from HS rats showed a significant

decrease in GAD67 immunoreactivity (Fig. 7A, B) and

protein expression (Fig. 7C) as well as an increase in TH

protein expression (Fig. 7C) compared with control rats.
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ICV infusion of MET increased GAD67 expression and

decreased TH expression in HS rats (Fig. 7).

Discussion

Our results showed that an HS diet induced sympathoex-

citation and hypertensive responses in salt-sensitive rats.

Significant oxidative stress, RAS activation, and neuro-

transmitter imbalance were found in the PVN from these

hypertensive rats. ICV infusion of MET notably attenuated

blood pressure and sympathetic activity by suppressing

oxidative stress, reducing RAS components, and restoring

neurotransmitters in the PVN of hypertensive rats.

It is known that oxidative stress triggered by overpro-

duction of ROS is one of the major mechanisms underlying

the progression of hypertension [5, 33]. ROS in the PVN

contribute to the regulation of sympathetic drive and blood

pressure [32]. High salt results in excessive ROS, which

contribute to hypertension via increasing sympathetic

outflow [34]. In addition, high dietary salt raises cere-

brospinal fluid Na?, which can activate the RAS [35, 36].

ANG II activates NAD(P)H oxidase by interacting with

AT1-R, leading to ROS production and sympathoexcitation

[37, 38]. In our study, ROS production and the expression

of NAD(P)H subunits (NOX-2 and NOX-4) together with

MAP were markedly higher in HS rats than control NS rats.

The RAS components (ACE and AT1-R) in the PVN were

also higher. Our present work showed that ICV infusion of

MET attenuated the above changes and increased the

activity and expression of SOD in hypertensive rats.

Moreover, NE, an indicator of sympathetic activity,

showed markedly lower plasma levels in MET-treated

hypertensive rats than in control rats. The reduction of RAS

components and ROS production by MET has also been

described in previous studies [39, 40]. These results

suggest that the beneficial effect of central administration

of MET in salt-sensitive hypertension is associated with

restoring the balance between ROS and the antioxidant

defense system.

Studies from our lab and others have indicated that ROS

activation contributes to the imbalance of neurotransmitters

[30, 41–43]. It is well established that the PVN is a vital

cardiovascular regulatory center, and various neurotrans-

mitters, such as NE, glutamate, and GABA are involved

[44, 45]. Mounting evidence suggests that increased

glutamatergic and adrenergic activity and decreased

GABAergic activity in the PVN lead to sympathoexcitation

and hypertensive responses [46–48]. Here, we found that

HS rats had higher PVN levels of glutamate and NE, and a

lower PVN level of GABA than NS rats. In addition, our

results also found significantly higher TH expression and

lower GAD67 expression (a marker for GABAergic

neurons) in the PVN of HS rats than NS rats. Moreover,

ICV infusion of MET prevented these increases in NE,

glutamate, and TH and the reduction in GABA and GAD67

in the PVN of hypertensive rats.
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Fig. 6 Effects of ICV infusion

of MET on the levels of nore-

pinephrine (NE), glutamate and

c-aminobutyric acid (GABA) in

the PVN in NS and HS rats.

A NE levels in the PVN in the

different groups. B Glutamate

levels in the PVN in the differ-

ent groups. C GABA levels in

the PVN in the different groups.

*P\ 0.05 vs NS groups (NS ?

ICV vehicle or NS ? ICV

MET); �P\ 0.05 HS ? ICV

MET vs HS ? ICV vehicle.
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In addition, Staruschenko and colleagues investigated

the effects of continuous venous infusion (6.9 lL/min) of

MET (200 mg/kg per day for 3 weeks) on salt-induced

hypertension in Dahl salt-sensitive rats [49]. The MET

treatment in the rats with high-Na? treatment had no effect

on the pattern of hemodynamic changes: neither MAP,

circadian rhythm, nor HR differed between the vehicle and

MET-treated groups. They concluded that MET treatment

did not activate 50-AMP-activated protein kinase and its

downstream pathways, which is associated with the

regulation of epithelial Na? channel-dependent short-

circuit currents, and did not find any effect of MET on

salt-induced hypertension in these rats. However, we

treated Dahl salt-sensitive rats with salt-induced hyperten-

sion using ICV infusion of MET (25 lg/day) for 6 weeks.

Compared with the Staruschenko study, the ICV infusion

of MET had a sustained sympathoinhibitory effect in the

central nervous system, consistent with the study of

Petersen et al. [24]. So, our study provides evidence to

support the conclusion that central MET attenuates sym-

pathetic activity and blood pressure by restoring the

balance between excitatory and inhibitory neurotransmit-

ters in the PVN in salt-sensitive hypertensive rats (Fig. 8).
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