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Abstract Cerebral pericytes are perivascular cells that

stabilize blood vessels. Little is known about the plasticity

of pericytes in the adult brain in vivo. Recently, using state-

of-the-art technologies, including two-photon microscopy

in combination with sophisticated Cre/loxP in vivo tracing

techniques, a novel role of pericytes was revealed in

vascular remodeling in the adult brain. Strikingly, after

pericyte ablation, neighboring pericytes expand their

processes and prevent vascular dilatation. This new

knowledge provides insights into pericyte plasticity in the

adult brain.

Keywords Pericytes � Brain � Blood vessel � Plasticity

Introduction

In the 19th century, a French scientist, Charles-Marie

Benjamin Rouget, reported the presence of a population of

contractile cells in small blood vessels, referred to as

Rouget cells [1]. Later, in the 20th century, a German

scientist, Karl Wilhelm Zimmermann, renamed these cells

‘‘pericytes’’ due to their distinct anatomical position around

the vasculature [2]. The word pericyte comes from ‘‘peri’’

meaning ‘‘around’’ and ‘‘cyte’’ from Latin, which has

origins from the Greek ‘‘kytos’’ (cell), properly illustrating

a cell encircling a blood vessel [3]. Until the end of the

20th century, pericytes were identified still based mainly on

their anatomical location and morphology. Pericytes have

long processes surrounding blood vessel walls and are

widely dispersed in all tissues [4]. They encircle endothe-

lial cells, and communicate with them along the length of

the blood vessels by paracrine signaling and physical

contact [5]. In the brain, the ratio of endothelial cells to

pericytes is *3:1 [6, 7], implying an immense importance

of cerebral pericytes.

Formerly, the accurate distinction of pericytes from

other perivascular cells was impossible, as light and

electron microscopy were the only technologies able to

visualize these cells, limiting the information acquired.

This resulted in the illusory notion that pericytes are merely

inert supporting cells, limited exclusively to the physio-

logical function of vascular stability. Already in the 21th

century, the combination of fluorescent and confocal

microscopy with genetic tools, such as fate lineage tracing,

enabled the discovery of novel and unexpected roles for

pericytes in health and disease [8]. Recently, quickly

expanding insights into the pathophysiological functions of

pericytes have attracted the attention of many researchers.

Pericytes participate in blood vessel development,

maturation, and permeability, as well as contributing to

their normal architecture [9, 10]. They regulate blood flow

[11, 12], and affect coagulation [13]. Pericytes also

collaborate with astrocytes, neurons, and endothelial cells,

forming the neurovascular unit [12, 14, 15], to regulate

maintenance of the functional integrity of the blood brain

barrier [16–21]. This may occur via pericyte-derived

molecules, such as platelet-derived growth factor subunit

B (PDGFB)/PDGF receptor-beta (PDGFRb) signaling,

which is indispensable for the formation and maturation
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of this barrier [22]. In addition, pericytes perform several

immune functions [23], regulate lymphocyte activation in

the retina [24, 25], attract innate leukocytes to exit through

sprouting blood vessels in the skin [26], and contribute to

the clearance of toxic cellular byproducts, having direct

phagocytic activity in the brain [27]. Interestingly, follow-

ing white matter demyelination, pericytes promote the

differentiation of oligodendrocyte progenitors involved in

central nervous system regeneration via a2-chain of

laminin [28]. Pericytes may also behave as stem cells in

several tissues [29], generating other cell populations, as

well as regulating the behavior of other stem cells, as

hematopoietic stem cells in their niches [30–34]. Note that

pericytes from distinct peripheral tissues may have various

properties, and may differ from those in brain. Increasing

evidence also shows that brain pericytes alter their traits

following stimuli and develop stemness, demonstrating

their plasticity [35–39].

Pericytes exhibit structural plasticity during embryonic

cerebral development, participating in vascular remodeling

[40]. Understanding pericyte behavior in the adult brain is

a central question in neuroscience, as these cells may play

central roles in the pathogenesis of neurodegenerative

disorders. Nevertheless, whether pericytes participate in

vascular remodeling in the adult brain remains unknown.

Now, in a recent article in Cell Reports, Berthiaume and

colleagues investigated the behavior of pericytes in the

adult mouse brain [41]. The authors revealed pericyte

plasticity in the adult brain by using elegant state-of-the-art

techniques, including two-photon microscopy in combina-

tion with sophisticated Cre/loxP in vivo tracing technolo-

gies. Berthiaume and colleagues imaged, at high-resolution

over several weeks, cerebral pericytes in NG2-CreER/

TdTomato, Myh11-CreER/TdTomato, and PDGFRb-Cre/

YFP mice. These experiments unveiled that pericytes

comprise a quasi-continuous, non-overlapping network

along the entire length of blood vessels. Interestingly, the

pericyte prolongations were not stable in length, extending

or retracting during the period of analysis. Then, the

authors explored the effect of pericyte death on its

neighboring pericytes. After pericyte ablation, using tar-

geted two-photon irradiation, Berthiaume and colleagues

showed that adjacent pericytes extend their processes into

the uncovered area, covering the exposed blood vessel

[41]. Strikingly, neighboring pericytes are able to reverse

the vascular dilatation that occurs after pericyte depletion

[41] (Fig. 1). Thus, this longitudinal imaging study

demonstrated pericyte plasticity in the adult brain.

Here, we consider these findings, and evaluate recent

advances in our knowledge of pericyte biology in the brain.

Perspectives and Future Directions

Pericyte Heterogeneity in the Brain

Pericytes are heterogeneous regarding their distribution,

phenotype, marker expression, origin, and function [42]. In

the past century, pericytes were distinguished into three

types based on their mural location and morphology: pre-

capillary, mid-capillary, and post-capillary [2, 43]. Berthi-

aume and colleagues exclusively studied pericytes sur-

rounding mid-capillary regions [41]. Thus, it remains

unknown whether pre-capillary and post-capillary pericytes

present different behavior. This should be taken into

consideration in future work; discovering specific markers

for pre-capillary and post-capillary pericytes will help to

address this question. Separately analyzing the behavior of

pericytes from different locations in the blood vessels may

reveal their functional heterogeneity. Pericyte heterogene-

ity is also based on their molecular marker expression

profiles. Capillary pericytes express desmin but are com-

monly negative for a smooth muscle actin (aSMA), while

venular pericytes express both desmin and aSMA proteins

[44]. Moreover, Kir6.1 is highly expressed in a subset of

brain pericytes, but is undetectable in others [45]. In

addition, arteriolar pericytes that do not express the leptin

receptor (LEPR) have been described to be distinct from

sinusoidal pericytes in the bone marrow that express LEPR

[31, 46]. Also, both nerve/glial antigen 2-positive (NG2?)

and -negative (NG2-) pericytes have been described in the

skin [26]. Furthermore, pericytes positive and negative for

glutamate aspartate transporter and the cytoskeletal protein

Nestin have been described in the spinal cord [47, 48].

Cerebral pericytes also differ in their embryonic origins

[42]. While pericytes in coleomic organs are mesoderm-

derived [7], most cephalic pericytes are of neuroectodermal

origin [49], and recent studies have shown that a subpop-

ulation of pericytes in the embryonic brain may derive

from hematopoietic progenitors [42, 50]. All these descrip-

tive characteristics in which pericytes differ are also

important regarding their functions, as pericytes in distinct

locations [30], with different marker expression profiles

[51], and from varying origins [42] differ in their functions.

For instance, after brain injury, while one subset partici-

pates in scar tissue formation [52], another is capable of

generating new blood vessels [53]. Thus, subsets of

pericytes can contribute to distinct pathological conditions

in varying ways. Importantly, similar analysis as done by

Berthiaume et al. (2018), should be performed on cerebral

pericytes from other blood vessels and in distinct brain

regions, as their behavior may differ.
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Pericyte Markers

Several molecular markers help to identify pericytes, such

as PDGFRb, NG2, proteoglycan (CSPG4), myosin heavy

chain 11 (Myh11), aminopeptidase N (CD13), aSMA,

regulator of G protein signaling 5, desmin, vimentin, ATP-

binding cassette, subfamily C (CFTR/MRP), member 9

(SUR2), alkaline phosphatase, CD146, CD133, endosialin,

potassium inwardly-rectifying channel, subfamily J, mem-

ber 8 (Kir6.1), Tbx18, vitronectin, and interferon-induced

transmembrane protein 1 (Ifitm1), among others (Table 1)

[29, 48, 54–59]. The difficulty now is generating markers,

antibodies, and mice to take advantage of this information.

Unfortunately, there is no single molecular marker yet that

can be used to unequivocally and exclusively label the

whole population of pericytes. Berthiaume and colleagues

imaged labeled pericytes in NG2-CreER/TdTomato,

Myh11-CreER/TdTomato, and PDGFRb-Cre/YFP mice.

Although NG2, Myh11, and PDGFRb proteins can be

expressed in pericytes, none of them is specific to

pericytes, or labels all pericytes, as oligodendrocyte

progenitors also express NG2 [60]. Under special condi-

tions, microglia may also express NG2 [61]. Interestingly,

pericytes that do not express NG2 proteoglycan also exist

[26]. In addition, Myh11 labels vascular smooth muscle

cells, and is expressed only in a subgroup of pericytes [30].

PDGFRb expression also is not restricted to pericytes.

Several stromal cells such as vascular smooth muscle cells

[62, 63] and fibroblasts [64] express this cell-surface

tyrosine kinase receptor [7]. Note that Berthiaume and

colleagues used PDGFRb-Cre/YFP mice, in which all the

cells derived from PDGFRb-expressing cells are also

labeled with fluorescence [41]. Since PDGFRb is broadly

expressed throughout the embryo in embryonic stages in

several cell types, PDGFRb-Cre/YFP mice are not the best

mouse model for analyzing pericyte behavior, as several

other cell populations may be labeled at the same time

[29, 65]. Therefore, as PDGFRb expression is more

restricted in adult animals, the use of PDGFRb-CreER/

YFP mice instead would be more appropriate for the study

of PDGFRb-expressing pericytes in the brain [66]. Impor-

tantly, not all cells in perivascular locations are necessarily

pericytes [67]. Besides pericytes, other cells surrounding

blood vessels have been described, including fibroblasts

[68], macrophages [69, 70], microglia [71], adventitial

cells [72], and vascular smooth muscle cells [73]. Alto-

gether, this raises the possibility that some of the obser-

vations by Berthiaume et al. (2017) are from a different,

non-pericytic, cell type. Currently, the state-of-the-art

identification of pericytes in tissue preparations relies on

Fig. 1 Cerebral pericyte plasticity in response to neighbor ablation.

Pericytes are present around blood vessels in the brain. The study of

Berthiaume and colleagues now suggests a novel role for pericytes in

vascular remodeling in the adult brain [41]. After pericyte ablation,

using targeted two-photon irradiation, adjacent pericytes extend their

processes to cover the exposed endothelial bed, and reverse the

vascular dilatation that occurs after pericyte depletion. Future studies

will reveal in detail the cellular and molecular mechanisms involved

in this process in the brain microenvironment.
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a combination of anatomical localization (covering

endothelial cells and underlying the basal lamina), mor-

phology, and the co-expression of at least two pericytic

molecular markers. The discovery of a single molecular

marker specific to all cerebral pericytes will facilitate the

study of the behavior of these cells in the brain.

Pericytes as Stem Cells

In the last decade, the potential of pericytes to contribute to

tissue regeneration/homeostasis as tissue-resident progen-

itors has been established by numerous studies [74–76].

Pericytes not only participate in the formation of new blood

vessels [53], but their ability to differentiate into the neural

lineage has also been demonstrated [48, 77–83]. Therefore,

pericytes are expected to be able to proliferate and multiply

when activated. Surprisingly, Berthiaume and colleagues

show that pericytes are not activated to proliferate in

response to the death of one adjacent pericyte; instead, they

extend prolongations onto the uncovered endothelium [41].

It remains unknown whether pericytes continue to behave

similarly when more adjacent pericytes are ablated. Is the

elimination of adjacent pericytes unable to activate peri-

cytic multiplication? Does this depend on the number of

pericytes that die? Also, a question arises regarding the

plasticity of pericytes in vivo. Are cerebral pericytes able to

form other pericytes in the adult brain? This could be tested

by time-lapse high-resolution imaging analysis of lineage

tracing in pericyte-specific mouse models.

Pericyte Communication with Other Tissue Com-

ponents in Their Microenvrionment

Which signaling molecules are needed to activate the

extension of pericyte processes into the adjacent endothe-

lial bed? And which signaling molecules are important for

these pericytes to reverse the vasodilation that occurs after

pericyte death [84]? Although Berthiaume and colleagues

have revealed how pericytes respond to the deletion of a

neighboring pericyte, they did not explore the molecular

and cellular mechanisms involved in this process. A recent

study in the spinal cord has shown that expression of the

enzyme aromatic L-amino acid decarboxylase is important

for pericyte-induced vasoconstriction after spinal cord

injury [85, 86]. Is this enzyme also important in the

cerebral pericyte after ablation of its neighbor? In addition

to studies of genetic mouse models, transcriptomic and

single-cell analysis of pericytes after ablation of their

neighbors will help us to understand the molecular

mechanisms involved in those processes in the brain

microenvironment.

Table 1 Pericyte markers.

Pericyte marker Gene

symbol

Comments References

PDGFRb (platelet-derived growth factor receptor beta) Pdgfrb Also expressed by fibroblasts [63]

NG2 (chondroitin sulfate proteoglycan 4) Cspg4 Also expressed by oligodendrocyte progenitors [128]

CD13 (alanyl (membrane) aminopeptidase) Anpep Also expressed by smooth muscle and endothelial cells [129]

aSMA (alpha-smooth muscle actin) Acta2 Also expressed by smooth muscle cells [130]

Desmin Des Also expressed by smooth muscle cells [131]

RGS5 (regulator of G protein signaling 5) Rgs5 Also expressed by smooth muscle cells [132]

SUR2 (ATP-binding cassette, member 9) Abcc9 Also expressed by smooth muscle cells [45]

Kir6.1 (K? inwardly-rectifying channel, subfamily J,

member 8)

Kcnj8 Also expressed by smooth muscle cells [45]

Endosialin Cd248 Also expressed by fibroblasts and T cells [133]

DLK1 (delta-like 1 homolog) Dlk1 Also expressed by smooth muscle cells [45]

Tbx18 TBX18 Also expressed in smooth muscle cells [65]

PDGFRa (platelet-derived growth factor receptor

alpha)

Pdgfra Also expressed in oligodendrocyte precursor cells and

fibroblast-like cells

[47, 55, 134]

Glast SLC1A3 Expressed only in a subpopulation of spinal cord

pericytes

[47]

Myh11 MYH11 Labels only arteriolar pericytes [30]

Leptin receptor LepR Labels sinusoidal pericytes [135]

MCAM (melanoma cell adhesion molecule) CD146 Also expressed in mesenchymal stem cells [72]

Nestin Nes Labels only a subpopulation of pericytes (Type-2) [135, 136]

Gli1 Gli1 Labels several perivascular cells [137, 138]
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Moreover, it is still not understood whether any other

cells are involved in this behavior. Do endothelial cells

cross-talk to communicate that they have become uncov-

ered? In addition, as discussed above, there are several

other perivascular cells in the cerebral vasculature. How

other perivascular cells participate in this process remains

to be elucidated. Interestingly, after irradiation of single

pericytes [41], what happens to their remnants? Does the

cellular debris cause damage to neighboring cells and

inflammation? Or are the cellular remnants important for

adjacent pericytes to extend their prolongations in this

area? Moreover, as macrophages usually engulf cellular

debris, do they communicate with neighboring pericytes,

activating them to expand their processes? The relation-

ships between brain pericytes and microglia/macrophages

have been addressed in recent studies. Interestingly, during

development, macrophages may generate pericytes in the

brain [50, 87, 88], while after stroke, pericytes may form

macrophages [35, 36, 89].

It well known that pericytes produce several signaling

molecules as well as responding to various signals and

communicating with other cells, such as endothelial cells

[90–92]. Interestingly, some evidence suggests direct

communication with astrocytes as well. Astrocyte-derived

glutamate may regulate gene transcription in pericytes

[93]. Also, astrocytes may influence pericyte behavior by

altering PDGFb signaling in which pericytes play a key

role [94, 95]. In contrast, very little is known about cross-

talk within the population of pericytes. Future studies will

need to explore how pericytes communicate with their

peers.

Pericytes in Disease

Berthiaume and colleagues imaged pericytes in the healthy

adult mouse brain [41]. Are the normal functions of the

pericytes changed when one cell occupies the space of

two? Interestingly, the authors followed pericyte behavior

for several weeks up to almost 2 months [41]. It remains

unknown whether this pericyte behavior is a temporary

solution before the lost pericytes are regenerated. Is this

process reversed after a longer period of time? Importantly,

as the interruption of pericyte contact with endothelial cells

may lead to endothelial hyperplasia [10], the brain

vasculature should be followed for a longer time. Also, it

remains unknown whether pericytes behave similarly

during different life stages, such as embryonic develop-

ment, the postnatal period, and aging. Furthermore, it

remains to be studied how pericytes respond to the ablation

of their neighbors in various brain diseases, in which it is

well accepted that their dysfunction plays pivotal roles

(Table 2), such as Alzheimer’s disease [96–99], amy-

otrophic lateral sclerosis [100, 101], diabetic retinopathy

[102], cerebral autosomal-dominant arteriopathy with sub-

cortical infarcts and leukoencephalopathy [103], epilepsy

[104], human immunodeficiency virus-related dementia

[105], brain tumors [106], primary familial brain calcifi-

cation [107], and diabetes-related microangiopathy [108].

As pericyte degeneration also causes breakdown of the

blood-brain barrier, leading to the entrance of blood-

derived toxic substances into the central nervous system

[16], future studies should explore how neighboring

pericytes act to protect the brain against such toxicity.

Recently, Arango-Lievano and colleagues have used the

two-photon microscopy approach to track changes in

perivascular cells during pathophysiological progression

in the epileptic brain [109].

Modern Technologies to Study Pericyte Biology

Methods to eliminate pericytes from the tissue microenvi-

ronment, enabling analysis of the functioning of a tissue

without pericytes, may lead to advances in our understand-

ing of the role of pericytes in specific organs. Multiple

pharmacological drugs to induce apoptotic cell death are

accessible. Nevertheless, most lack spatiotemporal and

Table 2 Pericyte modifications occurring in central nervous system diseases.

Pericyte modification Effect Disease References

Primary pericyte deficiency Recapitulates the characteristic vascular regression of non-

proliferative diabetic retinopathy

Diabetic retinopathy [139]

Region-specific paucity of

pericytes

Vascular instability and fragility which promote vessel rupture

and hemorrhage

Neonatal intraventricular

hemorrhage

[140]

Accumulation of amyloid-b
peptide in pericytes

Pericyte death Alzheimer’s disease [97, 141, 142]

Pericyte constriction and death No-reflow phenomenon in brain capillaries Stroke [89, 143, 144]

Pericyte detachment from cere-

bral vessels

Pericytes produce scar tissue after injury Traumatic brain injury [145]

Pericyte dysfunction Cerebrovascular dysfunction Epilepsy [104, 146, 147]
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cell-type specificity [110–113]. Modern state-of-the-art

experimental approaches for specific cell ablation in vivo

have been created, including genetically-encoded death

receptors [113–116], two-photon thermal ablation

[113, 117–120], chromophore-assisted light inactivation

[113, 121–127], and more recently two-photon chemical

apoptotic targeted ablation [113]. Unfortunately, every tool

has limitations, for instance, prolonged illumination

requirements, non-specific tissue damage from the spilling

of cellular debris, induction of local inflammation, and the

need to efficiently and accurately deliver the dyes or

genetic materials for targeted cell killing. Ideally, these

limitations can be overcome by combining different

methodologies to answer the same questions. Thus, in the

future, comparing distinct methods for precise ablation of

pericytes in the brain should be used to achieve a complete

understanding of pericyte behavior in the central nervous

system.

Conclusion

The study by Berthiaume and colleagues reveals a novel

and important behavior of cerebral pericytes in response to

ablation of adjacent pericytes. However, our understanding

of cross-talk between different cell types present in the

brain vascular microenvironment remains limited, and the

complexity of these interactions in distinct physiological

and pathological conditions should be elucidated in future

studies. The huge challenge that we face now is how to

translate animal research to humans.
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