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Abstract Synapsins serve as flagships among the presy-

naptic proteins due to their abundance on synaptic vesicles

and contribution to synaptic communication. Several

studies have emphasized the importance of this multi-gene

family of neuron-specific phosphoproteins in maintaining

brain physiology. In the recent times, increasing evidence

has established the relevance of alterations in synapsins as

a major determinant in many neurological disorders. Here,

we give a comprehensive description of the diverse roles of

the synapsin family and the underlying molecular mech-

anisms that contribute to several neurological disorders.

These physiologically important roles of synapsins associ-

ated with neurological disorders are just beginning to be

understood. A detailed understanding of the diversified

expression of synapsins may serve to strategize novel

therapeutic approaches for these debilitating neurological

disorders.
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Introduction

Neuronal transmission has always been considered a

crucial subject for research, as all life activities of human

beings depend on it. Among the numerous proteins

localized within the presynaptic terminals, synapsins serve

as the flagships. They were the first presynaptic proteins to

be identified and are also the most abundant on synaptic

vesicles [1]. As the synapsins are involved in synaptoge-

nesis and neuronal plasticity [2, 3], their alteration may

result in neurological disorders like Alzheimer’s disease

(AD), epilepsy, schizophrenia, multiple sclerosis (MS), and

autism spectrum disorder (ASD) [4]. In this review, we

systematically discuss the involvement and possible roles

of synapsins in various neurological disorders.

Synapsin Proteins and Subtypes

Synapsins belong to a class of neuron-specific phospho-

proteins and comprise *1% of the total brain proteins,

making them one of the most abundant families of synaptic

proteins [5]. They have been recognized to be significantly

involved in synaptogenesis and neuronal plasticity, includ-

ing the regulation of synapse development, modulation of

neurotransmitter release, and formation of nerve terminals

[6–8] (Fig. 1). They act mainly by associating with the

synaptic vesicle membrane at the cytoplasmic surface [9].

The binding of synapsins to synaptic vesicles is governed

by their phosphorylation state. In the dephosphorylated

state, they bind synaptic vesicles, while on phosphorylation

they dissociate from the vesicles and mobilize, allowing for

eventual exocytosis [10]. In vertebrates, three distinct

genes termed Synapsin I, II, and III code for these proteins,

while alternative splicing of each of these genes generates

distinct isoforms [11–13].
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Synapsin I

Synapsins are abundant in most nerve cells; however, the

different neuronal types have differential distribution of its

isoforms [11], with synapsins I and II being the major

isoforms in neurons [14]. Synapsin I is associated with

elongation of the axon and regulation of the kinetics of

synaptic vesicle fusion [15, 16] (Fig. 2). Both isoforms of

synapsin I (Ia and Ib) play important roles in synapse

formation where they specifically minimize depletion of

the neurotransmitter at the inhibitory synapses by con-

tributing to the anchoring of synaptic vesicles [17, 18]. It

also regulates synaptogenesis and modulates

neurotransmitter release as demonstrated by a study on

synapsin I-deficient mice. These mice, generated by

homologous recombination, revealed altered synaptic vesi-

cle organization at presynaptic terminals in addition to a

reduction in neurotransmitter release and delayed recovery

of synaptic transmission after neurotransmitter depletion

[19].

Synapsin II

Although synapsin II plays roles in cellular processes

similar to those in which synapsin I is involved, many

studies have also demonstrated its distinct functions.

Knockdown of synapsin II in hippocampal neurons results

in deficient axon elongation [20] and disrupted synapse

formation [21], indicating its substantial role in synapto-

genesis. In addition, synapsin II is considered to be a

crucial component of the synaptic vesicle cycle through its

involvement in vesicle docking [22]. The synapsin IIa

isoform regulates the vesicular reserve pool at glutamater-

gic synapses [23], while synapsin IIb is involved in the

formation of presynaptic terminals [24].

Synapsin III

Synapsin III is developmentally controlled and predomi-

nantly expressed in the early phase of neuronal develop-

ment; however its role in the regulation of synaptogenesis,

neurogenesis, and neuronal plasticity is attributable to

active process elongation and changes in axonal differen-

tiation [25, 26]. The regulation of neurotransmitter release

by synapsin III proceeds in a manner entirely different

from the other isoforms. For instance, knockout (KO) of

synapsin III causes a decrease in synaptic depression and

an increase in the size of the synaptic vesicle pool, the

latter of which is opposite to that in synapsin I- and II-KO

animals. Similarly, mice lacking synapsin III do not show

abnormal neurotransmitter release at excitatory synapses

but only at inhibitory synapses [27]. Moreover, the

localization of synapsin III differs, being abundant at

extrasynaptic sites and in the growth cones of hippocampal

neurons, unlike synapsin I and II which are found mainly at

presynaptic nerve terminals [25]. The involvement of

synapsins in various cellular processes is summarized in

Table 1.

Association of Synapsins with Neurological
Disorders

Synapsin genes have been associated with several neuro-

logical disorders such as schizophrenia, bipolar disorder

(BD), AD, MS, Huntington’s disease (HD), and epilepsy,

Fig. 1 The major functions of synapsins. These neuron-specific

phosphoproteins are active in various regulatory functions at the

synapses which include the formation of presynaptic terminals,

regulation of the vesicle reserve pool at presynaptic terminals,

synaptogenesis, elongation of axons, and synaptic vesicle docking.

Fig. 2 Synapsin I and synaptic vesicle trafficking. The binding of

synapsins to synaptic vesicles is governed by their phosphorylation

state. In the dephosphorylated state, they bind synaptic vesicles, while

on phosphorylation they dissociate from the vesicles and mobilize,

allowing for eventual exocytosis. Phosphorylation of synapsin I plays

an important role in mediating the trafficking of synaptic vesicles.
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as demonstrated by both genetic and functional studies.

These studies provide satisfactory evidence that a differ-

ence in the expression of synapsin genes/proteins is

associated with neurological phenotypes and lead to further

interest in understanding the potential regulatory mecha-

nisms that underlie these changes.

The present paper systematically reviews the potential

derangements in synapsin I, II, and III expression and

polymorphisms/mutations that contribute to the patholog-

ical consequences associated with various neurological

disorders.

Alzheimer’s Disease

AD, the most common form of dementia accounting for

more than 80% of the cases reported worldwide [28], is

characterized by the progressive loss of cortical neurons

that are involved in the mediation of higher cognitive

functions [29]. The major clinical manifestations are loss of

memory, cognitive dysfunction, and learning deficits

[30, 31].

Synaptic loss [32] and neurofibrillary pathology [33] in

the limbic system and neocortex are involved in the

cognitive alterations in AD patients. Synaptic loss in the

dentate gyrus of the hippocampus is predominant in the

early phase of development of AD [34]. Regional alter-

ations in synapsin I occur in the hippocampal formation,

reported as a significant decrease in the immunoreactivity

of synapsin I in the stratum radiatum of the CA1 subfield of

the hippocampus and the molecular layer of the dentate

gyrus in AD patients [35].

A significant decrease in the level of the synapse-

associated proteins glutamate receptor 2, postsynaptic

density protein (PSD) 95, and synapsin I after the induction

of endoplasmic reticulum (ER) stress provides further

insight into cognitive deficits and defective neurotransmis-

sion in the hippocampus in AD [36]. Moreover, a

significant loss of the presynaptic markers synapsin-1 and

synaptophysin and the postsynaptic markers PSD-95 and

synapse-associated protein 97 in individuals with mild

cognitive impairment, also indicates the association of

posterior cingulate gyrus synaptic function with significant

synaptic loss in the prodromal and advanced stages of AD

[37, 38].

Interestingly, the sorting-related receptor with A-type

repeats (SORLA), which is involved in the inhibition of

amyloid precursor protein (APP) trafficking into cellular

compartments, also reduces the extent of proteolytic

breakdown of APP into neurotoxic amyloid-b (Ab) pep-

tide. It interacts strongly with phospho-synapsins I and II

and subsequently promotes their degradation by the

protease calpain. However, a loss of synapsin-SORLA

interaction results in the accumulation of phosphorylated

synapsins in the cortex and hippocampus, thereby con-

tributing to synaptic dysfunction in AD [39].

Another interesting notion of the involvement of

synapsins in AD was revealed by a study of mutations in

presenilin-1 (PS-1), which is one of the major players in

AD pathogenesis. Mutations in exon 9 of the PS-1 gene

manifest space-occupying ‘‘cotton-wool’’ plaques (CWPs)

lacking dense Ab cores. The increased synapsin I and

synaptophysin immunoreactivity evident in CWPs suggests

their potential involvement in synaptic structure and

protein expression [40].

Several studies have proposed various treatment strate-

gies targeting the restoration of synaptic proteins levels. In

this context Osthole, a natural coumarin derivative isolated

from Cnidium monnieri (L.), has emerged as a promising

therapeutic that exerts its neuroprotective effect by

Table 1 Synapsin functions, localization, and associated pathological conditions.

Protein Accession

no.

Functions Cellular localization Mutations and SNPs Associated patho-

logical conditions

Synapsin

I

P17600 Chemical synaptic transmission, neurotrans-

mitter secretion, regulation of neurotrans-

mitter secretion and synaptic vesicle

exocytosis, synaptic vesicle clustering

Synapse Q555X [52], A548T

[90]

AD, Epilepsy, BD,

MS, Huntington’s

disease, ALS,

ASD

Synapsin

II

Q92777 Chemical synaptic transmission, neurotrans-

mitter secretion

Synapse, Synaptic

vesicle membrane

(rs37733634)

A[G [53]

AD, Epilepsy,

Schizophrenia,

BD, MS, ALS,

Hyperalgesia

Synapsin

III

O14994 Neurotransmitter secretion, regulation of

synaptic transmission

Cell junction, Cyto-

plasmic vesicle,

synaptic vesicle and

its membrane

-196G[A [70],

-631C[G,

-69G[A

[73, 81], Ser470N

[69]

AD, Schizophrenia,

BD, MS

Accession no. and functional categories obtained by UniProtKB.
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suppressing the reduction of synaptic proteins synapsin-1,

synaptophysin, and PSD 95, resulting in increased micro-

RNA-9 expression and a subsequent decrease in

Ca2?/calmodulin-dependent protein kinase kinase 2 and

phospho-AMP-activated protein kinase alpha expression

[41]. Furthermore, pramlintide, a non-aggregating analog

of the hormone amylin, also improves the cognitive defects

via increased hippocampal synaptic protein expression and

can be used as a treatment for AD [42]. A proposed

mechanistic approach is presented in Fig. 3, illustrating the

potential of osthole and pramlintide.

In accordance with a rise in the number of studies

suggesting interactions between synapsins and neu-

rotrophins [43] and APP [44], as well as their association

with neuronal plasticity [45], interventions focused on

maintaining the expression of synapsins in the brain may

be beneficial for populations at a high risk of dementia by

delaying the onset of cognitive impairment [46].

Epilepsy

Epileptic seizures are one of the most commonly experi-

enced neurological symptoms affecting almost 1% of the

world population [46]. It manifests as recurring seizures

associated with characteristic signs and/or symptoms of

abnormal, excessive, or synchronous neuronal activity

caused by persistent cerebral dysfunction [47, 48]. Many

studies conducted on synapsin-KO mouse lines have

demonstrated that the synapsins play a prominent role in

the regulation of neuronal network excitability, and

impairment in their function can result in pathological

conditions like epilepsy. The absence of synapsin proteins

can elicit epileptic seizures brought about by a range of

complex mechanisms, by affecting distinct neuronal pop-

ulations in various brain areas [49].

A study conducted by Li et al. [19] using synapsin

I-deficient mice generated by homologous recombination

strongly supported the key role of synapsin I in the control

of the function of the nerve terminal in mature synapses. In

addition, the occurrence of nonsense and missense muta-

tions in synapsin I in epileptic and ASD patients also

asserts the notion that the pathogenesis of these diseases is

associated with a disturbance of synaptic homeostasis [50].

The first mutation of this kind was reported in 2004 in a

four-generation family in which some males expressed an

epileptic phenotype either in isolation or in association

with mental retardation and/or behavioral disturbances

[51]. A more recent study was conducted by Lignani et al.

in 2015 [52] to understand the involvement of synapsin I

mutations in the mechanisms of epileptogenesis through an

analysis of the effects of the Q555X mutation on the

neurotransmitter release dynamics and short-term plasticity

(STP) in excitatory and inhibitory synapses. The results

revealed that the network hyperexcitability which leads to

the manifestations of epilepsy/autism are triggered by

imbalances in STP and the release dynamics of inhibitory

and excitatory synapses.

In addition, molecular analysis has suggested that the

GABRA6 T[C and Syn II A[G gene polymorphisms

are significantly associated with idiopathic generalized

epilepsy (IGE) in a south Indian population [53], further

suggesting a role for their association with IGE in other

ethnicities.

Schizophrenia

Schizophrenia is a complex, debilitating neuropsychiatric

condition which is believed to be caused by various genetic

and neurodevelopmental abnormalities [54]. It is charac-

terized by auditory-verbal hallucinations due to alterations

in the information flow between auditory and language

processing-related regions [55]. The involvement of

synapsins in the pathophysiology of schizophrenia has

been determined by different studies which suggest that the

pathogenesis of various neurological disorders originate

from changes at synapses [56, 57]. Synapsin II and III have

been implicated in schizophrenia as a decrease in their

expression levels has been found in schizophrenic patients

[58–60, 62]; also, single nucleotide polymorphisms (SNPs)

have been associated with schizophrenia [62].

The Synapsin II gene, located on chromosome 3p25, has

been suggested as a candidate gene for schizophrenia based

on functional linkage and association studies. A

Fig. 3 Mechanisms of synapsin I involvement in AD pathogenesis

and potential treatment strategies aimed at the resumption of synapsin

levels. The levels of synapsin I are significantly lower in various brain

regions, notably the hippocampus, dentate gyrus, and posterior

cingulate gyrus, in AD patients. Furthermore, the sorting-related

receptor with A-type repeats (SORLA), which interacts with the

phosphosynapsins and causes their degradation, is inhibited in AD.

This results in the accumulation of phosphorylated synapsins thereby

reducing the levels of unphosphorylated synapsin I. This decrease can

potentially be reversed by the use of osthole, a natural coumarin

derivative isolated from the leaves of Cnidium monnieri, and

pramlintide, a non-aggregating analog of the hormone amylin, thus

establishing them as promising therapeutic agents against AD.
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significantly reduced protein content of synapsin II [59] has

been reported in postmortem studies of schizophrenic

brains. Also, there is a substantial decrease in the synapsin

II mRNA in the dorsolateral and medial prefrontal cortex

of schizophrenic patients, clearly demonstrating its role in

the pathophysiology of the disease [60, 61].

The linkage and association of synapsin II gene

polymorphisms with schizophrenia have also yielded

interesting results. Studies using microsatellite markers

and SNPs have revealed a possible involvement of the

synapsin II gene in the etiology or pathogenesis of

schizophrenia [63]. Using SNPs (rs308963 and rs795009)

and two insertion/deletion polymorphisms (rs2307981 and

rs2308169) in synapsin II in schizophrenic patients

revealed significant differences in the allele frequency

distribution between patients and control subjects, further

asserting the positive association between synapsin II and

schizophrenia [64]. Moreover, a family-based association

study has also suggested a role of synapsin II variants in

susceptibility to schizophrenia [65].

Synapsin III, located in chromosomal region 22q13

(13.1–13.31), is also considered to be a susceptibility locus

for schizophrenia [66, 67]. While a significant reduction in

synapsin III protein levels in the prefrontal cortex is

recognized as a major cause of dysfunction in schizo-

phrenic patients, molecular studies have identified some

polymorphisms in synapsin III which are associated with

schizophrenia [68]. The polymorphism S470N in the

synapsin III gene affects a phosphorylation site, Ser470,

which results in the deletion of a mitogen-activated protein

kinase site that is phosphorylated during development and

more frequent in probands with schizophrenia than in the

normal population. These properties suggest a physiolog-

ical role for Ser470 polymorphism in neuronal plasticity,

which is altered in schizophrenia [69]. The possibility of an

association of the SNP-196G/A in the promoter region with

schizophrenia has also been reported [70].

However, many studies have negated the idea of

involvement of synapsin III polymorphisms in schizophre-

nia. An association and expression study by Chen et al. did

not support a major role for synapsin III in susceptibility to

schizophrenia in Irish and Chinese populations [71].

Another study by Ohtsuki et al. in 2000 involved mutation

analysis of the synapsin III gene in schizophrenia using the

single-strand conformation polymorphism method. Vari-

ants in 13 exons and the 50-flanking region of the synapsin

III gene were searched in schizophrenia which led to the

identification of three polymorphisms, y631CrG, y271TrC,

and E525Q, and one rare variant, y669C. However, no

significant differences in the allelic and genotypic distri-

butions between schizophrenic and control subjects were

reported, thus suggesting the absence of an association

between the synapsin III gene and schizophrenia [72].

Similarly, three SNPs were identified using a sequencing

method, two of which (g.-631C[G and g.-196G[A)

were in the 50 promoter regions, while g.69G[A was at

exon 1. But no significant differences in genotype or allele

frequency distributions of these SNPs were found between

patients and non-psychotic individuals, demonstrating no

involvement of the synapsin III gene in the pathogenesis of

schizophrenia [73]. Moreover, a linkage- and family-based

association study also suggested that chromosome 22q13 is

not likely to contain a schizophrenia susceptibility gene

[74]. Interestingly, studies investigating the DNA methy-

lation and mRNA expression of the synapsin III gene also

demonstrated no relation of the variation in SYN III

methylation to schizophrenia in the population sample or a

monozygotic twin pair discordant for schizophrenia or to

the mRNA level of SYN IIIa in different human brain

regions [75]. Therefore, despite the evidence of a possible

involvement of Synapsin III polymorphisms in schizophre-

nia, most studies have refuted this idea. On the therapeutic

front, there is a positive association of the lifetime use of

antipsychotic drugs with synapsin IIa expression in

schizophrenic patients, which further implies the involve-

ment of synapsin II in the therapeutic mechanisms of these

drugs. This could be further exploited to strategize better

therapeutic approaches [61].

Bipolar Disorder

Pursued as a major topic in health research, BD is a

significantly prevalent (1%–2%) psychiatric condition of

debilitating nature in the general population. It has been

characterized by abnormal episodic shifts in mood ranging

from depressive to manic episodes, hindering the carrying

out of routine tasks by patients. In BD, the expression of

synapsins Ia, IIa, and IIIa is markedly reduced [60].

The involvement of epigenetic regulatory mechanisms

in synaptic dysregulation in mood disorders is noteworthy.

Interestingly, the synapsin genes are also influenced by

these epigenetic factors. Their relationship to enrichment in

the H3K4me3 promoter, an epigenetic marker associated

with increased transcription, is evident in studies conducted

on BD major depression post-mortem brains which show a

significant increase in histone modification markers along

with a substantial increase in synapsin gene expression

[76]. Similarly, a decrease in promoter DNA methylation is

also correlated with increased expression of synapsin genes

[77].

Moreover, the expression of synapsin is also influenced

by alkali metals like lithium. Lithium is a common

treatment for BD due to its proven efficacy as a short-

term intervention for manic episodes as well as a prophy-

lactic agent against episode recurrence [78].
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Abnormalities in synaptic proteins may be a common

pathophysiology of BD and schizophrenia, establishing

synapsins as a common molecular target for developing

better therapeutic strategies for both of these disorders.

Multiple Sclerosis

Although MS is an autoimmune disease characterized by

demyelination in the central nervous system, recent

research has revealed that axonal damage characterizes

the early stage of the disease. Data based on experimental

studies suggest a possible immunogenic role of synapsins,

demonstrating an impairment of neurons resulting in the

neurological disability of MS [79]. A study by D’Alfonso

et al. (1999) linked synapsin III to MS as it located the

synapsin III gene to chromosome 22q12–q13 which is in

close proximity to one of the potential MS susceptibility

regions (22q13.1) [80]. In addition, an inverse association

of the g.–196 G[A and g.–631C[G polymorphisms at

the 50-promoter region of the synapsin III gene with MS

and an association of the g.–631C[G polymorphism with

disease onset at a younger age also support the importance

of synapsin III as a candidate gene in MS [81].

Also, the significantly decreased expression patterns of

synapsin IIa during the early stage of experimental allergic

encephalomyelitis strengthen the notion that abnormalities

in the release of neurotransmitters and degradation of

cytoskeletal elements may contribute to the neuronal deficit

[79].

Synapsin-specific T cells, also known as TH1-like T

cells [80, 82], have been associated with the pathogenesis

of MS, which has been demonstrated to be mediated by

TH1-cytokines [83, 84]. Other studies [85] have also

reported the presence of synapsin Ia-specific T cells along

with a similar frequency of myelin basic protein-specific T

cells in the serum of MS patients during different stages of

the disease, strongly suggesting a role of synapsins in its

development.

Huntington’s Disease

HD is an autosomal dominant neurodegenerative disorder

caused by a polyglutamine (polyQ) expansion of[37

glutamines in the HD protein huntingtin (htt) and charac-

terized by motor and cognitive deficits [86]. The degen-

eration in HD occurs preferentially in striatal neurons and

extends to other brain regions with the progression of the

disease [87]. The role of synapsins in HD is evident from

various research findings suggesting that post-translational

modifications in synapsins brought about by HD cause

abnormalities. An abnormal phosphorylation state of

synapsin I is evident in the striatum and the cerebral

cortex of R6/2 transgenic mice expressing an HD mutation.

These changes are mostly characterized by early over-

phosphorylation at sites 3–5; they have been shown to

occur through a decrease in the expression of the cal-

cineurin regulatory subunit-B, contributing to an imbalance

between kinase and phosphatase activities. An early

impairment in synapsin phosphorylation–dephosphoryla-

tion has been marked as a major contributor to changes in

synaptic vesicle trafficking and defective neurotransmis-

sion in HD [88]. Also, a study on HD CAG150 knock-in

mouse brains revealed a strong binding of mutant htt to the

C-terminal region of synapsin-1 to reduce its phosphory-

lation and thus neurotransmitter release, thereby identify-

ing a critical role of synaptic htt in the neurological

symptoms of HD [89].

Others

In addition to their involvement in the conditions discussed

above, synapsins have also been linked to conditions like

amyotrophic lateral sclerosis (ALS), autism [90], and

hyperalgesia [91]. An immunohistochemical investigation

of synaptic proteins has revealed differential expression

between the two groups of synaptic proteins in the ALS

anterior horn of the spinal cord where synaptic vesicle

Table 2 Mechanisms of synaptic pathology in neurological disorders.

Mechanisms associated with synaptic

pathology

Neurological disorders

ER stress-associated

neurodegeneration

Synapsin I decrease in AD due to ER stress [36]

Protein Interactions Synapsin interactions with SORLA in AD [39]

Gene mutations PS-1 mutation in AD [40], Synapsin I and II mutations in epilepsy [50–53], Synapsin II and III mutations

in schizophrenia [63–70]

Altered epigenetic mechanisms Increased histone modification and decreased promoter DNA methylation in BD [76, 77]

Immunogenicity Synapsin-specific T cells in MS pathogenesis [82–85]

Post-translational modifications Impaired phosphorylation in HD [88, 89], Impaired sumoylation in epilepsy and autism [90]
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proteins including synapsin I are significantly decreased

[92]. In addition, proteomic analysis of the spinal cord in a

mouse model of ALS showed under-expression of synapsin

II [93]. Although these studies provide a promising

association of synapsins, further investigations are required

to elaborate its possible involvement in ALS.

ASDs, which are complex, multifactorial neurodevel-

opmental conditions manifested by impaired behavior and

social interaction [94], may also be associated with altered

synapsin function. A study by Tang et al. in 2015 [90]

suggested the possibility of a role of dysfunctional synapsin

Ia SUMOylation in neurological disorders like epilepsy and

autism. An A548T mutation in synapsin Ia, which is known

to be associated with ASD and epilepsy, causes a decrease

in synapsin Ia SUMOylation and mirrors the functional

defect of non-SUMOylatable synapsin Ia. This study opens

avenues for further research on the post-translational

modification of synapsins in neurological disorders, creat-

ing a paradigm for a better understanding of their role in

pathogenesis.

An involvement of synapsin II has also been noted in the

synaptic transmission of nociceptive signals in the spinal

cord that leads to pain hypersensitivity. A study by

Schmidtko et al. in 2005 [91] revealed the expression of

synapsin II in terminals and neuronal fibers in the

superficial laminae of the dorsal horn (laminae I–II). In

addition, a unique role of synapsin II in nociception-evoked

glutamate release, hyperalgesia, and c-Fos expression in

the dorsal horn, assessed through the effects of its complete

and transient deficiency on nociceptive behavior in various

models, has been attributed partly to its localization as well

as function. Although this indicates that synapsins are

involved in pain hypersensitivity, further research in this

field is imperative for confirmation of this concept. A brief

summary is provided in Table 2 listing the involvement of

synapsins in neurological disorders.

Conclusion

The studies conducted on synapsins reveal that each

member of the synapsin family has a unique function at a

certain type of presynaptic terminal. Alterations in the

activity of synapsins may play crucial roles in several

neurological disorders. However, our understanding of the

possible roles of synapsins in these disorders can be aided

by studies aimed at furthering insights into the molecular

pathology of the neurological diseases. An understanding

of the functions of different synapsins isoforms will also

enable us to answer crucial questions about the contribu-

tions of synapsins to different brain functions and neuro-

logical disorders.
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