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Abstract The identification of sensitive and specific

biomarkers for Parkinson’s disease (PD) poses an impor-

tant clinical challenge. A potential biomarker for early

diagnosis and disease monitoring of PD is region-specific

iron. Iron accumulation in the substantia nigra pars

compacta is considered a main characteristic of PD.

However, questions remain, such as the relationship

between nigral iron and clinical indices of PD (motor

impairment or disease duration). Further, previous studies

have suggested the influence of iron on other nuclei. Iron

quantification using magnetic resonance imaging (MRI)

allows for studies of the relationship between regional iron

and clinical symptoms in vivo. Thus, in this review we

discuss the following topics: the technological develop-

ment of MRI in measuring brain iron, nigral iron as a

potential marker for PD in both clinical and prodromal

stages, other influences of regional iron on PD, and clinical

translation and future perspectives.

Keywords Iron � Biomarker � Parkinson’s disease � Mag-

netic resonance imaging

Introduction

Parkinson’s disease (PD) is one of the most common

neurodegenerative diseases and has heterogeneous clinical

symptoms [1, 2]. The clinical diagnosis of PD lacking

objective evidence mainly depends on the occurrence of

motor impairments, such as akinesia, rigidity, and resting

tremor [2, 3]. Significant motor symptoms generally emerge

only after 50%–70% of the dopaminergic neurons in the

substantia nigra pars compacta (SNc) are irreversibly lost

[4, 5], which indicates a pathologically advanced stage [6, 7].

In clinical practice, there are no sensitive and specific

biomarkers for PD. Therefore, the rate of misdiagnosis is

high, ranging from 12% to 74%, and the rates are markedly

higher in patients with a shorter disease duration or without a

clear response to dopaminergic medication [8]. Previous

studies indicate little improvement in the diagnostic accu-

racy of PD over the past 20 years [8, 9], indicating an urgent

need for a clinical biomarker to aid diagnosis.

Iron plays an essential role in physiological function

during normal aging, including oxygen transport, DNA

synthesis and repair, mitochondrial respiration, myelin

synthesis, neurotransmitter synthesis and metabolism [10].

Dysfunction of iron homeostasis can contribute to the

generation of free radicals, leading to the oxidation of

proteins, lipids, lipoproteins, and other cellular compo-

nents, which can result in neuronal death [10–12]. Patho-

logical iron accumulation in the nigra has been reported in

PD by previous histochemical studies [13–15]. A recent

study also indicated that iron loading contributes to

increasing the level of alpha-synuclein (the core pathology

of PD) [16]. Therefore, nigral iron might be a potential

marker for PD. However, these studies did not provide

in vivo clinical verification or investigate the interaction

between nigral iron and clinical symptoms.

To prompt clinical investigation, magnetic resonance

imaging (MRI) has been developed to evaluate brain iron

content in vivo and, with decades of progress, has reached a

milestone in quantifying iron content. In this review, we

discuss the technological development of MRI in assessing
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brain iron, nigral iron as a potential marker for PD in both

clinical and prodromal stages, other influences of regional

iron on PD symptoms, and clinical translation and future

perspectives.

Technological Development of MRI in Measuring
Brain Iron

Brain iron is mainly stored in the form of ferritin, which is

reserved for the needs of the brain [17, 18]. In MRI, brain

iron not only changes the relaxation behavior of tissue

water surrounding ferritin, but also introduces susceptibil-

ity changes and microscopic field gradients. Iron levels

in vivo have an effect on signal intensity, causing signal

changes in T2 and T2* [19] and in phase values [20],

enabling quantitative MRI iron mapping. However, these

methods have limitations. First, both T2 (R2 = 1/T2) and

T2* (R2* = 1/T2*) values are greatly influenced by the

water content of diseased tissues, such as degenerating

nuclei in PD. Second, the field-dependent R2 increase

(FDRI) [21, 22], a difference in measures of brain R2

obtained with increasing magnetic field strength, is time-

consuming and clinically challenging. Third, phase imag-

ing is not easily reproducible because the signal phase is

nonlocal and orientation-dependent [23, 24]. Recently,

quantitative susceptibility mapping (QSM) gave rise to a

major evolution in the quantification of iron content by

converting phase shift to a localized magnetic susceptibil-

ity [23, 25, 26]. In past decades, field-dependent methods

[21, 22], T2* mapping [19], T20 mapping (R20 = 1/T20 =
R2* - R2) [27, 28], phase imaging [29, 30] and QSM

[31–33] for detecting iron content in healthy controls have

been highly consistent with postmortem results. Therefore,

MR iron mapping has promising potential for quantifying

brain iron in vivo and for investigating the underlying

pathological alterations in PD.

Nigral Iron as a Potential Biomarker for PD
(Clinical and Prodromal)

Iron-related oxidative damage in the SNc is a common

explanation for the loss of dopaminergic neurons in PD.

The nigral degeneration leads to the depletion of dopamine

in the striatum, which is assumed to be correlated with

disease severity. In efforts to obtain a relevant biomarker

for clinical-stage PD patients, extensive MRI studies have

been performed to investigate the nigral iron changes in PD

and their correlation with disease severity. A majority of

studies using MRI techniques [34–65] (Table 1) support

the accumulation of nigral iron in PD, which agrees with

the previous histochemical findings. More interestingly,

many of the studies have also reported a significant

correlation between nigral iron measured by MRI and part

III of the Unified Parkinson’s Disease Rating Scale

(UPDRS III score, motor impairment) or Hoehn–Yahr

stages (clinical disease stage) [36, 40–42, 49, 50, 53–60].

Moreover, it has also been reported that nigral iron

accumulation has a good discriminative capacity for

distinguishing PD patients from controls [63, 64]. There-

fore, the quantification of nigral iron content by MRI is a

promising biomarker for PD.

Concerning its use as a biomarker, it is crucial to

understand whether nigral iron content increases or

remains stable throughout the duration of disease. How-

ever, published studies have reported conflicting findings

[35, 41, 49, 50, 52, 54, 60, 61, 64, 65]. Except for a few

studies reporting a positive correlation between nigral iron

content and disease duration [50, 52, 54], most studies,

including some longitudinal analyses, have failed to find

such a correlation [35, 41, 49, 60, 61, 64, 65]. Various

sample sizes and techniques used by the studies likely

contribute to the discrepancies (Table 1). Further, no study

has analyzed the interaction of disease duration and nigral

iron independent of the motor impairment in PD. Though

the majority of studies support the conclusion that iron is

elevated at the time of diagnosis and remains constant

during the course of the disease, further studies are needed

to confirm the relationship without the influence of motor

impairment.

Nigrosome 1, located in the caudal and mediolateral

SNc, plays an early and large role in PD [4, 5]. Recently,

Blazejewska et al. [66] reported the loss of dorsolateral

nigral hyperintensity (DNH) in a T2* map in PD patients,

and confirmed correspondingly low neuromelanin in this

region. These findings indicate that regional iron accumu-

lation in nigrosome 1 mirrors the loss of dopaminergic

neurons, which suggests that evaluating the level of DNH

might provide a biomarker for PD. Several studies have

also confirmed its application to differentiate PD from

normal aging with high sensitivity and specificity [67–69].

However, only 13 of 35 normal subjects showed bilateral

or unilateral DNH in a study by He and colleagues [54].

Intriguingly, De Marzi et al. [70] have reported that, as a

majority of patients with idiopathic rapid eye movement

sleep behavior disorder (iRBD) go on to develop PD, the

loss of DNH in iRBD patients was found to be similar to

that in PD patients. This indicates that evaluating DNH

could be used to classify early-stage PD, referred to as

prodromal PD [71]. As PD is one of the most common

neurodegenerative disorders, low DNH in normal individ-

uals [54] may indicate prodromal PD or high-risk cases.

Studies with larger samples and different clinical subtypes,

especially longitudinal studies, are still needed to confirm

the usefulness of measuring DNH levels for future clinical
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translation, especially in the identification of prodromal

PD.

Because the main degenerative alterations in PD are

limited to the SNc, some of the above studies have tried to

distinguish the SNc from the SN. Martin et al. [72] have

suggested that because the SN pars reticulata (SNr), which

has a low signal in T2 and phase imaging but a high signal in

QSM, has a significantly higher iron content than the SNc;

the SNc corresponds best to the high signal area that is

interposed between the low signal structures of the SNr and

the red nucleus (in T2 and phase imaging; opposite in QSM).

Previous studies have confirmed the presence of iron

Table 1 Relationships between nigral iron accumulation and clinical phenotypes

Authors Materials Technique Field

strength

Nigral iron and

motor impairment

Nigral iron and

disease duration

Ryvlin et al. [34] 45 patients, 45 controls T2 2.0 T - NG

Antonini et al. [35] 30 patients, 33 controls T2 1.5 T - -

Gorell et al. [36] 13 patients, 10 controls R2, R2*, R2’ 3.0 T ? NG

Kosta et al. [37] 40 patients, 40 controls T2 1.5 T - NG

Graham et al. [38] 21 patients, 13 controls R2, R2’ 1.5 T - NG

Michaeli et al. [39] 8 patients, 8 controls T2q 4.0 T - NG

Zhang et al. [40] 42 patients, 30 controls SWI 1.5 T ? NG

Martin et al. [41] 22 patients, 11 controls R2* 3.0 T ? -

Nestrasil et al. [42] 9 patients, 10 controls T2q 4.0 T ? NG

Gupta et al. [43] 11 patients, 11 controls SWI 1.5 T - NG

Baudrexel et al. [44] 20 patients, 20 controls T2* 3.0 T - NG

Du et al. [45] 16 patients, 16 controls R2* 3.0 T - NG

Du et al. [46] 40 patients, 29 controls R2* 3.0 T - NG

Peran et al. [47] 30 patients, 22 controls R2* 3.0 T - NG

Wang et al. [48] 16 patients, 44 controls SWI 1.5 T - NG

Jin et al. [49] 45 patients, 45 controls SWI 3.0 T ? -

Lewis et al. [50] 38 patients, 23 controls R2* 3.0 T ? ?

Lotfipour et al. [51] 9 patients, 11 controls QSM 7.0 T - NG

Du et al. [52] 47 patients, 47 controls R2*, QSM 3.0 T ? ?

Langkammer et al. [53] 66 patients, 58 controls R2*, QSM 3.0 T ? NG

He et al. [54] 44 patients, 35 controls R2*, QSM 3.0 T ? ?

Guan et al. [55] 60 patients, 40 controls R2*, QSM 3.0 T ? NG

Wieler et al. [57] 19 patients, 13 controls R2* 3.0 T ? NG

Wang et al. [58] 20 patients, 14 controls ESWAN 3.0 T ? NG

Ulla et al. [59] Baseline: R2* 1.5 T ? ?

27 patients, 26 controls

Follow-up:

14 patients, 18 controls

Wallis et al. [60] 70 patients, 10 controls R’ 3.0 T ? -

Rossi et al. [61] Baseline: R2*, SWI, T2 3.0 T ? -

32 patients, 19 controls

Follow-up:

25 patients, 19 controls

Murakami et al. [63] 21 patients, 21 controls R2*, QSM 3.0 T NG -

Barbosa et al. [64] 20 patients, 30 controls R2, R2*, QSM 3.0 T NG -

Zhang et al. [65] 40 patients, 26 controls SWI 3.0 T - -

Acosta-Cabronero et al. [78] 25 patients, 50 controls QSM 3.0 T - -

?: Statistically significant;

-: No significant difference.

NG: Not given.
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accumulation in the SNc in PD patients [39, 41, 42, 52,

55–59, 61, 62]. Guan et al. [56] have further confirmed that

PD patients with different motor subtypes also show iron

accumulation in the SNc. However, identification of the SNc

remains a challenge with the available imaging resolution.

Thus, we hope that future studies using ultrahigh field MRI

will contribute to its precise delineation [51].

Other researchers have explored the possible physiochem-

ical underpinnings of nigral iron accumulation. Jin et al. [49]

have suggested that nigral iron content is highly correlated

with the level of serum ceruloplasmin (an important anti-

oxidative protein), and shown that PD patients with a

decreased level of serum ceruloplasmin have significantly

higher iron content than PD patients with a normal level.

Although it is unclear how serum cholesterol levels and uric

acid interact with nigral iron content, Du et al. have

demonstrated a significant negative correlation between nigral

iron content and total cholesterol, and Kim and Lee have

confirmed both low serum uric acid levels and increased

nigral iron content in PD, but without a correlation between

them [73, 74]. Serum samples can be easily obtained and

have a high potential to provide necessary biological

information. New studies, especially those focusing on the

relationship between anti-oxidative materials and nigral iron

accumulation, will deepen our understanding. Test–retest

studies will be important for translating these findings into

clinical applications for classifying at-risk individuals.

In brief, nigral degeneration is a core pathology of

clinical-stage PD. Although a single biomarker cannot

definitively identify PD, we believe that quantification of

nigral iron or qualitative analysis of DNH will contribute to

recognizing high-risk individuals and possibly aid diagnosis.

Other Influences of Regional Iron on PD

Subcortical nuclei, like the globus pallidus (GP), putamen,

caudate nuclei (CN), red nuclei (RN), and dentate nuclei

(DN), are also rich in iron [17]. However, the influences of

iron in these nuclei are not well understood in PD. Previous

MRI studies have found significant iron accumulation in

the GP [37, 53, 55, 75], especially in late-stage PD patients

[55]. Martin et al.[41] and Ye et al.[75] have reported that

the iron content in the GP is significantly correlated with

disease severity. In a cohort of PD patients with a long

disease duration ([10 years), Graham et al. and Ryvlin

et al. [34, 38] have found significantly decreased iron

content in the putamen while Ye et al. [75] have reported

significantly increased iron content in their PD patients. In

addition, in a post-hoc correlation analysis, Bunzeck et al.

and Guan et al. [56, 76] have reported that iron content in

the CN is significantly negatively correlated with the

severity of akinesia/rigidity in PD. Iron content in these

nuclei plays an important role in maintaining physical

function. Because of the degenerative changes in the basal

ganglia in PD, the regional iron alterations may indicate

abnormal metabolism. Sufficient evidence from basic

research is still needed to explain these MRI findings.

It is thought that increased cerebellar function might

contribute to the development of levodopa-induced dyskinesia

in PD. Lewis et al. [50] have reported significant iron

accumulation in the RN in patients with this form of PD, and

suggested that increased RN iron might reflect structural

changes associated with cerebello-thalamo-cortical compen-

sation in PD. Guan et al. have also observed this phenomenon

in late-stage PD patients [55], which likely reflects increased

cerebellar compensation. The DN is another important region

in the cerebellar circuit, and both He et al. and Guan et al.

[56, 77] have reported significant iron accumulation in this

region in tremor-dominant PD patients that correlates with

tremor severity. Thus, iron content in the RN and DN

possibly play roles in activating RN function (cerebellar

compensation) and tremor generation, respectively.

Taken together, region-specific iron content shows

complex regulation secondary to nigral degeneration in

PD patients. Confirmation of these findings would greatly

contribute to understanding the role of iron in PD and the

search for promising biomarkers.

Clinical Translation and Future Perspectives

To improve the current diagnostic accuracy of PD, a

biomarker with high sensitivity and specificity would be of

great use. Reviewing the decades of effort toward this goal

indicates that identification of a single biomarker is

unlikely, whereas the use of multiple biomarkers may be

beneficial. Iron-related biomarkers offer useful information

about the disease mechanism and clinical diagnosis as the

improved techniques (such as QSM) and increased field

strength provide more precise measurements than previ-

ously available with high resolution and signal-to-noise

ratios. Novel statistical methods, including voxel-wise

analysis throughout the brain [78], would also contribute to

a better understanding of the iron abnormalities in PD and

provide potentially sensitive biomarkers. Of course, to

determine their potential for clinical translation, test-retest

reproducibility, the ability to monitor disease progression

without age bias, and compensatory mechanisms or

treatments still need to be investigated with larger cohorts

or exclusive subtypes [79]. Once prodromal PD was

defined [71], the first investigation of a nigral iron

abnormality in iRBD patients (high-risk prodromal PD

symptom) was reported [70]. Future efforts should aim to

deepen understanding of the roles of regional iron in

prodromal symptoms and also verify the candidate
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biomarkers (to be used in combination with other biomark-

ers) longitudinally. The studies reviewed here indicate

strong support for the clinical translation of iron-related

biomarkers for future early diagnosis of PD and disease

monitoring.
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