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Abstract Tobacco consumption is one of the leading

causes of preventable death worldwide. However, it is

difficult to give up smoking by relying on the help of tra-

ditional treatments only. Recent years have witnessed

emerging positive evidence that non-invasive brain stimu-

lation (NIBS), such as transcranial magnetic stimulation

and transcranial direct-current stimulation, can reduce

smoking-related behaviors. Although their potential has

been implied by advances in research, several method-

ological issues restrict the clinical application of NIBS to

treating nicotine dependence. In this review, we critically

evaluate related studies and give suggestions for future

research and applications to meet these challenges.

Keywords TMS � tDCS � NIBS � Nicotine � Addiction

Introduction

The worldwide leading causes of death, lung cancer and

chronic obstructive pulmonary disease, are associated with

cigarette smoking [1]. Besides physical health problems,

chronic smoking causes functional and structural abnor-

malities in the brain [2–5]. However, most chronic smok-

ers, including those who are willing to quit, find it difficult

to become free of tobacco usage even with the help of

intervention methods such as pharmacotherapy [6]. Tran-

scranial magnetic stimulation (TMS) and transcranial

direct-current stimulation (tDCS) are methods of

non-invasive brain stimulation (NIBS). With the advantage

of being able to modulate brain activation non-invasively,

these techniques are showing potential as therapy for

nicotine addiction [7]. In this article, we systematically

review related studies and discuss the potential and chal-

lenges of NIBS in treating nicotine addiction.

Potential of NIBS

A Brief Introduction to NIBS

NIBS can selectively excite or inhibit a target brain region

by initiating tiny electrical current over the cortex [8]. The

two most widely used techniques of NIBS are tDCS and

TMS (Fig. 1). tDCS modulates brain activity by weak

direct-current stimulation through the intact skull in a safe,

efficient, and painless way [9, 10]. It is believed to

hyperpolarize (cathodal stimulation) or depolarize (anodal

stimulation) neuronal membranes [11], with the assump-

tion of anodal-excitatory and cathodal-inhibitory effects on

brain functions [12]. However, this assumption has not held

true for all studies [13].

TMS evokes microelectronic current stimulation via a

rapidly-alternating magnetic field to temporarily excite or

inhibit the activity in a target brain region [14]. Unlike

tDCS, it is not only neuromodulatory but also neurostim-

ulatory. The current it induces can depolarize neurons.
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Repetitive TMS (rTMS) is a widely-used protocol, which

stimulates a scalp location at a frequency ranging from 1 to

20 Hz or more [15]. In general, rTMS induces inhibition

with stimulation at *1 Hz, and excitation at C5 Hz [16].

Rationale for Using NIBS to Treat Nicotine

Addiction

Nicotine, like other drugs of abuse, is associated with

abnormal function in the mesolimbic dopamine system and

reward-related brain areas, such as the ventral tegmental

area, prefrontal cortex, nucleus accumbens, amygdala, and

hippocampus [17]. The dorsolateral prefrontal cortex

(dlPFC) is widely acknowledged to be an effective stimu-

lation target, as it has been associated with cue-provoked

smoking craving [18], which is the primary trigger of relapse

[19]. Malfunction of the dlPFC in substance addiction,

including nicotine, has been shown to be the mechanism

underlying the impaired response inhibition and salience

attribution in addicts [20, 21]. Specifically, nicotine may

influence the dlPFC in smokers by blocking the a7 nicotinic
acetylcholine receptors in glutamate network synapses,

which remarkably changes the persistent firing of dlPFC

neurons [22]. Thus, modulating the dlPFC by NIBS may

result in the release of neurotransmitters such as dopamine

and c-aminobutyric acid in cortical and subcortical regions

which may in turn help smokers to get rid of the smoking

habit. The potential of NIBS in treating nicotine addiction

has recently received some preliminary empirical support.

Evidence Supporting tDCS as a Treatment

The pioneering research on the effect of tDCS on nicotine

addicts was performed by Fregni and colleagues [23]. In a

randomized, double-blind, sham-controlled crossover

study, they demonstrated for the first time that applying

weak currents over the dlPFC reduces smoking craving

[23]. The cumulative effects of tDCS on smoking craving

and consumption have been validated [24]. In another

study, Fecteau et al. attempted to modulate the decision-

making behavior of smokers via stimulation over the same

cortical region. They showed not only a four-day decrease

in the number of cigarettes consumed after anodal stimu-

lation but also more rejections of cigarettes but not mone-

tary offers in an Ultimatum Game [25]. Besides the dlPFC,

the fronto-parieto-temporal association area has also been

proposed as an accessible stimulation site for modulating

smoking-related behaviors [26]. The above studies suggest

that tDCS has potential in smoking cessation.

Only one study has reported contradictory findings. Xu

et al. investigated the tDCS effects on a group of dependent

smokers who abstained from smoking overnight on two

different occasions [27]. The outcome was that self-re-

ported craving did not show any reduction after 20 min of

anodal stimulation of the left dlPFC, though the partici-

pants had less negative affect [27]. As this study differed

from previous work with regard to the level of abstinence,

the findings may indicate the importance of a smoker’s

state as a modulator of tDCS effects.

Fig. 1 Non-invasive brain

stimulation. A Transcranial

magnetic stimulation (TMS).

B Transcranial direct-current

stimulation (tDCS).

C Mechanism underlying TMS.

D Mechanism underlying tDCS
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One interesting finding is that tDCS effects on smoking-

related behavior may be insensitive to the direction of

current flow. Two studies [23, 24] used an electrode pro-

tocol with the anode on the left dlPFC and the cathode on

the right dlPFC. In contrast, using the reversed placement

of electrodes, a study [25] also reported positive tDCS

effects on smoking-related behaviors.

Evidence Supporting TMS as a Treatment

Eichhammer and colleagues conducted high-frequency

rTMS over the dlPFC in smokers [28]. The results showed

that the smoking rate in the active stimulation group was

significantly lower than that in the sham group. Although

no difference in craving was found, the results illustrated

an advantage of TMS in smoking cessation [28]. Mean-

while, Johann et al. demonstrated that rTMS can also

reduce cigarette craving [29]; this effect was replicated in a

subsequent study using a more rigorous experimental

design and a larger group of participants [30]. This study

demonstrated that rTMS over the dlPFC reduces both

cigarette consumption and craving, though the effects were

not robust and seemed to dissipate over time [30]. Fur-

thermore, rTMS may serve as an additional aid in cogni-

tive-behavioral therapy for intermediate nicotine

abstinence [31].

Only one study has directly compared high- and low-

frequency rTMS. Rose et al. revealed that 10-Hz rTMS

over the superior frontal gyrus can elevate craving in the

presence of smoking cues, while it lowers the appetite for

cigarettes in the presence of neutral cues compared with

1-Hz rTMS [32].

The Challenges of NIBS

Although positive discoveries have been made in this field

[8, 33], apparent deficiencies exist [34].

Heterogeneity in the Stimulation Protocol

Both TMS and tDCS have a large set of parameters, and

their selection varies among studies. In rTMS, the param-

eters include stimulation site, intensity, frequency, length

of trains of pulses, and the time interval between trains. In

tDCS, the parameters include stimulation site, current

intensity, duration, electrode shape and size, and the

polarity of stimulation (anodal or cathodal). In this young

field, although some general principles [35, 36] (mainly

safety concerns) have been well-accepted, standard proto-

cols have not yet been developed [37].

Neural Mechanism of NIBS

Although advances have been made, investigations on the

particular neuronal mechanisms underlying the NIBS

effects on smoking-related behaviors are still lacking. One

hypothesis is that the interaction between the dlPFC and

the midbrain dopamine system might be a useful target of

tDCS and TMS [38]. However, this hypothesis has not yet

been tested directly. One of the rare examples is a study by

Pripfl and colleagues, who used a combination of TMS and

EEG to clarify the mechanisms underlying the TMS-

evoked reduction in smoking craving [39]. They conducted

high-frequency repetitive TMS over the dlPFC in two

groups of smokers, one of which received sham stimuli.

The self-reported craving level and delta power in the

resting-state EEG, an indicator of the activity in the

dopaminergic brain reward system, were recorded.

Although TMS effects on both craving and delta power

were found, the two measurements did not correlate with

each other [39]. A recent fMRI study revealed that the

frontal-striatal pathway can be modified by tDCS over the

dlPFC in the Balloon Analog Risk Task [40]. However, no

behavioral change in that task was found under stimulation;

besides, as the experiment was conducted on healthy par-

ticipants, whether the tDCS effects on the frontal-striatal

pathway are associated with reductions in smoking

behaviors remains unclear. Although a recent study used a

sample of smokers, only the tDCS effects on task-based

activations were reported, without evaluating the tDCS

effect on functional connectivity [41].

An alternative pathway affected by NIBS is the link

between the dlPFC and the hippocampus. The cognitive

theory of craving proposes that it reflects the automatic

retrieval of related experience, which bias cognitive pro-

cessing toward smoking-related experience [42]. The

neurobiological theory also states that addiction is pri-

marily a malfunction of the hippocampus [43], ‘‘the relapse

circuits in the brain’’ [44]. However, whether NIBS can

modulate the dlPFC-hippocampus pathway has not been

directly tested.

Individual Differences

Recent work has revealed that NIBS effects are vulnerable

to individual factors [45, 46]. For instance, one study

showed that only people with low performance in working

memory benefit from tDCS [47]; also, individual resting-

state functional connectivity before stimulation predicts the

effect of tDCS on tinnitus [48]. Many factors have to be

taken into consideration in tDCS studies, including devel-

opmental stage, hormonal levels, plasticity and stability,

and even circadian rhythms [45]. These variables might

also be confounding factors in TMS studies.
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One variable that may be important in NIBS studies of

smoking behaviors is the individual’s expectation of

smoking during the treatment. Expectancy of smoking is

known to be a modulator of cue-reactivity in fMRI studies.

For example, McBride et al. discovered that expectancy of

and abstinence from cigarettes are possible modulators of

the neuronal responses of smokers to a related cue [49]. In

people expecting to smoke immediately after the scan,

smoking cues activated brain areas implicated in arousal,

attention, and cognitive control. These cue-induced activ-

ities did not occur in those who were not allowed to smoke

for 4 h. Also, trends but not significant differences in cue-

related neuronal responses were found between participants

with distinct abstinence states. Another noteworthy finding

is that applying tDCS to smokers with 12-h abstinence only

reduces the negative affect rather than the craving.

Other specific factors that should be noted are the

severity of nicotine dependence [50], withdrawal symp-

toms [34], and gender [51]. These individual factors were

not explicitly controlled in the published NIBS studies on

smoking behaviors, which questions the generalization of

these findings to the clinical context.

Cultural Differences

Cultural difference is another possible variable given that

the neuronal substrate underlying smoking behavior may

also differ between cultures or ethnicities. Okuyemi eval-

uated the differences in attention to smoking cues between

African-Americans and Caucasians using fMRI [52]. The

results showed a strong ethnic effect in several a priori

regions of interest. African-Americans responded more in

several brain regions than Caucasians both in the contrast

between smoking cues and neutral cues and between

smokers and non-smokers [52].

One important difference is that between Western and

Eastern cultures [53]. No study, to our knowledge, has used

task-based fMRI to investigate the differences between

western and eastern smokers. However, preliminary evi-

dence for cultural disparities in the morphometry of the

brain has been reported [54]. Chinese chronic smokers

have a smaller gray matter volume in the cerebellum on

both sides of the brain [55], while western smokers only

have decreased volume in the right cerebellum [18].

Another study on Chinese chronic smokers found a reduced

gray matter volume in the left thalamus [56], while a study

on western smokers found a decrement in the right thala-

mus [57]. These findings suggest a western-eastern differ-

ence in the lateralization pattern.

Despite the evidence outlined above, the factor of cul-

ture has not received further attention with regard to the

effects of NIBS on smoking behavior. We performed a

simple search on the Web of Science with the following

strategy: Topic: ‘‘transcranial direct current stimulation’’ or

‘‘TMS’’; Address: ‘‘China’’, ‘‘Germany’’, or ‘‘USA’’;

Research domains: ‘‘science technology’’; Research areas:

‘‘neuroscience neurology’’ or ‘‘psychology’’. The results

revealed that, so far, only 33 tDCS studies and 334 TMS

studies have been done in mainland China, while in the

USA there have been[600 tDCS studies and thousands of

TMS studies. The statistics may not be accurate, as we did

not manually check each publication. However, the general

pattern reflects a situation that is worthy of note by

researchers in China. Among these studies, only few have

aimed at investigating the therapeutic effect of these

techniques on nicotine addiction. Only one study on the

effects of NIBS on smoking-related behaviors has been

published by researchers in China [26]. That study used a

unique protocol that directly compared the findings in

Asian smokers with those in western smokers. As general

functional differences between Westerners and East Asians

have been reported [53], the problem of simple general-

ization of western findings to an Asian context is evident.

Perspectives

Combining Behavioral and Neuroimaging Measures

Most of the previous studies on the NIBS effects rely on

the measurement of self-reported craving given that this is

believed to be the primary motivation for relapse [58].

However, the existence of an association between subjec-

tive craving and relapse has been contested [59]. It is

inappropriate to rely too much on craving reports. Alter-

native approaches, such as EEG and fMRI, can be

considered.

Combining behavioral and neuroimaging measurements

can also clarify the neuronal mechanisms underlying the

NIBS effects. Future studies may directly investigate the

roles of two important pathways in the NIBS effects: the

dlPFC-striatal pathway and the dlPFC-hippocampal

pathway.

Optimizing NIBS Protocols Using Brain

Connectomics

The functions of the human brain are characterized by both

local specialization and global integration. The field of

connectomics is contributing new knowledge and tools to

reveal the functional organization of the human brain

[60, 61]. The state-of-the-art progress of connectomics may

serve as a tool for optimizing the protocols of TMS and

tDCS [62, 63]. On the one hand, the choice and validation

of stimulation targets may be guided by connectomics. On

the other hand, brain network analysis could be used in
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future studies on the mechanisms of the TMS and tDCS

effects on nicotine addiction to reveal the underlying

neuronal mechanism from the network point of view,

which may improve the understanding of NIBS and pro-

mote its clinical application.

Individualized NIBS Protocols

Individualized NIBS protocols are the right direction, given

that NIBS effects are modulated by many individual fac-

tors. To achieve this goal, a ‘‘localizer’’ fMRI scan might

be an ideal solution to guide the selection of the target

brain region for each participant. Such an approach has

empirical support. For instance, Sack et al. have verified

that individual fMRI-guided TMS neuro-navigation yields

a greater effect size than the MRI-guided neuro-navigation

coordinates of group results and the 10–20 EEG location

[64]. Clark et al. demonstrated that tDCS guided by fMRI

significantly improves the ability to learn to identify con-

cealed objects [65], which is a good example of using an

individualized protocol to help people to attain expertise.

We suggest that the validation of individualized NIBS

treatment protocols may be a valuable research direction.

For studies using the group-based protocol, we suggest that

individual factors, such as expectancy and abstinence level,

must be well-controlled or set as covariates.

Multi-Center and Cross-Cultural Studies

Culture-led neuronal differences may be variables for

NIBS effects on smokers, as cultural differences seem to

play a role in brain activity among smokers. No conclu-

sions can be drawn since, so far, this has neither been tested

directly nor can the results from western countries be

compared with those from the east due to the small num-

bers and incomparable experimental designs. Therefore, to

make this question clear, we recommend a direct check of

the cross-cultural NIBS effects on smokers as well as more

studies from East Asian countries with designs comparable

to those from the west.

Conclusions

We have discussed the potential and challenges of using

NIBS in treating nicotine addiction. Although its potential

has been suggested by recent studies, several method-

ological issues restrict the clinical application of NIBS. We

give several suggestions to meet these challenges. First, the

neural mechanisms underlying NIBS may be directly tested

with specific hypotheses. Second, knowledge from brain

connectomics may be used to guide NIBS protocols. Third,

validation of individualized NIBS protocols may be a

direction for future research. Finally, cross-cultural studies

on NIBS effects in Asian and Western smokers are needed.
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