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Abstract Non-coding RNAs (ncRNAs) are a large clus-

ter of RNAs that do not encode proteins, but have multiple

functions in diverse cellular processes. Mounting evidence

indicates the involvement of ncRNAs in the physiology

and pathophysiology of the central and peripheral nervous

systems. It has been shown that numerous ncRNAs, espe-

cially microRNAs and long non-coding RNAs, are differ-

entially expressed after insults such as acquired brain

injury, spinal cord injury, and peripheral nerve injury.

These ncRNAs affect neuronal survival, neurite regrowth,

and glial phenotype primarily by targeting specific

mRNAs, resulting in translation repression or degradation

of the mRNAs. An increasing number of studies have

investigated the regulatory roles of microRNAs and long

non-coding RNAs in neural injury and regeneration, and

thus a new research field is emerging. In this review, we

highlight current progress in the field in an attempt to

provide further insight into post-transcriptional changes

occurring after neural injury, and to facilitate the potential

use of ncRNAs for improving neural regeneration. We also

suggest potential directions for future studies.
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Introduction

In clinical practice, injuries to the central and peripheral

nervous systems (CNS and PNS) are commonly encoun-

tered. Injured CNS neurons are unable to regenerate their

axons spontaneously because of suppression by glial scar-

associated inhibitors and myelin-derived molecules as well

as loss of the capacity for developmentally regulated

intrinsic growth [1, 2]. In contrast, PNS neurons show a

robust intrinsic regenerative capacity after traumatic injury,

but functional outcomes are often unsatisfactory [3].

Accordingly, much research has been devoted to the

development of therapeutic interventions to improve neural

regeneration based on an understanding of the molecular

mechanisms underlying the responses to injury and

regeneration.

To initiate a regenerative response, the PNS neuron

must shift from a transmitting state to a regenerative state,

which requires the initiation of a growth program through

gene transcription and the activation of local signaling

cascades that control axon assembly. Knowledge of the

gene transcription responses of PNS neurons to injury has

provided insight into the genes associated with regenera-

tion. Many regeneration-associated genes have been iden-

tified by examining gene expression changes after injury.

These genes include transcription factors, such as ATF3,

c-Jun, C/EBPb, CREB, NFIL3, p53, SMAD1, SOX11,

STAT3, and KLF family members, while non-transcription

factor ‘‘terminal’’ genes consist of those that encode

adhesion/guidance molecules (integrin subunits and

CD44), neuropeptides (VIP and CGRP), structural and

cytoskeleton-associated proteins (GAP43, CAP23, SCG10,

and CRMP2), and metabolic enzymes (arginase 1) [4]. In

addition to increasing RAG expression, another approach

to enhancing regeneration is to increase the ‘‘metabolic
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growth state’’ of neurons by up-regulating anabolic pro-

cesses, such as mTOR activation of protein translation or

transcriptional regulation of anabolic processes [5, 6].

Clearly, the molecular approaches to neural regeneration

noted above are mainly based on transcriptional regulation.

Recently, many studies on non-coding RNAs (ncRNAs)

have revealed an emerging layer of post-transcriptional gene

regulation for the post-neural-injury process. ncRNAs are a

large cluster of RNAs that are not translated into proteins. As

the sequencing of the human genome reported the surprising

finding that about 20,000 protein-coding genes represent

\2% of the total genomic sequence, the investigation of

ncRNAs has attracted increasing attention because they have

multiple functions at the transcriptional and post-transcrip-

tional levels in diverse cellular processes [7].

Recently, a number of studies have shown that ncRNAs,

mainly microRNAs and long ncRNAs, are differentially

expressed in injured neural tissue after various types of

injury. Dysregulation of ncRNA expression affects the

survival and growth of neurons and regulates the pheno-

typic modulation of glial cells. These intriguing results

contribute to the potential use of ncRNAs as diagnostic

markers and therapeutic targets for neural injury. This

review aims to summarize current research progress in

understanding the involvement of ncRNAs in CNS and PNS

injury and the effects of ncRNAs on neural regeneration.

We also suggest potential directions for future research.

Classification of Non-coding RNAs

The ncRNAs have a high degree of heterogeneity in

sequence, structure, and biological function. They are

usually classified into subtypes according to various crite-

ria. For instance, ncRNAs are divided into housekeeping

and regulatory types according to their biological func-

tions. The former includes ribosomal RNAs (rRNAs),

transfer RNAs (tRNAs), small nuclear RNAs (snRNAs),

small nucleolar RNAs (snoRNAs), guide RNAs (gRNAs)

and telomerase RNAs, while the latter includes micro-

RNAs (miRNAs, miRs), small interfering RNAs (siRNAs),

Piwi-interacting RNAs (piRNAs), and long chain non-

coding RNAs (long non-coding RNAs, lncRNAs). Also,

ncRNAs are divided into nuclear and cytoplasmic types

according to subcellular localization, or divided into those

with a polyA tail (polyA-plus ncRNAs) and those without

(polyA-minus ncRNAs). In addition, ncRNAs are divided

into short and long types according to the length of the

transcript. The short type includes miRNAs, siRNAs,

piRNAs, snRNAs, and snoRNAs [8], which are \200

nucleotides (nt) long, typically 20–30 nt, while the long

type (lncRNAs) are[200 nt in length, and account for at

least 80% of mammalian genome transcription [9].

In this review, we focus on two members of the ncRNA

family to describe the regulation of neural regeneration by

miRNAs at the post-transcriptional level and by lncRNAs

at both the transcriptional and post-transcriptional levels

[10].

miRNAs are a class of endogenous small single-strand

ncRNAs of about 22 nt. They have been widely investi-

gated since the first miRNA (lin-4) was identified. They are

generated by RNA polymerase II, and their encoding

sequence is often found in an intergenic region in the form

of a single copy, multiple copies, or a gene cluster, while

the encoding sequences of other miRNAs occur in the exon

or intron regions of a gene. Mature miRNAs combine with

Argonaute 1 to form an RNA-induced silencing complex

(RISC) that is involved in the regulation of cellular life

[11]. Put simply, the RISC influences the stability and

translation of messenger RNA (mRNA) through direct

effects on the 30-untranslated region of the target mRNA,

thereby resulting in translation repression or degradation of

the mRNA. Importantly, miRNAs are abundant in the

nervous system where they function in development [12]

and maintenance of the neuronal phenotype [13], influence

the maturation of dendrites and spines [14], and serve as

effectors of synaptic plasticity and function [15, 16]. Lack

of a specific miRNA, miRNA overexpression, or miRNA

mutation may lead to abnormal cellular function and even

neurological disorders [17].

lncRNAs are[200 nt in length but lack open reading

frames. They can be classified on the basis of genomic

location and biogenesis into (1) sense lncRNAs that are

transcribed on the same strand of an exon; (2) antisense

lncRNAs that are transcribed on the opposite strand of an

exon; (3) bidirectional lncRNAs that are located on the

opposite strand from a protein-coding gene whose tran-

scription is initiated\1000 bp away; (4) intronic lncRNAs;

(5) intergenic lncRNAs (also called long intergenic non-

coding RNAs, lincRNAs) that occur between two genes;

and (6) circular RNAs with exonic or intronic linear

sequences that circularize after alternative splicing [18,

19]. lncRNAs were once considered to be intermediate

products in the transcription process, and to have no bio-

logical functions. Nowadays, however, increasing evidence

has shown that lncRNAs have complex functions, includ-

ing activation or reduction of the expression of specific

genes, especially adjacent protein-encoding genes, and are

associated with the pathogenesis of some diseases.

Roles of miRNAs in Responses to Neural Injury

During neurogenesis, neuronal maturation, and brain

development, miRNAs serve as fine regulators of genetic

networks [20]. For the development and maintenance of
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neurons, miRNAs play roles in cell specification, axonal

path-finding, and apoptosis [21, 22]. It is important to

determine the dysregulation of miRNAs during neurode-

velopmental abnormalities and neurodegenerative disor-

ders such as fragile X syndrome, autism spectrum disorder,

Rett syndrome, depression, drug addiction, Huntington’s

disease, and schizophrenia [23–26]. Here, however, we

focus on the involvement of miRNAs in the responses to

various types of neural injury.

miRNAs in Acquired Brain Injury

Acquired brain injury (ABI) is defined as an injury to the

brain occurring after birth. It is not a hereditary, congenital,

or degenerative disease [27, 28], but is caused by stroke,

hemorrhage, infection, or trauma. Several miRNAs, such as

miR-9, miR-183, miR-134, miR-135, miR-124a, miR-

124b, miR-153, and miR-219, are highly enriched and

specifically located in the brain [29, 30]. The expression of

miR-146b, miR-551b, miR-92b, and miR-384 is several-

fold higher in the hippocampus than in the cortex [31];

miR-132, miR-212, miR-221, miR-222, and let-7 are pre-

dominantly expressed in forebrain regions; and miR-206

and miR-497 are mainly expressed in the cerebellum. This

region-specific expression of miRNAs in the brain suggests

that they play specific regulatory roles in ABI [32].

Ischemic Brain Injury

Stroke is a major cause of serious long-term disability after

focal cerebral ischemic injury. Microarray data on a large

scale has identified the miRNA expression profiles after

middle cerebral artery occlusion (MCAO)-induced focal

cerebral ischemia. It has been shown that 12 miRNAs are

up-regulated and 18 are down-regulated in the infarct

region after 6 h of MCAO [33]. The serum miR-126 levels

appear to differ in permanent versus transient ischemia, and

the changes in these levels may be used to distinguish

severe permanent ischemia from transient ischemia [34].

miRNAs can regulate the ischemic brain injury caused

by a thrombus, embolus, or other interruption of the arterial

supply [35, 36]. Expression of the glutamate receptor

subunits GluR2 and NR2B, together with N-methyl-D-as-

partate receptor-mediated Ca2? influx, is inhibited by the

overexpression of miR-223, thereby protecting neurons

from cell death [37]. Administration of anti-miR-320a

leads to a reduction of infarct volume as well as an increase

in the expression of aquaporins 1 and 4 after cerebral

ischemia [38]. The expression of let-7c-5p is decreased in

the plasma of patients with ischemic stroke, but its over-

expression suppresses microglia activation against

ischemic damage [39].

After ischemic brain injury, neuronal death is one of the

most important events that influences recovery, and miR-

NAs regulate neuronal survival. Two key regulator of

apoptosis, B cell lymphoma 2 (Bcl-2) and Bcl-w, are reg-

ulated by miR-15b [40], miR-29b [41], miR-181a [42], and

miR-497 [43]. miR-181c suppresses the expression of

tumor necrosis factor-a (a key pro-inflammatory cytokine)

to protect neurons from cell death [44]. miR-592 decreases

the expression of p75NTR, an ischemia-induced neu-

rotrophin receptor, attenuates the activation of pro-apop-

totic signaling pathways, and prevents neuronal apoptosis

[45]. miR-134 down-regulates the expression of heat shock

protein A12B (HSPA12B) and promotes neuronal death

after ischemic injury [46].

After transient cerebral ischemia, miR-200c expression

in the brain increases rapidly, contributing to cell death by

inhibiting Reelin expression [47]. Down-regulation of

miR-30a expression prevents neuronal ischemic injury by

up-regulating the expression of HSPA5, while decreased

endoplasmic reticulum stress-induced apoptosis might be

one of the mechanisms underlying HSPA5-mediated neu-

roprotection [48, 49].

miR-424 and miR-23a-3p inhibit neuronal apoptosis

after ischemia, reduce the levels of reactive oxygen species

in cortex, and abrogate H2O2-induced injury by increasing

cellular viability and manganese superoxide dismutase

activity [50, 51]. miR-134 regulates ischemic/reperfusion

injury-induced neuronal death via CREB (cAMP response

element-binding protein) signaling [46, 52]. miR-22 inhi-

bits nuclear factor-jB activity by decreasing the nuclear

receptor coactivator 1 expression and caspase-3 activity

and thus reduces cortical neuronal apoptosis [53]. miR-

23a/b and miR-27a/b suppress Apaf-1 (apoptotic protease

activating factor 1) protein and alleviate the neuronal

apoptosis induced by intrauterine hypoxia [54]. miR-124

targets Ku70 to improve ischemia/reperfusion-induced

brain injury and dysfunction [55].

Collectively, the above findings confirm that miRNAs

are key regulators of neuronal cell death. As potential

targets for promoting neuronal survival, miRNAs con-

tribute to recovery after ischemic brain injury.

Traumatic Brain Injury

In contrast to ischemic brain injury that generally occurs in

the older population, traumatic brain injury (TBI) is a

leading cause of death, disability, and cognitive impair-

ment in children and young adults.

Microarray analysis has shown that many miRNAs

exhibit differential expressions after TBI. Since TBI is

attenuated by hypothermia, it may be linked to the tem-

perature-sensitive miRNAs [56–58]. Mitochondria-associ-

ated miRNAs, such as miR-155 and miR-223, both of
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which play roles in inflammatory processes, are signifi-

cantly dysregulated in the hippocampus after TBI [59].

Rapid up-regulation of miR-711 following secondary

injury after TBI stimulates neuronal death by inhibiting the

serine/threonine kinase Akt and activating FoxO3, GSK3a/
b, PUMA, and Bim [60]. miR-21 expression changes in

response to TBI, inhibits apoptosis, and promotes angio-

genesis by down-regulating the expression of apoptosis-

and angiogenesis-related molecules and PTEN as well as

increasing the phosphorylation of Akt [61, 62]. The

expression of miR-23a and miR-27a is down-regu-

lated after TBI, thus contributing to neuronal death by up-

regulating members of the Bcl-2 family [63].

After injury, the axons of retinal ganglion cells in adult

mammals rapidly degenerate and the cell bodies may die,

while glial cells at the injury site undergo scar formation.

However, miR-30b decreases the sema3A levels to pro-

mote axon outgrowth [64]. In zebrafish retina, the miRNA

and mRNA expression profiles indicate that miR-29b and

miR-223 promote regeneration by regulating key biologi-

cal processes, including cell survival/apoptosis, extracel-

lular matrix-cytoskeleton signaling, and heparan sulfate

proteoglycan binding [65].

miRNAs in Spinal Cord Injury

Spinal cord injury (SCI) is followed by excitotoxicity,

edema, inflammation, ischemia, and chronic demyelination

as secondary injuries, leading to additional damage [66].

Numerous miRNAs are highly expressed and localized in

the spinal cord as well as in the brain. In adult rats,[77%

of the identified mature miRNAs are expressed in the

spinal cord [67]. Several, such as miR-1, miR-10a, miR-

338, miR-451, miR-34a, miR-133a, miR-133b, miR-142-

3p, miR-199, miR-10b, and miR-219 are highly enriched in

the spinal cord [21], and their expression changes dynam-

ically after SCI [67, 68]. For example, increased miR-223

expression regulates the expression of early-phase genes

after SCI [68]. The expression of miR-124, which controls

neurogenesis and neurite outgrowth during differentiation,

is down-regulated after SCI [69, 70], and it affects

inflammatory nociception by regulating methyl-CpG-

binding protein 2 (MeCP2) and inflammation-related genes

[71]. Further, miR-124 also targets the transcription factor

CEBPa, holding promise as a target for treating neuroin-

flammation [72]. miR-486 down-regulates neurogenic dif-

ferentiation 6 (Neurod 6) expression, thus enhancing

apoptosis and functional deficits in neurons after SCI [73].

miR-126 targets such genes as SPRED1, PIK3R2, and

VCAM1 to rescue tissue damage and to improve the

functional deficit; its expression is down-regulated after

SCI [74].

Astrocytes, specialized glial cells, perform supportive,

metabolic, and homeostatic functions in the CNS [75].

miR-181 is a negative regulator of astrocyte activation, and

its expression is down-regulated by inflammatory stimuli.

Accordingly, miR-181 affects inflammatory cytokine

secretion in astrocytes and modulates astrocyte activation

and differentiation by targeting MeCP2 (methyl-CpG-

binding protein 2) [44]. Similarly, miR-146a regulates the

release of cytokines from astrocytes [76]. miR-17-5p tar-

gets the cell-cycle inhibitors P21 and RB1 to promote the

proliferation of reactive astrocytes and facilitate functional

recovery after SCI [77]. Transfection with miR-124 can

improve the outcome of neural stem-cell transplantation in

SCI rats by increasing the numbers of neurons and reduc-

ing the numbers of GFAP-positive astrocytes [78].

In the spinal cord, motor neuron subtypes are organized

into columns that project axons to specific target muscles.

For instance, the medial motor columns innervate axial

muscles, while the lateral motor columns innervate limb

muscles [79, 80]. Specification of the motor columns

requires extrinsic signaling pathways to induce sequential

Hox transcription-factor-mediated responses [79, 81].

miRNAs participate in the process of motor neuron gene

regulation, including development, motor neuron disease,

axon regeneration, and synaptic connection. miR-20a

causes continuing motor neuron degeneration by down-

regulating neurogenin 1 while up-regulation of neurogenin

may protect motor neurons from aggressive secondary

injury [82]. miR-29b reduces the expression of Bad, Bim,

Noxa, and Puma, and plays a role in neuronal apoptosis in

SCI. Down-regulation of miR-20a and miR-29b expression

may cooperatively protect motor neurons from cell death

by down-regulating the Mcl-1 (myeloid cell leukemia 1)

and up-regulating BH3-only proteins after SCI [83]. miR-

NAs are also important for axonal regeneration in spinal

motor neurons. After SCI, the elevated expression of miR-

133b represses mRNA translation of RhoA, promoting the

functional recovery of motor neuron axons [84].

Taken together, miRNAs play regulatory roles in neu-

ronal-subtype specification, functional maintenance, and

motor neuron regeneration after SCI.

miRNAs in Peripheral Nerve Injury

After peripheral nerve injury, the regenerating axons in the

proximal nerve stump can grow across the lesion due to

activation of the intrinsic growth capacity of neurons and

the formation of a regenerative microenvironment. De-

differentiated Schwann cells replenish lost or damaged

tissues by proliferation, and produce a favorable environ-

ment for axonal outgrowth by helping to clear myelin

debris and forming cellular conduits or corridors that guide

axons through the degenerated nerve stump and back to
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their targets [85]. A recent study has suggested that

knockout of Dicer impedes regenerative axon growth as

well as anatomical, physiological, and functional recovery.

The data suggest that an intact Dicer-dependent miRNA

pathway is critical for successful peripheral nerve regen-

eration after injury [86].

Neuronal Survival

The survival of injured neurons is a necessary prerequisite

for axonal regrowth. The expression of miR-21 and miR-

222 increases continuously in dorsal root ganglia (DRG,

L4-L6) during the initial 7-day period after sciatic nerve

transection, and tissue inhibitor of metalloproteinase 3

(TIMP3) has been identified as a common target of miR-21

and miR-222. Overexpression of miR-21 and miR-222

reduces apoptosis and enhances the viability of cultured

DRG neurons. Interleukin 6 (IL-6) up-regulates the miR-21

expression in these neurons [87]. miR-146a mediates

apoptosis in DRG neurons under hyperglycemic condi-

tions, which down-regulate miR-146a expression,

improving the protein level of both IL-1 receptor-activated

kinase and tumor necrosis factor receptor-associated factor

6 in DRGs [88].

Neurite Outgrowth

Microarray analysis and deep sequencing have revealed

that many miRNAs regulate the expression of transcription

factors and signaling mediators that are important for

peripheral nerve regeneration [86]. In particular, the

influences of miRNAs on neurite outgrowth from DRG

neurons have been extensively investigated. For example,

miR-21 promotes axonal growth from adult DRG neurons

by targeting Sprouty2 (a specific inhibitor of the Ras/Raf/

ERK pathway) [89], and miR-222 also promotes neurite

outgrowth from these neurons by targeting PTEN (phos-

phatase and tensin homolog deleted on chromosome 10, a

negative regulator of Akt) [90]. Several other miRNAs,

including miR-8, miR-431, miR-145, and miR-138, have

been shown to play regulatory roles in neurite outgrowth.

Their targets are the cell-adhesion molecules Fasciclin III

(Fas III) and Neuroglian (Nrg), Kremen1 (an antagonist of

Wnt/b-catenin signaling), Robo2 (a transmembrane

receptor), and Sirtuin type 1 (an NAD-dependent histone

deacetylase), respectively [91–94].

Multiple targets of miR-21 have been validated, two-

thirds of which are linked to intrinsic and/or extrinsic

pathways of apoptosis [95]. miR-21 promotes neurite out-

growth by down-regulating the expression of its target

gene, SPRY2142. Moreover, miR-21 expression is up-

regulated in DRG neurons after sciatic nerve injury [87]

(Fig. 1). After this injury, miR-21 and miR-222 promote

neurite outgrowth and inhibit apoptosis by repressing

TIMP3 in DRGs, suggesting that the two miRNAs are

candidate hub molecules for triggering intrinsic neurite

growth in injured DRG neurons [87, 89] (Fig. 1).

miR-132 plays roles in dendrite morphology and

synaptic function [96]. Its knockdown reduces axonal

extension in cultured DRG neurons while overexpression

increases axonal extension. Moreover, miR-132 regulates

the mRNA level of RAS p21 protein activator 1 gene,

serving as a positive regulator of developing axon exten-

sion [97]. miR-26a specifically targets glycogen synthase

kinase 3b (GSK3b) to rescue axon regeneration, and the

miR-26a-GSK3b pathway regulates axon regeneration at

the neuronal soma by controlling the expression of Smad1,

a regeneration-associated transcription factor [98]. let-7

inhibits the lin-41 expression in older neurons while lin-41

inhibits the let-7 expression in younger neurons. A let-7-

lin-41 regulatory circuit can ensure that axon regeneration

is inhibited only in older neurons [99].

Schwann Cell Phenotype Modulation

Evidence has identified a specific cohort of miRNAs as

epigenetic regulators of the transition between the differ-

entiation and de-differentiation of Schwann cells during the

acute phase of PNS injury. miR-138 and miR-709 show the

highest affinity for regulating the expression of Egr2, Sox-

2, and c-Jun after PNS injury [100]. miR-204 negatively

regulates Nrn1 protein expression and activates cleaved

caspase-3, stimulating the apoptosis of Schwann cells after

exposure to H2O2-induced oxidative stress [101]. miR-182

inhibits the proliferation and migration of Schwann cells by

targeting fibroblast growth factor 9 and neurotrimin,

respectively, at an early stage following sciatic nerve injury

[102]. miR-221 and -222 promote the proliferation and

migration of Schwann cells by targeting longevity assur-

ance homologue 2, a suppressor of cell growth and

metastasis, which can increase the intracellular H? con-

centration by interacting with V-ATPase [103].

miR-9 is an important functional regulator of Schwann

cell migration by directly targeting collagen triple-helix

repeat-containing protein 1, which in turn inactivates

downstream Rac1 GTPase [104]. let-7 miRNA signifi-

cantly reduces the proliferation and migration of primary

Schwann cells by suppressing the protein translation of

nerve growth factor (NGF). The detailed mechanism seems

to be that the NGF expression inhibited by let-7 miRNA

can regulate the miR-221/222 expression to affect the

Schwann cell phenotype [105]. Increased miR-132

expression induced by hypoxia enhances Schwann cell

migration and down-regulates the target, PRKAG3, to

facilitate peripheral nerve regeneration [106].
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miR-34a is highly expressed in the adult nervous system,

andNotch1 and cyclin D1 are its targets in cancer cells [107].

These two targets are also important mediators of Schwann

cell dedifferentiation and proliferation after peripheral nerve

injury [108, 109]. miR-140 targets the transcription factor

Egr2, a master regulator of myelination, and modulates

axonal myelination in co-cultures of DRG neurons and

Schwann cells [110]. miR-29a inhibits peripheral myelin

protein, which is a dose-sensitive, disease-associated protein

primarily expressed inmyelinating Schwann cells [111]. The

effects of several miRNAs on Schwann cells after peripheral

nerve injury are illustrated in Fig. 2.

For the sake of convenience to the reader, we summarize

the above description by listing many miRNAs that have

been reported to be associated with various injuries to the

nervous system and highlighting their functional signifi-

cance in neural regeneration (Table 1).

Roles of lncRNAs in Responses to Nerve Injury

lncRNAs are specifically expressed in the CNS and PNS,

and may be involved in regeneration. To date, several

reports have described the roles of lncRNAs in CNS

development and neurogenesis [112, 113]. It has been

shown that a total of 322 lncRNAs are differentially

expressed in the brain with hypoxic-ischemic damage, and

silencing of the lncRNA BC088414 decreases apoptosis

and increases cell proliferation [114]. These findings sug-

gests the roles of lncRNAs in CNS injury.

In investigations of the impact of lncRNAs on the

intrinsic regenerative capacity of peripheral neurons, a total

of 105 lncRNAs have been found to show significant dif-

ferential expression in DRGs after sciatic nerve injury.

Among these, BC089918 and uc.217 have been specifically

investigated and the results showed that down-regulation of

BC089918 expression [115], and silencing of uc.217

Fig. 1 Schematic diagram

illustrating (1) the joint

inhibitory effects of miR-21 and

miR-222 on neuronal apoptosis

through suppressing TIMP3

after peripheral nerve injury,

and (2) the promoting effects of

miR-21 and miR-222 on neurite

regrowth through suppressing

sprouty2 and PTEN,

respectively, after peripheral

nerve injury. T-shaped lines

indicate an inhibitory effect or

negative regulation while

arrows indicate a promoting

effect.

Fig. 2 After peripheral nerve injury, the expression of miR-204, let-

7, mir-27a, and miR-29 is constantly down-regulated (downward

arrows), while that of of miR-182, miR-221/222, miR-27a, and miR-

132, and miR-29a is constantly up-regulated (upward arrows), and

that of of miR-34a and miR-140 is dysregulated (curved arrows).

After peripheral nerve injury, these miRNAs regulate the behavior of

Schwann cells, such as apoptosis, proliferation, migration, and

myelination, as indicated by arrows or T-shaped lines (positive and

negative regulation, respectively). Also shown (middle) is a schematic

showing the process of axonal regrowth from an injured peripheral

neuron while reaching the target organ for re-innervation, coupled

with myelination of the re-growing axon by Schwann cells.

258 Neurosci. Bull. June, 2016, 32(3):253–264

123



Table 1 miRNA regulation of regeneration after injury to the nervous system.

miRNAs Injury model Tissues Times Expression change Functions Refs

Acquired brain injury

miR-223 NMDA-induced injury, BCCAO/

reperfusion in mice

Striatum;

hippocampus

7 d Increased Inhibiting neuronal cell

death

[37]

miR-320a MCAO/reperfusion in rats Brain 1 d Decreased Promoting neuronal cell

death

[38]

Let-7c-5p Cerebral infarction in male

patients, MCAO/reperfusion in

mice

Plasma, ipsilateral

cortex, striatum

1 h Decreased Inhibiting microglia

activation

[39]

miR-181c LPS in mice Cerebral cortex 4 h Decreased Inducing anti-inflammatory

cytokines

[44]

miR-592 MCAO/reperfusion; OGD in

mice

Brain; hippocampal

slices or neurons

4–8 h Decreased Inhibiting neuronal cell

death and apoptosis

[45]

miR-134 MCAO/reperfusion in mice;

OGD

Brain; n2a 1 h Decreased Exacerbating cell death and

apoptosis

[46]

miR-200c MCAO/reperfusion in mice Brain 1, 3, and

24 h

Increased Promoting neuronal cell

death

[47]

miR-30a OGD/reoxygenation in mouse Cortical neurons 1 h Decreased Promoting neuronal cell

death

[48]

miR-30a MCAO/reperfusion in mice Peri-infarct region 1 h Decreased Promoting neuronal cell

death

[49]

miR-424 MCAO/reperfusion in mice;

H2O2-induced injury

Peri-infarct cortex;

primary cortical

neurons

1–24 h Increased and then

decreased

Inhibiting neuronal

apoptosis

[50]

miR-23a-

3p

MCAO/reperfusion in mice Peri-infarction;

infarction core

4 h and

24 h

Increased Inhibiting neuronal

apoptosis

[51]

miR-134 MCAO/reperfusion in mice Brain 12 h, 1, 3,

and 7 d

Increased Promoting neuronal cell

death and apoptosis

[52]

miR-23a/

b, miR-

27a/b

Hypoxia in mice Cortical neurons;

brain

6–24 h Decreased Alleviating hypoxia-

induced neuronal

apoptosis

[54]

miR-124 MCAO/reperfusion in rats Brain 24 h Decreased Inducing neuronal cell death [55]

miR-711 CCI in mice Cortex 3 d Increased Inducing neuronal cell death [60]

miR-21 FPI Cerebral cortex and

ipsilateral

hippocampus

1 h, 1, 3,

7, and

14 d

Increased and then

declined to

baseline

Inhibiting apoptosis and

promoting angiogenesis

[61]

miR-23a,

miR-27a

CCI in mice; etoposide-induced

apoptosis in primary cortical

neurons

Cortex; hippocampus 1–72 h Decreased Inhibiting neuronal cell

death

[63]

miR-30b ONC in rats Retina 1, 3, 7,

14, and

21 d

Increased and then

declined to

baseline

Promoting axon growth [64]

miR-29b,

miR-223

ONC in zebrafish Retina 3 d Increased Inducing cell survival [65]

Spinal cord injury

miR-124a Peripheral noxious stimulation

with formalin in mice

Dorsal horn 1, 8, 24,

and

48 h

Decreased Decreasing nociception [71]

miR-486 SCI in mice Motor neurons 3 d Increased Increasing neuronal death

and demyelination

[73]

miR-126 SCI in rats Spinal cord 1, 3, and 7

d

Secreased Promoting angiogenesis and

attenuating inflammation

[74]

miR-20a Spinal cord transection in mice Motor neurons 1, 2, and 3

d

Increased Inducing apoptotic

Neural cell death

[82]

miR-29b SCI in mice Spinal cord 6 d Decreased Inhibiting neuron apoptosis [83]
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expression by siRNA both enhance neurite outgrowth of

DRG neurons [116].

Conclusions

The tissue-specific expression and functional roles of

ncRNAs in the nervous system under physiological con-

ditions determine their putative involvement in the patho-

physiological processes of neural injury, which include

immune/inflammatory responses, glial scar formation,

neuronal apoptosis, cell proliferation and migration, axonal

regrowth, and target organ re-innervation. After different

types of CNS and PNS injury, such as ABI, SCI, and

peripheral nerve injury, diverse ncRNAs, mainly miRNAs

and lncRNAs, are differentially expressed in the injured

neural tissue, and play unique regulatory roles through

binding to the 30-untranslated regions of target mRNAs,

leading to translation repression or degradation of the

mRNAs. The critical regulation of neural injury and

regeneration is reflected in the promoting or suppressing

effect on neuronal survival, neurite outgrowth, and glial

phenotype.

The involvement of ncRNAs in numerous cellular pro-

cesses and human diseases predicts that the two types of

ncRNAs, miRNAs and lncRNAs, may be used as potential

diagnostic biomarkers and therapeutic targets in the clinic.

More importantly, both miRNAs and lncRNAs are readily

detectable in bodily fluids, thus enabling them to be useful

for therapeutic applications, including for neural injury

[117]. However, neural injury is a complex process inte-

grating multiple signaling pathways in the nervous,

immune, and vascular systems, accompanied by various

cellular and molecular mechanisms. Hence, single-target

therapies are usually inadequate for treating neural injury.

The further identification of ncRNAs whose expression is

likely to be changed after neural injury will contribute to a

global understanding of the molecular regulation of injury

responses and regeneration, and will also facilitate the

development of clinical applications of ncRNAs.

Another challenge to the potential use of ncRNAs in the

clinic is the preparation of ncRNA amplifiers and inhibitors

Table 1 continued

miRNAs Injury model Tissues Times Expression change Functions Refs

miR-133b Spinal cord transection in

zebrafish

Brainstem and spinal

cord

7 d Increased Promoting axon growth [84]

Peripheral nerve injury

miR-21,

miR-222

SNT in rats Ipsilateral DRG 7 d Increased Inhibiting DRG neuron

apoptosis

[87]

miR-21 SNT in rats and mice Ipsilateral DRG 7 d Increased Promoting axon growth [89]

miR-222 SNT in rats Ipsilateral DRG 1, 4, and 7

d

Increased Promoting axon growth [90]

miR-138 SNT in mice Ipsilateral DRG 7 d Decreased Inhibiting axon growth [91]

miR-431 SNC in mice Ipsilateral DRG 5 d Increased Promoting axon growth [93]

miR-145 SNT in rats Ipsilateral DRG 3 d Decreased Inhibiting axon growth [94]

miR-182 SNT in rats Sciatic nerve 0.5, 1, 3,

6, and

9 h

Increased Inhibiting SC proliferation

and migration

[102]

miR-221/

222

SNT in rats Sciatic nerve 1, 4, 7,

and 14 d

Increased Enhancing SC proliferation

and migration

[103]

miR-9 SNT in rats Sciatic nerve 1, 4, 7,

and 14 d

Decreased Inhibiting SC migration [104]

Let-7 SNT in rats Sciatic nerve 1, 4, 7,

and 14 d

Increased and then

decreased

Inhibiting SC proliferation

and migration

[105]

miR-132 SNT in rats Sciatic nerve 1, 4, 7,

and 14 d

Increased Enhancing SC migration [106]

miR-34a,

miR-140

SNC or SNT in mice Sciatic nerve 4 and 14 d Decreased and

then increased

Inhibiting SC proliferation

and remyelination

respectively.

[110]

miR-29a SNC Sciatic nerve 4 or 5 d Increased Inhibiting SC myelination [111]

BCCAO bilateral common carotid artery occlusion, CCI controlled cortical impact, DRG dorsal root ganglion, FPI fluid percussion injury, LPS

lipopolysaccharide, MCAO middle cerebral artery occlusion, NMDA N-methyl-D-aspartic acid, OGD oxygen-glucose deprivation, ONC optic

nerve crush, Refs references, SC Schwann cell, SCI spinal cord contusion injury, SNC sciatic nerve crush, SNT sciatic nerve transection.
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and improving the relevant performance, including deliv-

ery, bioavailability, function, and adverse side-effects of

both amplifiers and inhibitors. Currently, several preclini-

cal animal studies have been reported. For example,

implantation of a silicone tube injected with a 1:1 mixture

of Matrigel and steroid-conjugated miR-9 agomir for

bridging the rat sciatic nerve gap reduces Schwann cell

migration within the tube due to increased expression of

miR-9 [104]. Another example is that a silicone tube

injected with a 1:1 mixture of Matrigel and let-7d antag-

omir enhances Schwann cell migration and axon outgrowth

after implantation of the tube [105].

Importantly, a systems-level analysis of transcriptional

changes in neural injury has been attracting increasing

attention in that this new methodology can advance our

understanding of ncRNA regulation. To conduct a systems-

level analysis, massive data sets have been processed using

Ingenuity Pathway Analysis [118], a web-based functional

analysis tool, to generate gene networks, which may be

used to search the signaling pathways and provide pro-

found insights into the regulation of neural injury responses

and regeneration at the transcriptional and post-transcrip-

tional levels. Overall, further studies are needed to fully

understand the functional roles of ncRNAs in neural injury

and to actively develop ncRNA-based therapies for

improving neural regeneration.
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