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ABSTRACT  

Intractable central post-stroke pain (CPSP) is one of 
the most common sequelae of stroke, but has been 
inadequately studied to date. In this study, we first 
determined the relationship between the lesion site 
and changes in mechanical or thermal pain sensitivity 
in a rat CPSP model with experimental thalamic 
hemorrhage produced by unilateral intra-thalamic 
collagenase IV (ITC) injection. Then, we evaluated 
the effi cacy of gabapentin (GBP), an anticonvulsant 
that binds the voltage-gated Ca2+ channel α2δ and 
a commonly used anti-neuropathic pain medication. 
Histological case-by-case analysis showed that only 
lesions confined to the medial lemniscus and the 
ventroposterior lateral/medial nuclei of the thalamus 
and/or the posterior thalamic nucleus resulted in 
bilateral mechanical pain hypersensitivity. All of the 
animals displaying CPSP also had impaired motor 
coordination, while control rats with intra-thalamic 
saline developed no central pain or motor deficits. 
GBP had a dose-related anti-allodynic effect after a 
single administration (1, 10, or 100 mg/kg) on day 7 
post-ITC, with significant effects lasting at least 5 h 

for the higher doses. However, repeated treatment, 
once a day for two weeks, resulted in complete loss 
of effectiveness (drug tolerance) at 10 mg/kg, while 
effectiveness remained at 100 mg/kg, although the 
time period of efficacious analgesia was reduced. 
In addition, GBP did not change the basal pain 
sensitivity and the motor impairment caused by the 
ITC lesion, suggesting selective action of GBP on the 
somatosensory system. 

Keywords: central post-stroke pain; intracerebral 
hemorrhage; intra-thalamic collagenase injection; 
mechanical pain hypersensitivity; gabapentinoids; 
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INTRODUCTION

Stroke is the second most common cause of death and 
is the leading cause of adult disability worldwide[1]. In 
China, stroke is also the leading cause of death and long-
term adult disability, and has an age-adjusted prevalence 
of 260 to 719 per 100 000 for all ages[2,3]. Clinically, 
stroke is classified into two major subtypes, ischemic 
and hemorrhagic. In a recent INTERSTROKE study, 
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ischemic stroke (IS) accounted for 78%, while intracerebral 
hemorrhagic stroke (ICH) accounted for 22% in developed 
countries[1]. However, the proportion of ICH is signifi cantly 
higher in China than in western countries, accounting for 
44%–51% of all stroke patients[3,4]. 

Central post-stroke pain (CPSP) is one of the most 
troublesome sequelae of stroke and can be caused by a 
primary lesion affecting the central somatosensory system 
(at any level of the ascending pathways from the medulla 
to the cortex) following both IS and ICH[5-12]. CPSP has 
been identified in 1%–50% of total patients after stroke 
of both IS and ICH origins[7,13-17]; however, CPSP is more 
common in patients with a thalamic stroke, and varies 
from 11% to 32%[18-23]. CPSP patients most often present 
with spontaneous and/or evoked pain (hyperalgesia and 
allodynia) or paresthesia/dysesthesia in a persistent and/
or paroxysmal form[5-7,24]. The distribution, onset time, and 
clinical characteristics of CPSP vary substantially among 
patients[7-12]. 

The treatment of CPSP remains an unmet clinical 
challenge due to its resistance to both pharmacological 
and non-pharmacological therapies in about half of CPSP 
patients[9-12]. The situation has not changed even for patients 
with peripheral neuropathic pain. For instance, although 
antidepressants and anticonvulsants are frequently 
recommended as the first-line drugs for neuropathic 
pain in general[25-28], a large proportion of patients are left 
with insufficient pain relief due to a limited improvement, 
according to a review of 174 randomized placebo-controlled 
trials[29]. To the best of our knowledge, well-designed 
clinical trials for evaluation of the pharmacological effi cacy 
of antidepressants and anticonvulsants in patients with 
CPSP are scarce[30,31], leading to a shortage of knowledge 
on the clinical use of pharmacological therapy. Moreover, 
the underlying mechanisms of CPSP remain largely 
unknown due to the lack of experimental studies in animal 
models[5,32-35].

The analgesic efficacy of gabapentin (GBP), an 
α2δ-binding anticonvulsant, has been extensively 
evaluated, and it has been approved in both preclinical 
and clinical studies for the treatment of various forms of 
peripheral neuropathic pain (for reviews see refs 25–28). 
Anticonvulsants (or antiepileptic drugs) have also been 
recommended for the treatment of central neuropathic pain, 
especially that associated with spinal cord injury[36-38] (for 

reviews see refs 30, 39, 40). However, the effectiveness 
of α2δ-binding anticonvulsants (GBP and pregabalin) for 
the treatment of CPSP has been less studied in either 
preclinical or clinical research, despite the documentation 
of other antiepileptic drugs such as carbamazepine, 
lamotrigine, and phenytoin[30,40].

The aims of the present study were: (1) to determine 
the relationship between lesion site and changes in pain 
sensitivity of each individual animal following experimental 
ICH; and (2) to evaluate the pharmacological efficacy of 
GBP in animals with CPSP hypersensitivity. To determine 
whether GBP induces tolerance, the dose-effect of 
repeated GBP injection (once a day for 14 days) was also 
evaluated. 

MATERIALS AND METHODS

Animals
Male Sprague-Dawley rats weighing 280–320 g were 
provided by the Laboratory Animal Center of the Fourth 
Military Medical University (FMMU). Rats were housed 
in a climate-controlled room (22–26°C) under a light/
dark cycle of 12 h/12 h with access to food and water ad 
libitum. Somatic functional evaluations were carried out 
between 09:00 and 18:30. The rats were acclimated to 
test boxes for >30 min on each day before the fi rst testing. 
All experiments were performed in accordance with the 
National Institutes of Health Guide for the Care and Use 
of Laboratory Animals (NIH Publication No. 80-23, revised 
1996), and followed the ethical guidelines for pain research 
in conscious animals of the International Association for the 
Study of Pain. This study was approved by the Animal Care 
and Use Committee of FMMU. The number of animals 
used and their suffering were minimized.

Animals were randomly divided into three groups 
for establishment of the CPSP model with thalamic 
hemorrhage: (1) naïve rats without any treatment (n = 6); 
(2) rats receiving intra-thalamic microinjection of saline (ITS) 
(n = 8); and (3) rats receiving intra-thalamic microinjection 
of collagenase (ITC) (n = 90, 16 for histological analysis, 
27 for single GBP administration, 28 for repeated GBP 
administration and 19 for Rota-rod test). 

Surgery
Surgery was performed according to the methods described 
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previously[34,41]. Rats were anesthetized with so  dium 
pentobarbital (50 mg/kg, i.p.), and then securely fixed in 
a stereotaxic instrument (Narishige Scientific Instrument 
Lab, Japan). After a midline incision, an opening was 
made in the right skull with a dental drill. An intra-thalamic 
microinjection of collagenase type IV (Sigma-Aldrich 
China, Shanghai) or saline was made into the ventral basal 
complex (VBC) and posterior thalamic nucleus (bregma 
-3.48 mm anteroposterior; 3.6 mm lateral to the midline, 
and 6.2 mm ventral to the brain surface) on the right 
side according to the stereotaxic coordinates (Paxinos 
and Watson, 2005). A 0.5 μL microinjection syringe filled 
with collagenase or saline was lowered into the region of 
interest, followed (5 min later) by slow administration of 
ITC (0.025 IU collagenase dissolved in 0.25 μL saline) or 
ITS (0.25 μ  L saline) over a period of 10 min. The syringe 
remained for 5 min after each injection to prevent spread of 
the agent to the brain surface. Then the needle was slowly 
withdrawn, the skin closed using 4.0 sutures, and all rats 
were allowed to recover in individual cages for at least 7 
days. Naïve rats were fed under the same conditions in a 
parallel manner. 

Experimental Design
The experimental procedure is shown in Fig. 1. Quantitative 
sensory tests with von Frey filaments and a radiant heat 
stimulator were performed on both hind-paws 1 day before, 
and on days 7, 14, 21, and 28 after ITC or ITS. Naïve rats 
were also tested in the same way as a negative control. 

For the pharmacological assessment of GBP (kindly 
provided by Jiangsu Nhwa Pharmaceutical Co., Ltd., 
China), only rats that had developed pain hypersensitivity 
were examined between 7 and 21 days after ITC. GBP 
(1, 10, and 100 mg/kg) or vehicle (saline) was injected 
intraperitoneally. Single injection of GBP was made on day 
7 after ITC. Repeated administrations (once a day for two 
weeks) of GBP were made between 7 and 21 days after 
ITC to determine whether long-term use of GBP induces 
tolerance. For each set of pharmacological evaluations, 
the time-course effect of GBP was recorded for 1–24 h 
for single administration (on day 7 after ITC) or 1–5 h for 
repeated administration (on days 14 and 21 after ITC or 
days 7 and 14 after GBP). The dose, time course, and 
route of administration of GBP were based on previous 
reports of its effects on other neuropathic pain models[42-45].

Fig. 1. Timeline of the experimental procedure. GBP, gabapentin; ITC, intra-thalamic collagenase injection; ITS, intra-thalamic saline 
injection; QST, quantitative sensory test.
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To test whether GBP has any effect on baseline 
pain sensitivity, the highest dose (100 mg/kg, i.p.) was 
administered to naïve rats. Meanwhile, the effects of intra-
thalamic injection on motor coordination were also evaluated 
in both naïve rats and those receiving ITS and ITC (Rota-
rod test 1 in Fig. 1). The pharmacological effects of GBP on 
motor coordination were also evaluated in rats with CPSP 
hypersensitivity induced by ITC (Rota-rod test 2 in Fig. 1). 

Behavioral Tests
All the behavioral tests were performed by experimenters 
blinded to the treatment. The rats were acclimated to test 
boxes for >30 min on each of the 5 pre-test days.

Mechanical Sensitivity  
Mechanical sensitivity was evaluated with von Frey 
monofi laments as described previously[46]. Rats were placed on 
a metal mesh fl oor in a plastic chamber and mechanical stimuli 
were applied using monofilaments with ascending bending 
forces of 0.8 g, 2–20 g at 2-g increments, 25, 30, 45 and 60 g. 
Each monofilament was applied 10 times (once every several 
seconds) to t  he plantar area of each hind-paw to induce a 
withdrawal reflex. The bending force of the monofilament able 
to elicit a 50% withdrawal response was expressed as the paw 
withdrawal mechanical threshold (PWMT, g). 

Thermal Sen  sitivity  
The thermal sensitivity was determined by measuring the 
withdrawal latency of the hind-paws in response to radiant 
heat[46]. The rat was placed on the surface of a 2-mm-thick 
glass plate in the same plastic chamber. Five heat stimuli 
repeated at inter-stimulus intervals of 10 min generated 
by a TC-1 radiant heat stimulator (RTY-3; Xi’an Bobang 
Technologies of Chemical Industry Co. Ltd., China) were 
applied to the plantar area of each hind-paw. The latency 
was determined as the time from the beginning of the heat 
stimulus to the appearance of a hind-paw withdrawal reflex. 
The last three values were averaged as the mean paw-
withdrawal thermal latency (PWTL, s). Baseline latencies 
were established at 14–20 s to allow a sufficient window for 
the detection of possible hypersensitivity. A maximal cutoff 
was set at 30 s to avoid tissue injury.

Rota-rod Test  
Motor coordination was tested on a Rota-rod treadmill 
(Ugo Basile, Italy)[47,48]. The speed of the Rota-rod was set 

to increase from 6 to 30 r/min within 2 min. The animals 
were placed on the treadm  ill and the timers started with 
the onset of acceleration and automatically stopped when 
the animal fell off, with a cutoff time of 300 s. The test was 
repeated six times at inter-test intervals of 30 min. The fi rst 
three times were used for accommodation to the apparatus, 
and the last three values were recorded for further analysis.

Histological Localization of Injection Sites 
After completion of the study, all the animals were 
sacrificed with an overdose of sodium pentobarbital and 
perfused transcardially with sterile saline followed by 4% 
paraformaldehyde. The brains were removed and stored in 
30% sucrose for two days. Frozen sections (25 μm) were 
cut in the coronal plane and subjected to Nissl staining. 
The localization and extent of the lesions were observed 
under a light microscope (BX51 TR, Olympus, Japan). 
Photomicrographs were captured by a computer-based 
microscope CCD camera (DP-70, Olympus) and processed 
by Image-Pro-Plus 5.1 (Olympus). A typical example is 
shown in Fig. 2A.

Statistical Analysis
Data were analyzed using GraphPad Prism version 5 
(GraphPad, San Diego, CA) and all data are expressed 
as mean ± SEM. To check the drug tolerance, percent 
maximum possible effect (% MPE) was calculated: % MPE = 
(PWMTh post-GBP – PWMTpre-GBP) / (PWMTbaseline – PWMTpre-GBP) × 
100%, in which h means hours after GBP administration.  
Differences in values over time for each group were tested using 
t-tests and one-way or two-way repeated ANOVA, followed 
by individual post-hoc comparisons (Tukey or Bonferroni 
test). P <0.05 was considered as statistically signifi cant. 

RESULTS

Central Post-stroke Pain Hypersensitivity in Rats 
Induced by Experimental Thalamic Hemorrhage
Of 16 rats that received unilateral ITC injection and were 
histologically examined, 44% (7/16) had no changes in 
either mechanical or thermal pain sensitivity (#10–16 in Fig. 3), 
while 56% (9/16) developed bilateral mechanical pain 
hypersensitivity (#1–9 in Fig. 4). Among the nine rats with 
CPSP, two showed accompanying contralateral thermal 
pain hypersensitivity lasting for 14 days (#1) and 28 days 
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(#6), while only one rat (#5) showed thermal hypoalgesia 
on day 28 post-ITC (Fig. 4). In the remaining six rats (#2–4, 
#7–9), there was less change in thermal pain sensitivity 
of the hind-paws from 7–28 days post-ITC (Fig. 4). None 
of the naïve rats (n = 6) and rats that received unilateral 
ITS injection (n = 8) developed pain hypersensitivity to 
mechanical or heat stimuli (Fig. 5). In addition, the ITC-
induced bilateral mechanical pain hypersensitivity was 
identified on day 7 post-operation and the reduced 
PWMT remained unrelieved until 28 days of observation, 
suggesting a chronic, persistent bilateral mechanical 
allodynia in this model (Fig. 5). 

In each animal that had developed bilateral mechanical 
pain hypersensitivity, the region of the VBC, equivalent to 
the ventroposterior lateral nucleus of the thalamus (VPL)/
ventroposterior medial nucleus of the thalamus (VPM), the 
medial lemniscus and/or the posterior thalamic nucleus 
(Po) were all or partially involved in the ITC injection sites 

and area of the lesion (Fig. 4 and Table 1). However, in the 
remaining 7 rats that failed to develop pain hypersensitivity, 
the ITC injection sites and the lesions were mostly confi ned 
to the following regions: the internal capsule (#10–12), 
the middle third of the thalamus (#13), and the lateral and 
medial geniculate bodies (#14–16) (F  ig. 3 and Table 1). 

Among the nine animals that developed bilateral 
mechanical pain hypersensitivity after ITC injection, seven 
showed significant deficits in motor coordination in the 
Rota-rod test compared with with the naïve rats (n = 6) and 
rats receiving ITS injection (n = 7) (Table 2). 

Effects of Gabapentin on Central Post-stroke Mechanical 

Pain Hypersensitivity Induced by Thalamic Hemorrhage
The time-course of the anti-allodynic effects of GBP was 
fi rst evaluated in the group of rats that developed bilateral 
mechanical hypersensitivity on day 7 after ITC injection (see 
QST 3 in Fig. 1). In this experiment, each rat received a 

Fig. 2. Photomicrographs showing representative examples of the injection site and the spatial extent of the hemorrhagic lesion induced 
by intra-thalamic collagenase (ITC) microinjection. A, Nissl-stained sections (rostrocaudal coronal, 25 μm) from a rat with central 
post-stroke pain hypersensitivity (CPSP) 28 days after ITC. The area of the injection site and hemorrhagic lesion is mainly confi ned 
to the ventroposterior lateral nucleus of the thalamus, the posterior thalamic nucleus, and part of the internal capsule (arrows). 
The injection track is indicated by arrowheads. A’ shows that the hemorrhagic lesion site (arrows) can be clearly localized on 
unstained brain slices (rostrocaudal coronal, 500 μm) from another rat 1 day after ITC injection. III, 3rd ventricle; cc, corpus 
callosum; cp, cerebral peduncle; Cx, cerebral cortex; Hippo, hippocampus; ic, internal capsule; LV, lateral ventricle; ml, medial 
lemniscus; Po, posterior thalamic nuclear group; VPL, ventral posterolateral nucleus of the thalamus; VPM, ventral posteromedial 
nucleus of the thalamus; scale bars, 500 μm for A, 1 mm for A’.
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Fig. 3. Individual analyses of the localized hemorrhagic lesions in seven rats that failed to develop central post-stroke pain 
hypersensitivity following intra-thalamic collagenase (ITC) microinjection. A, histology-based schematic reconstructions of the 
lesion in the diencephalon of the seven rats. B, no changes in mechanical or thermal pain sensitivity in each corresponding rat 
in A after ITC injection. The black areas in A represent the site of tissue damage surrounded by a secondary lesion area (gray). C, 
caudal; PWMT, paw-withdrawal mechanical threshold; PWTL, paw-withdrawal thermal latency; R, rostral. Numerals in parentheses 
in A correspond to those for the curves in B. Arrows, day of ITC injection.

Table 2. Rota-rod treadmill assessment of motor coordination in the naïve, intra-thalamic saline (ITS) and intra-thalamic 
collagenase (ITC) injection groups

Trial Number  Naïve (s) ITS (s) ITC (s)

1 118.14 ± 13.09 127.57 ± 13.27 50.00 ± 7.19***

2 121.29 ± 11.53 130.14 ± 14.73 48.57 ± 7.83***

3 128.71 ± 11.70 134.14 ± 17.70 56.43 ± 7.16**
**P <0.01, ***P <0.001 vs ITS, n = 6, 7, and 7 for each group. Rota-rod treadmill assessment was carried out on day 7 after intra-thalamic injection.

single injection of each of the doses of GBP (1, 10, and 100 
mg/kg, i.p., 6–8 animals for each dose). Compared with 
vehicle, single administration of GBP produced a dose-
dependent anti-allodynic effect in the hypersensitive rats. 
The anti-allodynic effect of GBP reached a peak at 1 h after 
administration and was maintained at a signifi cant level for 
at least 5 h at higher doses (10 and 100 mg/kg) (Fig. 6A). 

The lowest dose (1 mg/kg) did not have any signifi cant anti-
allodynic effect throughout the observation period (Fig. 6A). 
The anti-allodynic effect of GBP disappeared completely by 
24 h after administration. 

The time-course of the long-term anti-allodynic 
effect of GBP was then evaluated in another group of 
rats that had developed chronic bilateral mechanical 
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Fig. 4. Individual analyses of the relationship between the localized hemorrhagic lesion and the development of post-stroke pain 
hypersensitivity in rats following intra-thalamic collagenase (ITC) microinjection. A, histology-based schematic reconstruction of 
the lesion in nine rats. B, development of bilateral mechanical pain hypersensitivity in each corresponding rat in A and changes in 
thermal pain sensitivity in rats (#1, #5, #6) after ITC injection. The black area in A represents the site of tissue damage surrounded 
by the secondary lesion area (gray). C, caudal; PWMT, paw-withdrawal mechanical threshold; PWTL, paw-withdrawal thermal 
latency; R, rostral. Numerals in parentheses in A correspond to those for the curves in B. Arrows, day of ITC injection.

Table 3. Rota-rod treadmill assessment of pharmacological effects of a single intra-peritoneal injection of gabapentin (GBP) on 
motor coordination in naïve rats and in rats with intra-thalamic collagenase (ITC) injection

Trial Number
  Naïve (s)  ITC (s) 

 Vehicle GBP Vehicle GBP

1 156.00 ± 22.68 140.83 ± 15.36 86.67 ± 12.76 84.00 ± 8.78

2 154.00 ± 21.00 157.33 ± 19.82 98.17 ± 22.01 74.17 ± 13.36

3 179.20 ± 26.60 173.17 ± 20.53 94.67 ± 14.04 93.17 ± 16.06

The highest dose of GBP (100 mg/kg) was used (n = 6 for each group).

hypersensitivity. In this chronic setting, each rat received 
chronic administration of GBP (1, 10, or 100 mg/kg, i.p., 
6–8 animals for each dose) once a day for two weeks 
from day 7 after ITC. QST assessment was performed 
in each rat with post-stroke pain hypersensitivity on days 

7 and 14 after drug administration (14 and 21 days after 
ITC injection) (Fig. 6B, C, Fig. 7, also see QST 4 in Fig. 
1). The dose-dependent pattern of the anti-allodynic effect 
remained relatively unchanged until 7 days after GBP 
administration. However, this pattern was disrupted after 14 
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days, when the anti-allodynic effect disappeared completely 
at 10 mg/kg although the effect of 100 mg/kg remained 
relatively unchanged (Fig. 6B, C). The time-related drug 
tolerance (% MPE) was clearly seen at 10 mg/kg (Fig. 
7A), while a decreased time-course of drug efficacy also 
occurred with the highest dose used (100 mg/kg) (Fig. 7B).  

Finally, single or repeated administration of GBP at the 
highest dose (100 mg/kg) did not produce any changes in 
baseline pain sensitivity in naïve rats compared with vehicle 
administration (Fig. S1). Moreover, single administration of 
GBP at 100 mg/kg had no significant effect on the motor 
coordination of naïve rats (Table 3). No reversal effect was 
produced by a single administration of GBP at 100 mg/kg 
on the motor coordination defi cit in rats with CPSP (Table 3).

DISCUSSION

Central Post-stroke Pain Hypersensitivity of Experimental 
Thalamic Hemorrhage Origin
In the present study, we re-examined the thermal and 

mechanical pain sensitivity in rats with experimental 
thalamic hemorrhage induced by local ITC injection 
according to a previously-reported method[34]. The most 
prominent characteristic of the model of CPSP in the current 
study was the development of bilateral mechanical, but not 
thermal, pain hypersensitivity in both hind-paws. Case-by-
case analysis of the relationship between the lesion site 
and the occurrence of pain hypersensitivity showed that this 
type of CPSP phenomenon is region-related and caused by 
unilateral damage of the dorsal column-medial lemniscus-
VPL/VPM-Po system, a structural complex that mediates 
somatosensory functions in both humans and rodents[49]. 
Although damage of the internal capsule and the reticular 
thalamic nucleus was also seen in rats with CPSP, these 
structures can be excluded because there was less change 
in either mechanical or thermal pain sensitivity in rats with 
severe damage mainly confined to these structures (see 
#10–11 in Fig. 3 and Table 1). This result strongly supports 
the new defi nition of central neuropathic pain: pain caused 
by a lesion or disease of the central somatosensory 

Fig. 5. Averaged effects of intra-thalamic collagenase (ITC, n = 9)-induced hemorrhagic lesions on mechanical (A and B) and thermal (C 
and D) pain sensitivity of both hind-paws in rats with central post-stroke mechanical pain hypersensitivity. Naïve rats (n = 6) and 
rats receiving intra-thalamic saline injection (ITS, n = 8) served as controls. PWMT, paw-withdrawal mechanical threshold; PWTL, 
paw-withdrawal thermal latency. ***P <0.001 ITC vs ITS and Naïve.
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nervous system[7,27,50,51]. Our animal data also correlate 
well with well-designed neuroimaging studies defi ning the 
lesion site in CPSP patients[52-55]. In a comparative study of 
the thalamic lesion sites between patients with and without 
CPSP[53], the damage of more posterior, inferior, and lateral 
parts of the VPL and the anterior pulvinar (equivalent to the 
Po in rodents) was highly correlated with the occurrence of 
CPSP. Moreover, the size of the damaged area may also 
be relevant to the occurrence of CPSP[55]. Although we did 

not measure the exact volume of the lesions in ITC-induced 
thalamic damage, the rats with bilateral mechanical pain 
hypersensitivity had a larger hematoma and secondary 
surrounding injury than those without CPSP (see Figs. 3 
and 4). 

So far, CPSP caused by experimental IS or ICH has 
rarely been studied in animals[56-59]. The lack of studies on 
the validity and sensitivity of animal models of CPSP has 
largely hindered advances in understanding the underlying 

Fig. 6. Effects of systemic gabapentin (GBP) on central post-stroke mechanical pain hypersensitivity caused by a thalamic hemorrhagic 
lesion. Time-course of the anti-allodynic effect of single administration of GBP (1, 10, and 100 mg/kg, i.p.) 7 days after intra-
thalamic collagenase (ITC) injection (A); after repeated administration (once a day for 7 days) 14 days after ITC injection (B); and 
after repeated administration (once a day for 14 days) 21 days after ITC injection (C). Pre-GBP, just prior to GBP administration 7 
days after ITC injection; Pre-ITC, one day prior to ITC injection; PWMT, paw-withdrawal mechanical threshold; Post-GBP, just after 
GBP administration; ***P <0.001, *P <0.05, 100 mg/kg GBP vs vehicle; #P <0.05, 10 mg/kg GBP vs vehicle. n = 6–8 animals for each 
group.
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mechanisms and the development of  therapeut ic 
approaches. Recently, efforts have been made to develop 
rodent CPSP models, but the behavioral outcomes are 
various due to the different methods and measurements 
adopted. Different outcomes were reported in the two 
existing studies of CPSP caused by ITC injection in rats. 
In the first report, contralateral thermal (hot plate) and 
mechanical (weight-bearing score and toe-pinch), but 
not cold (acetone), hypersensitivity were identified during 
7–21 days post-ITC[34], while in the second, bilateral 
mechanical (von Frey) and cold (acetone), but not thermal 
(Hargreaves’s test with radiant heat), hypersensitivity were 
identified during 2–32 days post-ITC[32]. In a new mouse 
model of CPSP caused by ITC and measured using a 
Dynamic Plantar Anesthesiometer and a Paw Thermal 
Stimulator[33], bilateral mechanical and contralateral thermal 
pain hypersensitivity were found. Taken together with 
our current findings, experimental thalamic hemorrhagic 
stroke caused by ITC injection results in consistent 

bilateral mechanical pain hypersensitivity while thermal 
pain hypersensitivity might be inconsistent. The reasons 
for differences in behavioral outcomes are not clear, but 
are likely to be due to the lesion site in the thalamus, 
again speaking to the need for careful mapping of each 
individual infarct. Because there is no detailed description 
of the relationship between the lesion sites and the pain 
behaviors through case-by-case analysis in the previous 
reports, a comparison between different studies is not 
possible. Nonetheless, based on our case-by-case 
analysis, we propose that the inconsistency of the changes 
in thermal pain sensitivity and consistency of the changes 
in mechanical pain sensitivity are likely due to damage of 
the medial lemniscus-VPL/VPM/Po system and sparing 
or partial damage to the spinothalamic tract, which is 
known to be responsible for the transmission of thermal 
pain information. Involvement of the dorsal column-medial 
lemniscus system in the development of mechanical 
allodynia is strongly supported by a previous study showing 

Fig. 7. Tolerance to repeated administration of gabapentin (GBP) of central post-stroke mechanical pain hypersensitivity caused by a 
thalamic hemorrhagic lesion. A, time-related decrease in % MPE after 14 days of repeated administration of GBP (10 mg/kg, i.p.). B, 
time-related decrease in effective time-course of GBP (100 mg/kg, i.p.) after 14 days of repeated administration. *P <0.05, **P <0.01, 
†P <0.05, n = 6–8 for each group.
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that the terminations of the dorsal columns are important 
to the manifestation of tactile allodynia, but not thermal 
hyperalgesia[60]. Actually, positive or negative thermal pain 
hypersensitivity is a common phenomenon in patients 
with CPSP[61]. It has also been proposed that the VMpo is 
a specific relay for pain and temperature sensation[62,63]. 
In humans, a non-VBC locus lying more posteriorly in 
the thalamus has been demonstrated to be important for 
thermo-algesic transmission[54]. Collectively, it is reasonable 
to expect a lack of thermal hyperalgesia in rats with lesions 
confined to the medial lemniscus-VPL/VPM/Po, as in our 
current study. 

Furthermore, no limping, foot-dragging, or uneven 
gait was observed in rats after ITC injection, but the total 
time on the Rota-rod treadmill was reduced (Table 2). The 
impairment of motor coordination in rats with thalamic 
hemorrhage is likely due to proprioceptive dysfunction or 
motor defi cit rather than mechanical pain hypersensitivity, 
because the highest dose of GBP (100 mg/kg) had good 
anti-allodynic efficacy but did not reverse the motor 
coordination defi cit (Table 3). 

Anti-allodynic Efficacy and Tolerance to Gabapentin 
in Rats with Central Post-stroke Pain Hypersensitivity 
Caused by Thalamic Hemorrhage
GBP, a member of a class of anticonvulsants, has a high-
affi nity binding site on the α2δ subunit of the voltage-gated 
Ca2+ channel (VGCC) in the CNS[64-66]. GBP modulates 
neurotransmission presynaptically by inhibiting the release 
of various neurotransmitters from hyper-excitable or 
pathophysiological cells via blocking the trafficking of the 
α2δ1 subunit to the presynaptic membrane[67-70]. In many 
models of peripheral neuropathic pain, the α2δ1, but not 
the α2δ2 (another GBP binding site) subunit of VGCC 
is significantly up-regulated in both dorsal root ganglia 
(DRG) and the spinal dorsal horn and contributes to the 
development of allodynia and hyperalgesia[71-74]. GBP has 
therefore been proposed to alleviate neuropathic pain by 
impairing the traffi cking of α2δ1 to the presynaptic terminals 
of DRG neurons, leading to a reduction of Ca2+ infl ux and 
neurotransmitter release in the dorsal horn, and inhibition 
of central sensitization[68,75].

In the present study, the anti-allodynic effectiveness 
of GBP was confirmed in rats with central post-stroke 
mechanical pain hypersensitivity caused by experimental 

thalamic hemorrhage. The onset and durat ion of 
the anti-allodynic effect of GBP following a single 
intraperitoneal injection were dose-related and in line 
with its known pharmacokinetic and pharmacodynamic 
characteristics[44,76-78]. The anti-allodynic effect of GBP is not 
likely to be attributable to the side-effect (sedation) induced 
by high doses in our study, because no effect on motor 
coordination was observed after administration of 100 mg/
kg, indicating that GBP is more tolerable than ketamine 
that has severe motor side-effects[32]. The current results 
provide evidence for the beneficial use of GBP for the 
treatment of CPSP in patients after thalamic hemorrhage, in 
parallel with recent research[35]. However, despite possible 
side-effects of GBP, such as dizziness and drowsiness, the 
most intriguing problem we found here was tolerance after 
repeated administration; this was not reported in the latest 
research due to the lack of evaluation of dose and time-
course effects[35]. The phenomena of GBP tolerance can 
be characterized as: (1) loss of anti-allodynic effectiveness 
after two weeks of administration of a low effective dose 
(i.e., 10 mg/kg, i.p.), as used in our study; and (2) shortened 
time-course of anti-allodynic effectiveness after repeated 
administration of the highest dose (i.e., 100 mg/kg, i.p.). 
Actually, these phenomena have frequently been noted in 
patients with CPSP (personal communications with patients 
with CPSP), but unfortunately so far this problem has 
been neglected, even for other patients with neuropathic 
pain. Experimentally, GBP tolerance has been shown in 
a rat model of bortezomib-induced painful neuropathy[79]. 
In that study, it was reported that administration of GBP 
(100 mg/kg by gavage every day for 3 weeks) results 
in a mild anti-allodynic effect on day 4 after treatment, 
followed by a complete loss of effectiveness afterward, 
strongly supporting the existence of tolerance to GBP in the 
treatment of neuropathic pain. 

So far, it is not clear where and how GBP acts 
to produce anti-allodynic effects in this animal model 
of CPSP, since the systemic route of administration 
can result in anti-allodynic efficacy at both spinal and 
supraspinal sites[66,69]. Moreover, the molecular and cellular 
mechanisms underlying central post-stroke mechanical 
pain hypersensitivity remain unclear. Thus, research into 
the underlying mechanisms of CPSP will be of particular 
significance for understanding its development and the 
anti-allodynic effectiveness and tolerance to the drugs 
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(e.g., gabapentinoids) used as the first line of clinical 
treatment of central neuropathic pain[25-28]. Since it has 
been proposed that the development of CPSP might be 
caused by sensitization, disinhibition, and/or neuroplastic 
changes above the diencephalon[7], the level of VGCC 
α2δ subunit expression and the binding sites of [3H] GBP 
in the dorsal column-medial lemniscus-VPL/VPM/Po-
cerebral cortex system should be examined in both human 
patients and animals with CPSP. Tolerance to GBP in 
patients and animals with CPSP might be due to changes 
in VGCC α2δ expression levels in hyperexcitable neurons 
with advances in the pathological process. As for the 
relationship between the level of α2δ1 expression and anti-
allodynic effectiveness, it has been clearly demonstrated 
that the anti-allodynic effectiveness of a certain dose of 
GBP is attenuated at a time when α2δ1 subunit protein is 
abundant[80]. The other possibility is that GBP tolerance 
might be due to changes in pharmacokinetic and 
pharmacodynamic characteristics in patients and animals 
with CPSP. All the above presumptions need further study 
in this animal model of CPSP.

Using the same CPSP model in mice, a single dose 
of diclofenac (30 mg/kg, i.p.), morphine (3 mg/kg, i.p.), and 
pregabalin (10 mg/kg, i.p.) was unable to reverse mechanical 
and thermal pain hypersensitivity during the period of 
observation[33]. The lack of therapeutic improvement of pain 
in patients with CPSP by pregabalin (150 to 600 mg/day) 
has also been demonstrated in a 13-week, randomized, 
double-blind, multicenter, placebo-controlled trial[31]. These 
pre-clinical and clinical results for pregabalin, another α2δ-
binding anticonvulsant, are surprising and not conclusive 
because the authors did not investigate the dose-effect 
relationship. In contrast, however, in the same report, 
amitriptyline, lamotrigine, and minocycline (inhibitors of 
microglial cell activation) were effective in suppressing pain 
hypersensitivity in mice with CPSP[33]. Moreover, ketamine 
was able to relieve mechanical and cold pain hypersensitivity 
only when a high dose (25 mg/kg) was used in the same rat 
model of CPSP[32]. 

In conclusion, our data demonstrate that CPSP 
produced by ITC injection is a region-specifi c and sensitive 
model for the evaluation of anti-allodynic drugs, when 
investigated using case-by-case histological analysis, and 
provides a useful experimental tool for studying both the 
mechanisms underlying CPSP and its treatment.
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