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Traumatic injury to the adult mammalian central nervous system (CNS) leads to complex cellular responses. 
Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the 
production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating 
treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and 
pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and 
a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating 
treatments according to their specifi c aims: (1) inhibition of glial and fi brotic scar formation, and (2) blockade of 
the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as 
a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental 
effects of scar tissue on CNS repair.
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Introduction

The treatment of central nervous system (CNS) injury is 
always a major challenge worldwide. Traumatic injury to 
the adult CNS (either brain or spinal cord) may cause life-
long disability, impact quality of life, and become a great 
burden for the family and society. It has long been held that 
the adult mammalian CNS has little ability to spontaneously 
regenerate beyond the lesion site, and the formation of 
scar tissue acts as one of the largest barriers to CNS 
regeneration. The scar tissue forming at the lesion site after 
CNS injury consists of predominantly two types, glial and 
fi brotic[1]. 

The molecular changes within glial and fibrotic scars 
are closely linked to the process of CNS regeneration. 
Following traumatic CNS injury, bleeding occurs and 
the blood-brain barrier (BBB) is broken. The infiltration 
of blood proteins triggers the inflammatory reaction. 
Hematogenous cells (including leukocytes, macrophages, 
and lymphocytes) invade the surrounding neural tissue and 
secrete various cytokines and chemokines, which induce 
inflammatory reactions in the injured CNS and result in 

local neural degeneration and cystic cavity formation. 
Under the action of inflammatory factors, astrocytes and 
other glial cells are activated to form a glial scar around the 
lesion site. Several days post-injury, fi broblasts intrude into 
the lesion site from adjacent meninges and perivascular 
spaces, proliferate, and secrete extracellular matrix 
(ECM) molecules, such as type IV collagen, fibronectin, 
and laminin, to form a fi brotic scar. Actually, a rapid post-
injury response of astrocytes to CNS injury mainly aims to 
protect the integrity of the BBB. Subsequently, there is a 
fi broblastic reaction around astrocytes, and astrocytes and 
fi broblasts interact extensively in an organized manner to 
form the glial scar around a CNS lesion, as demonstrated 
in rat models of spinal cord injury (SCI)[2]. A more detailed 
description of the progression of glial and fibrotic scar 
formation after CNS injury can be found in a previous 
review[3], in which a schematic is provided to depict the time 
course of lesion scar formation in the mouse brain.  

Although the scar functions to restore the BBB, 
prevent neuronal degeneration, and limit the spread of 
cellular damage[4, 5], it is generally recognized as a major 
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obstacle for CNS repair both by the production of inhibitory 
molecules and by the physical impedance of axon regrowth. 
Accordingly, it is of utmost importance to develop scar-
modulating treatments for CNS injury. Nowadays, these 
treatments are mainly aimed at inhibition of scar formation 
and blockade of the production of scar-associated inhibitory 
molecules. In addition, the removal of existing scar tissue 
is a remedy of choice. This review covers both established 
strategies and emerging therapeutic perspectives for the 
scar-modulating treatment of CNS injury.

Inhibition of Glial Scar Formation

Reactive astrocytes are the major cellular component of 
glial scars formed after CNS injury. A variety of therapeutic 
strategies targeting reactive astrocytes have been 
developed (Table 1).   
Suppression of Astrocyte Activation 
Following a CNS lesion, quiescent astrocytes are activated. 
Hypertrophic reactive astrocytes undergo proliferation 
into the major component of the glial scar, and meanwhile 
secrete many chemicals to inhibit axon regeneration. To 
control the excessive reactivity of astrocytes and thus 
to suppress glial scarring, many strategies have been 
developed. Early in 1997, it was reported that transfection 
of cultured astrocytes with antisense glial fibrillary acidic 
protein (GFAP) mRNA successfully block astroglial 
morphological changes and inhibit astrocyte proliferation, 
while neurons persist in the vicinity of the lesion site with 
neurite outgrowth[6]. After hemisection of the spinal cord, 
GFAP- and vimentin-knockout mice present with reduced 
astroglial reactivity associated with increased plastic 
sprouting of supraspinal axons[7]. As another example, 
introduction of GFAP and vimentin siRNAs suppresses the 
over-proliferation of reactive astrocytes and improves acute 
urinary dysfunction in an SCI rat model[8]. More approaches 
to suppressing the astrocyte activation are described below. 
 Calpain inhibitors  The upregulation of calpain, a water-
soluble Ca2+-activated cysteine protease, has been 
implicated in apoptosis and tissue degeneration in SCI 
animals. Research shows that an increase in GFAP is 
accompanied by upregulation of calpain after SCI[7]. 
Administration of E-64-d, a calpain-specific inhibitor, 
decreases reactive astrogliosis and significantly reduces 
glial scar formation in SCI rats[9]. Another study showed 

that intrathecal administration of another calpain-specific 
inhibitor, MDL28170, improves neurological function after 
SCI, attenuates the ratio of pro-apoptotic Bax/anti-apoptotic 
Bcl-2 mRNA expression in the lesion site, and reduces the 
glial scar by quenching astrocyte activation[10]. 
Cyclin-dependent kinase inhibitors Cell proliferation is 
accomplished through the cell cycle. Cyclins and cyclin-
dependent kinases (CDKs) play important roles in cell 
cycle regulation. To minimize the contribution of astrocyte 
over-proliferation to glial scar formation, inhibition of CDK 
activity has proven to be efficient. So far, several CDK 
inhibitors have successfully quenched the over-proliferation 
of astrocytes, including p27 (kip1)[11], flavopiridol[12, 13], 
olomoucine[12, 14], and CR8[15]. 
High-molecular-weight hyaluronan (HA)  HA is a long-
chain polysaccharide widely distributed in the mammalian 
body, and as the chief component of ECM, it participates 
in the regulation of many cellular functions. Under normal 
conditions, HA exists in the high-molecular-weight (MW) 
form (~2.0×106 Da); after injury, it degrades to the low-MW 
form[16]. The two forms have signifi cantly different biological 
activities. A high-MW HA-containing gel inhibits astrocyte 
responses[17], while the low-MW HA elicits cell proliferation 
and inflammatory responses[18, 19], and stimulates angio-
genesis via an increased proliferation of endothelial 
cells[19-21]. High-MW HA added to astrocyte culture reduces 
the proliferation of astrocytes[16]. Based on this finding, 
implantation of pre-formed gels made from high-MW HA 
into transected rat spinal cord attenuates the astrocytic 
response and decreases glial scar formation[22]. 
Interferon-β (IFN-β)  SCI mice receiving IFN-β exhibit 
a decrease in glial scar formation and functional impro-
vement[23]. IFN-β inhibits the proliferation of reactive 
astrocytes mainly via activation of toll-like receptor (TLR)-4[23], 
suggesting that stimulation of TLR-4 signaling might be an 
effective strategy for treating CNS injury. 
Inhibitors of the TGF-β/Smad signaling pathway  The 
BBB is disrupted immediately by CNS injury, and the 
leakage of the blood protein fibrinogen induces reactive 
astrocytosis via an interaction between fibrinogen-
carried TGF-β and astrocytes, and concurrently promotes 
deposits of chondroitin sulfate proteoglycans (CSPGs) 
that block axonal reconnection. This process is believed 
to be mediated by TGF-β/Smad signaling pathways[24]. 
Therefore, some researchers have attempted to inhibit this 
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signaling pathway in order to suppress glial scar formation. 
Injection of decorin, a small, leucine-rich, TGF-β-binding 

proteoglycan, into SCI rats reduces glial scar formation, 
inhibits CSPG synthesis, and alleviates inflammation[25]. 
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Another similar study demonstrated that intrathecal 
administration of an anti-TGF-β1 antibody into SCI rats 
decreases the number of reactive astrocytes, inhibits glial 
scar formation, and enhances locomotor recovery[26].

Hepatocyte growth factor (HGF), originally identified 
only as a mitogen for hepatocytes, has now been 
suggested to participate in nerve injury via regulation of 
TGF-β. Transplantation of HGF-overexpressing mesen-
chymal stem cells (HGF-MSCs) into the hemisected spinal 
cord of rats diminishes the level of TGF-β isoform, reduces 
the extent of astrocytic activation, increases axonal growth 
beyond the glial scar, and improves the recovery of forepaw 
function[27].

A recent study demonstrated that treatment with 
taxol diminishes astrocyte activation as well as glial scar 
formation. Taxol also improves axonal regeneration and 
functional recovery in animal models. The underlying 
mechanism may be that taxol causes Smad2/3 to 
localize persistently to microtubules and inhibits 70% of 
its translocation to the nucleus, thus abolishing TGF-β 
signaling[28].
Blockade of the JAK2/STAT3 signaling pathway  Signal 
transducer and activator of transcription 3 (STAT3) is a 
member of the JAK-STAT family that transduces signals 
for many cytokines and growth factors. The JAK2/STAT3 
pathway is one of the triggers for reactive astrogliosis. 
STAT3 knockout mice exhibit attenuated upregulation of 
GFAP and marked suppression of astrocyte hypertrophy[29]. 
Triptolide, one of the major active ingredients of a traditional 
Chinese herb Tripterygium wilfordii Hook F, significantly 
inhibits infl ammation and astrogliosis in SCI rats by blocking 
the JAK2/STAT3 pathway[30]. Okada et al. also analyzed 
the impact of conditional ablation of suppressor of cytokine 
signaling 3 (SOCS3, a target of STAT3 transcriptional 
activation) on reactive astrocytes after SCI. They found that 
knockout of SOCS3 in mice leads to the rapid migration of 
reactive astrocytes to seclude infl ammatory cells, enhances 
the contraction of the lesion area, and thereby improves 
functional recovery[31].
Epidermal growth factor inhibitors  Activation of 
epidermal growth factor receptor (EGFR) triggers quiescent 
astrocytes into reactive astrocytes[32], and stimulates the 
secretion of CSPGs, thus contributing to the formation of 
glial scars[33]. Therefore, inhibition of EGFR may reduce the 
extent of astrocyte activation and abate the glial scarring. 

Erschbamer et al. showed that direct delivery of the potent 
EGFR inhibitors PD168391 and AG1478 to the injured 
area in SCI rats improves the functional and structural 
outcomes[34].
Endothelin receptor antagonists and JNK/c-Jun and 
ERK/c-Jun signaling pathway inhibitors  Endothelin 
is a potent vasoconstrictor peptide that mainly acts 
on blood vessels. The endothelin level is, however, 
markedly upregulated af ter  CNS in jury,  inducing 
reactive astrogliosis[35, 36]. Infusion of BQ788, a selective 
endothelin-B receptor antagonist, into the cerebral ventricle 
of rats with brain injury attenuates the activation and 
proliferation of astrocytes[37]. Recently, researchers provided 
in vitro evidence that endothelin-1 induces the activation 
and proliferation of astrocytes via the JNK/c-Jun signaling 
pathway[38]. The two endothelin receptor antagonists 
Bosentan and BQ788 prevent astrocyte proliferation and 
JNK phosphorylation, while c-jun siRNA prevents the 
endothelin-1-induced proliferation of astrocytes, confi rming 
the involvement of the ERK-dependent pathway in the 
regulation of reactive astrogliosis. They proposed that after 
CNS injury, the increased level of endothelin activates 
the JNK- and ERK-dependent pathways via binding to 
endothelin receptors on astrocytes, and both pathways 
activate c-Jun and trigger astrocyte proliferation[38]. These 
fi ndings indicate that molecular targeting of both the JNK/
c-Jun and ERK/c-Jun pathways could be an approach to 
reducing reactive astrogliosis after brain injury[38]. 

Elimination of Reactive Astrocytes
Besides inhibiting astrocyte activation, researchers have 
been concerned about how to remove reactive astrocytes 
to prevent scar formation. Early in 1996, Khurgel et al. 
reported that a focal injection of L-α-amino adipate, an 
astroglial toxin, directly into intact amygdala of adult rats 
creates an astrocyte-free region for 2 days[39]. In another 
study, given that the transgenic expression of Herpes 
simplex virus thymidine kinase (HSV-TK) in reactive 
astrocytes renders them sensitive to ganciclovir, Bush et al. 
found that reactive astrocytes adjacent to a forebrain stab 
injury are selectively ablated by ganciclovir treatment in 
adult mice expressing HSV-TK from the Gfap promoter[40]. 

Induction of Linear Alignment of Astrocytes
Glial-restricted precursors (GRPs) are precursors of 
oligodendrocytes and astrocytes, and GRP-derived 
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astrocytes (GDAs) are a new glial type generated by GRPs 
via MBP4. Transplantation of GDAs not only promotes 
axon regeneration and protects locomotor function, but 
also induces the linear alignment of host astrocytes. This 
provides an ideal tract for axon regeneration and growth, 
accompanied by reduced over-proliferation of astrocytes 
and reduced scar formation[41]. 
Regulation of Nuclear Factor κB in Astrocytes
Nuclear factor κB (NF-κB) plays a key role in infl ammation 
and secondary lesions after traumatic CNS injury[42, 43]. In 
SCI animal models, the expression of NF-κB-dependent 
genes is upregulated. Selective inactivation of NF-κB in 
astrocytes in contusive SCI mice reduces the expression 
of pro-inflammatory factors, such as CXCL10 and CCL2, 
suppresses GFAP expression and CSPG secretion, 
and reduces scar formation[44]. Similarly, spared and 
sprouting spinal tracts are increased, together with 
improved functional recovery after SCI in GFAP-inhibitor 
of κB dominant-negative mice, as transgenic inhibition of 
astroglial NF-κB-dependent cascades reduces the reactive 
astrogliosis[45]. Collectively, these findings suggest that 
treatments targeting NF-κB may have an indirect inhibitory 
effect on glial scar formation. 

Inhibition of Fibrotic Scar Formation 

Several days after CNS injury, fibroblasts originating 
from meningeal and perivascular cells[46, 47] invade and 
proliferate at the lesion site to secrete ECM components, 
such as type IV collagen, fibronectin, and laminin. The 
contact between fibroblasts and astrocytes enables ECM 
to form a continuous basal membrane between the two 
types of cells, and the membrane ultimately creates the 
fibrotic scar. In different types of CNS injury, most SCI 
cases are characterized as contusions that leave the 
meninges intact. The latest research indicates that the 
fibrotic scar formed after contusive or penetrating SCI is 
predominantly composed of collagen1α1 cells that migrate 
to the injury site from a perivascular source via a dynamic 
temporospatial process[47].

Local injection of α,α’-dipyridyl, both an iron chelator 
and an inhibitor of collagen triple helix synthesis, signifi cantly 
reduces collagen formation, and thus suppresses the 
formation of fi brotic scars[48-50]. The expression of TGF-β1 and 
its receptors (types I and II) increases during the migration 

of fibroblasts to the injury site, and the increased TGF-β1 
directly activates meningeal fibroblasts[50]. Accordingly, 
fibrotic scar formation is promoted by exogenous TGF-β1 
and prevented by anti-TGF-β1 antibody in injured rat brain[51, 52], 
and more recently, researchers have found that blocking 
TGF-β function with cyclic adenosine monophosphate in 
combination with a collagen synthesis inhibitor transiently 
reduces fibrotic scar formation and promotes axonal 
regeneration in the injured spinal cord[53]. 

Prolyl 4-hydroxylase (P4H), a key enzyme for catalyzing 
protocollagen proline hydroxylation in fibroblasts and 
other type IV collagen-producing cells, plays a critical role 
in the synthesis of type IV collagen[54]. Local injection of 
P4H inhibitors to the injury site suppresses fibrous scar 
formation after CNS injury[55]. On the other hand, since 
the functioning of P4H requires its co-factors such as Fe2+ 
ion, ascorbate, and α-ketoglutarate, inhibition of these 
cofactors also suppresses the function of P4H. α,α’-dipyridyl 
is one of the most common cofactor inhibitors reported so 
far. A recent study[53] demonstrated that combined use of 
2,2’-bipyridine-5, 5’-dicarboxylic acid, a potent iron chelator, 
and cyclic adenosine monophosphate[56], an inhibitor 
of fibroblast proliferation and collagen biosynthesis, 
signifi cantly reduces fi brotic scar formation in SCI rats. 

In some less-frequent cases of CNS injury involving 
disruption of the meninges, repair of the meninges has 
been suggested to reduce the number of fibroblasts that 
invade the injury site and suppress the scar formation. 
For instance, dural repair was used to reduce connective 
tissue scar invasion and cystic cavity formation after acute 
spinal cord laceration in adult rats[57]. Besides, in a study 
by Li et al., topical glucocorticoids applied immediately 
after cerebral cortical stab wounds in adult rats modulate 
the lesion interface and attenuate the scarring process, 
suggesting that the inhibition of injury-induced infl ammation 
might also suppress fi brotic scar formation[58]. 

In addition, cell proliferation is associated with 
the formation of either glial or fibrotic scars. Therefore, 
inhibition of the over-proliferation of either reactive 
astrocytes or fi broblasts after CNS injury may signifi cantly 
reduce the scarring. Previous research reported that an 
optimal dose of X-irradiation eliminates connective tissue 
scars as well as glial scars in a rat model of SCI[59, 60]. More 
physical interventions targeting scar formation after SCI 
have been described in a previous review[61].
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Cell transplantation is a widely-used strategy to 
treat CNS injury. Transplantation of different cell types, 
including neural stem cells, bone marrow stromal cells, 
and Schwann cells, has shown potential to promote axon 
regeneration because they can either differentiate into 
neural cells or secrete various neurotrophic factors. Recent 
studies have demonstrated that after CNS injury, cell 
transplantation inhibits fi brotic scar formation at the lesion 
cite. For example, combined transplantation of olfactory-
ensheathing cells and olfactory nerve fi broblasts or single 
transplantation of meningeal fibroblasts into the lesion 
site of SCI rats is able to suppress fi brotic scar formation, 
the former performing better on axonal regeneration. The 
mechanism by which cell transplantation inhibits fibrotic 
scar formation remains to be elucidated. However, it seems 
likely that cell transplantation into the lesion site disturbs 
the linkage of fibroblasts and reactive astrocytes, thus 
preventing the formation of fi brotic scars[62].

Blockade of the Production of Scar-Associated 

Inhibitory Molecules

The inhibitory molecules that go along with scar formation 
present chemical barriers to successful axon regeneration[63, 64]. 
These molecules have been a matter of concern in elimi-
nating the scar-induced chemical suppression of axon 
regeneration. They are mainly derived from glial and fi brotic 
scars, and myelin debris (Fig. 1). Diverse interventions are 
required to tackle different inhibitory molecules (Table 2). 
CSPGs
Among the various inhibitory molecules, CSPGs from the glial 
scar[65, 68] are considered the major component[65, 69-71]. The 
CSPG family includes neurocan, brevican, phosphacan, 
aggrecan (produced by astrocytes), NG2, and versican 
(produced by oligodendrocyte precursors or meningeal 
cells)[68]. The protein core and one or more sulfated 
glycosaminoglycan (GAG) side-chains constitute an intact 
CSPG[72]. Chondroitinase ABC (ChABC), an enzyme 
that degrades GAG side-chains, when delivered to the 
site of axotomy in rat brain injury models promotes axon 
regeneration. These results confirm that CSPGs have 
inhibitory effects on axon regeneration via their GAG side-
chains[73]. Since the mechanism of action of ChABC does 
not clash or overlap with many other treatment strategies, 
several studies have examined the feasibility of combining 

it with other treatments for SCI repair, such as myelin-
inhibitory molecule blockers, cell implantation, growth 
factors, and ion channel expression[74]. The polymerization 
of GAG chains onto CSPG core proteins occurs through 
the action of an enzyme complex consisting of chondroitin 
synthase[75] and chondroitin polymerizing factor (ChPF)[76]. 
So RNA interference can be used to decrease the mRNA 
expression of ChPF and so reduce the inhibitory effect of 
CSPG on axon regeneration[77].

Besides the GAG side-chains, CSPG core proteins 
also inhibit axon regeneration[78, 79]. Accordingly, it is of 
great importance to degrade these proteins. Both plasmin 
and plasminogen lead to the degradation of various kinds 
of CSPGs with protein cores as the target of action[25, 80-82]. 
However, the degradation of core proteins is limited due to 
the existence of GAG chains. Therefore, the GAG must be 
removed in order to effi ciently degrade the core proteins.

Tissue plasminogen activator (tPA) is markedly 
upregulated after SCI in C57BL/6 mice[83]. tPA is a serine 
protease that mediates the proteolytic conversion of 
plasminogen to plasmin. After administration of ChABC 
to tPA knockout mice and intact C57BL/6 mice, the latter 
exhibit pronounced downregulation of CSPGs and axon 
regeneration compared to the former. This result can be 
ascribed to the fact that ChABC cleaves GAG, exposing 
the core proteins, and thereby allows their degradation by 
plasmin. Furthermore, tPA may tightly bind to the exposed 
core protein of CSPGs, thus facilitating the production of 
plasmin[83]. Consequently, compared to single treatment, 
co-treatment with both ChABC and tPA/plasmin is more 
suitable for SCI treatment. 

The biosynthesis of CSPGs requires the participation 
of many enzymes, including xylosyltransferase-1 (Xt-1) 
and chondroitin 4-O-sulfotransferase-1 (C4st-1). Xt-1 is a 
critical enzyme that catalyzes glycosylation of the CSPG 
protein backbone, whereas Xt-1 inhibition suppresses 
CSPG synthesis. Application of a DNA enzyme against 
Xt-1 to the injured spinal cord signifi cantly promotes neurite 
outgrowth[84]. Similarly, injection of 4-methylumbelliferyl-β-
D-xylopyranoside to the injured mouse spinal cord reduces 
CSPG synthesis and improves remyelination[85].

Bioinformatics has been used to identify putative 
binding sites for the transcription factor SOX9 in the 
promoter regions of the Xt-1, Xt-2, and C4st-1 genes in 
humans, rats, and mice. Researchers have suggested that 
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Fig. 1. Schematic of the molecular inhibitors of CNS axon regeneration, which mainly include glial scar-based CSPGs and their 
downstream signaling pathways (RhoA, PKC, AKT/PKB, and GSK 3β); myelin-derived proteins (such as NogoA, MAG, and OMgp) 
and their receptors: the NgR complex; and fibrotic scar-based Semaphorin3A and its receptors (Plexin and Neuropilin). Also 
shown is the appearance of a variety of cells (reactive astrocytes, fi broblasts, oligodendrocytes, and neurons; oligodendrocyte 
precursors and microglia/macrophages are omitted) around the lesion site after CNS injury. This fi gure was drawn by referring to 
previous review articles[65-67].

SOX9 regulates the expression of Xt-1, Xt-2, and C4st-1, 
and in vitro experiments have confi rmed this hypothesis[86]. 
CSPG deposition and collagenous scarring are reduced 
in the SCI lesion of SOX9 conditional knockout mice, 
suggesting that inhibition of SOX9 activity may become a 
novel therapeutic strategy for SCI[87].

Fibrinogen is a soluble blood protein. After CNS 
injury, it leaks from the disrupted blood-brain barrier or 
damaged blood vessels, and enters the lesion site. Since 
fi brinogen works as a carrier of latent TGF-β to induce the 
phosphorylation of Smad2, it promotes the activation of 
astrocytes and deposition of CSPGs via the TGF-β/Smad 
signaling pathway. Genetic knockout or pharmacologic 

inhibition of fibrinogen reduces TGF-β activation, Smad2 
phosphorylation, glial cell activation, and neurocan 
deposition after cortical injury in mice. Given these results, 
fibrinogen-targeting therapies might be beneficial for the 
repair of CNS injury[24].

Although it has been long known that CSPGs inhibit 
axon regeneration, the underlying mechanism remains 
poorly understood. Recent research has revealed that 
CSPGs may inhibit axon regeneration through four 
receptors, including PTPσ, leukocyte common antigen-
related (LAR) phosphatase, Nogo receptor 1 (NgR1), and 
NgR3[88-90]. 

PTPσ, a transmembrane protein tyrosine phosphatase, 
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is functionally involved in the inhibitory effects of CSPGs 
on neurons via an interaction between the conserved, 
positively-charged region on the surface of the first 
immunoglobulin-like domain of PTPσ and the GAG chain 
of CSPG[88]. In culture, PTPσ-null neurons show reduced 
inhibition by CSPG[88], while in PTPσ-null mice, dramatic 
regeneration of corticospinal tract axons has been reported 
after dorsal spinal injury[91].

LAR is a widely expressed protein in various neurons in 
the brain and spinal cord. DRG neurons derived from adult 
LAR-null mice exhibit increased neurite length when cultured 
on CSPG substrates, while blockade of LAR by extracellular 
LAR peptide (ELP) and intracellular LAR peptide (ILP) 
overcomes the neurite growth restriction by CSPGs in 
neuronal cultures[89]. To further confirm the efficacy of ELP 
and ILP, it was found in SCI mice treated with ELP that the 
density of 5-5-hydroxytryptamine fi bers in the spinal cord 5–7 
mm caudal to the lesion epicenter is signifi cantly increased, 
and axon regeneration is also enhanced[89].

NgR1 is the common receptor of Nogo66, oligoden-
drocyte myelin glycoprotein (OMgp), and myelin-associated 
glycoprotein (MAG), whereas NgR2 is the receptor of 
MAG. In contrast, the related molecule, NgR3, is poorly 
characterized and no functional ligands have yet been 
identified. A recent report indicated that NgR1 and NgR3 
bind with high affinity to the glycosaminoglycan chain of 
CSPGs and serve as CSPG receptors. The combined loss 
of NgR1 and NgR3 enhances axon regeneration[90].

Although PTPσ, LAR phosphatase, NgR1, and NgR3 
all contribute to the restriction of axon regeneration, deep 
insights are required into the actions of these receptors. It 
is believed that there will be in depth studies on this topic in 
future.

Then, how do CSPGs inhibit axon regeneration after 
binding their receptors on neurons? So far, four downstream 
pathways have been proposed: the Akt/PKB, RhoA, PKC, 
and glycogen synthase 3β (GSK 3β) pathways[92-96].

Akt is the key factor in the mTOR pathway[97], and mTOR 
regulates protein translation, for example, cytoskeleton 
formation during axon regeneration. CSPGs inhibit Akt 
activity and restrict axon regeneration indirectly. Amphotericin 
B, identifi ed from a natural product screen, activates Akt and 
suppresses GSK 3β activity. The compound counters the 
CSPGs-induced inhibition of axonal growth possibly via a 
mechanism involving the activation of Akt[98].

RhoA, a small GTPase, leads to cytoskeleton collapse 
and inhibits axon regeneration though ROCK activation[99]. 
Production of CSPGs after CNS injury activates RhoA, and 
so inhibition of RhoA with 17β-estradiol[100] or some non-
steroidal anti-infl ammatory drugs[101, 102], such as ibuprofen 
and indomethacin, can be used for treating CNS injury.

Both CSPGs and myelin-associated proteins activate 
PKC. Blocking PKC activity by pharmacological or genetic 
manipulation attenuates the ability of CSPGs and myelin to 
activate Rho and promotes neurite regeneration[96].

GSK-3β is highly expressed in neurons, and CSPGs 
suppress axon regrowth possibly through activation of 
GSK-3β. In consequence, treatment with GSK-3 inhibitors 
including a clinical dose of lithium to rats with thoracic 
spinal cord transection or contusion injury decreases 
corticospinal and serotonergic axon sprouting in the caudal 
spinal cord and promotes locomotor functional recovery[92].
Myelin-Derived Proteins  
Myelin-derived proteins consist mainly of Nogo-A, MAG, 
and OMgp[103].

Nogo-A was discovered in myelin as a potent inhibitor 
of neurite growth[104]. A monoclonal antibody against Nogo-A 
(IN-1) was produced soon after its discovery. Implantation 
of IN-1-producing hybridoma cells into SCI rats enhances 
axon regeneration, improves functional recovery, and 
increases the plasticity of intact CNS fi bers[105]. Therefore, 
the application of Nogo-A inhibitors has therapeutic effects 
in CNS injury, which suggests a possibility of clinical 
trials[106, 107]. IN-1, an IgM-type antibody to Nogo-A, has 
long been a research focus, but recently two IgG-type 
monoclonal antibodies to Nogo-A (7B12 and 11C7) have 
gained much attention. These two antibodies have been 

delivered separately into the cerebrospinal fl uid of SCI rats, 
and they dramatically enhance axon sprouting and improve 
recovery of motor function[108]. 

Although in vitro and in vivo models have pointed 
out the importance of Nogo-A in limiting regeneration 
and recovery after CNS injury, data from Nogo-knockout 
mutants, generated by three groups independently[109-111], 
are less simple to interpret[112]. Subsequent studies have 
demonstrated that age, strain, and type of lesion also 
modulate the Nogo-null phenotype, and thus the roles 
of Nogo in CNS axon repair may be more intricate than 
previously envisioned[113-115].

MAG is known to inhibit neurite outgrowth in vitro[116], 
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and MAG-knockout mice have been used to assess its 
in vivo function in axonal regeneration, but the results 
from different labs are contradictory. One group reported 
that after SCI, more axons extend long neurites across 
the lesion site in MAG-null mice[117], while another group 
reported no difference in axonal regeneration between 
MAG-null and wild-type mice after SCI or optic nerve 
injury[118]. This discrepancy may be due to the difference 
in genetic background between the two independently-
generated MAG-null mouse lines, and/or variations in the 
methods of regeneration assessment. Therefore, although 
MAG is an inhibitory molecule that actively suppresses 
axonal regeneration in vitro and in vivo, its deletion is not 
necessarily associated with robust regeneration after CNS 
injury[119].

The studies using OMgp-knockout mice indicate that 
these mice exhibit elevated collateral sprouting from the 
CNS node of Ranvier[120], and that OMgp-null mice show 
greater functional and anatomical regeneration after SCI, 
both suggesting that OMgp plays a role in restricting axonal 
sprouting.

Since Nogo-A, MAG, and OMgp share the neuronal 
membrane-bound NgR complex, which includes NgR1, 
NgR2, NgR co-receptors (p75NTR, Troy, and Lingo-1), 
ganglioside GT1b, and PirB[119], researchers turned their 
attention toward NgRs. Various approaches to targeting 
NgRs, including the NgR antagonist NEP1-40[121], genetic 
deletion of NgR[122], transfection with siNgR199[123], and DNA 
vaccine against NgR[124], have been reported. However, 
some researchers failed to demonstrate the maintenance 
of neuroregeneration in NgR-knockout mice after SCI[111], 
suggesting that neuronal receptors for Nogo-A, MAG, 
and OMgp are not limited to NgRs. Blockade of leukocyte 
immunoglobulin-like receptor subfamily B member 2 
(LILRB2) was noted to improve neurite outgrowth[125], and 
this might be another neuronal receptor for Nogo-A, MAG, 
and OMgp, so it will attract more attention in future.

Besides NgR and LILRB2, other co-receptors for 
Nogo-A, such as p75NTR, LINGO-1, and Troy, have also 
been studied. After SCI, p75NTR-deficient mice do not 
show enhanced axon regeneration due to the limited 
expression of p75NTR in a very small subset of ascending 
sensory axons[126]. Unlike p75NTR, LINGO-1 and Troy are 
broadly expressed in neurons. Neurons in Troy-deficient 
mice are less sensitive to the reduction of neurite outgrowth 

by myelin inhibitors[127], while administration of the LINGO-1 
antagonist LINGO-1-Fc dramatically enhances axonal 
sprouting in SCI rats[128].

In addition, inhibition of signaling pathway is effective 
for blocking the activity of myelin-derived proteins. Both 
CSPGs and myelin-derived proteins (Nogo-A, MAG, and 
OMgp) inhibit neurite outgrowth through the Rho/Rho 
kinase pathway, and Clostridium botulinum C3 transferase 
has been used to inhibit Rho, and achieve good outcomes 
of CNS regeneration[129]. Now this therapy has been 
launched in clinical trials[130].
Slit Proteins
Slit, a group of proteins that are chemically repulsive 
to growing axons, was first identified in Drosophila 
melanogaster mutants[131]. During neural development, 
slit proteins, expressed by midline glial cells, bind Robo 
receptors on growth cones and function as repellents of 
axon outgrowth[132, 133]. So far, three types of slit proteins 
have been identifi ed in vertebrates: slit1, slit2, and slit3. 

One study showed that all slit family members are 
expressed at the lesion, and slit2 mRNA is most intensely 
expressed in the cells surrounding the necrotic tissue. This 
study also indicated that slit and glypican-1 mRNAs are co-
expressed in the reactive astrocytes of the injured adult 
brain[134]. Glypican-1, a high-affinity ligand of slit2 protein, 
binds to the C-terminal fragment of slit proteins mainly via 
heparan sulfate chains. The tight interaction between slit2 
and glypican-1 in reactive astrocytes promotes the binding 
of slit2 to Robo-1, and suppresses axonal outgrowth.

Slit expression has also been identified in an animal 
model of SCI, in which slit1 and slit3 were expressed at 
the lesion site at 8 days after injury, suggesting that they 
are expressed in activated microglial cells (macrophagic 
cells) or meningeal fibroblastic cells[135]. These cells are 
involved in scar formation. Based on these findings, 
the ability of slit to inhibit axon regeneration has gained 
considerable attention. For example, PI-88 (a chemically 
sulfonated yeast-derived phosphomannan), D120 (a 
sulfated hydrophilic dextran), and a low-MW heparin 
have been identified as potent inhibitors of glypican–slit 
interactions[136]. So far, however, there is little experimental 
evidence on the improving effects of these three agents on 
axon regeneration. 
Semaphorin3A, Plexins, and Neuropilins
Semaphorins are a class of proteins that function to guide 
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the axon growth cone during neural development[137]. 
Following CNS injury, fibroblasts migrating to the lesion 
site show robust expression of meningeal cell-derived 
Semaphorin 3A, and cause the collapse of growth 
cones[138-140]. Application of antibodies against Semaphorin 
3A protects retinal ganglion cells from optic nerve 
axotomy-induced cell death[141], suggesting the therapeutic 
signifi cance of Semaphorin inhibitors. However, there is still 
controversy over whether inhibition of Semaphorin 3A is an 
effective treatment for CNS injury. 

Plexins are a large family of cell surface receptors. 
The ability of Semaphorin to cause growth-cone collapse 
is mainly attributed to an interaction of Semaphorin 
with Plexins, its neuronal receptors[142]. The binding of 
Semaphorin to Plexins requires Neuropilins as a co-
receptor[143]. 

The role of Semaphorin/Plexin signaling in axonal 
growth after adult CNS injury has been studied with 
different results. For example, after unilateral pyramidal 
transection in the medulla, PlexinA2-null mice exhibited 
the sprouting of unlesioned corticospinal fibers across 
the midline to innervate the contralateral gray matter of 
the spinal cord, accompanied by improved behavioral 
recovery[144]. However, another fi nding suggested limitations 
of targeting Semaphorin-mediated inhibition for promoting 
spinal axon regeneration, thus raising an issue of whether 
Semaphorin 3A modulates injury-induced axonal growth 
in a less severe injury model and whether receptors other 
than Plexins may mediate the inhibition of Semaphorin in 
the adult CNS[145]. 

Semaphorin receptors consist of the Neuropilin/Plexin 
complex. In principle, disruption of this receptor complex 
may enable injured axons to overcome Semaphorin 
3A-mediated inhibition. It has been reported that blockade 
of Neuropilin2 promotes axon growth across the astrocyte–
meningeal fi broblast border[146].
EphA4 and Ephrin-B3
Erythropoietin-producing hepatocellular (Eph) receptors 
and their ephrin ligands are important mediators of cell–
cell communication, regulating cell attachment, shape, and 
mobility[147]. EphA4 is critically involved in the formation of 
the astroglial scar[67, 148, 149]. After CNS injury, EphA4 not only 
participates in astrocyte gliosis and glial scar formation, but 
also contributes to the suppression of axon regeneration[148]. 
Therefore, injection of an EphA4 antagonist into SCI 

mice leads to substantial recovery from injury and axon 
regeneration[150]. EphA4-deficient mice also exhibit less 
gliosis and signifi cant axonal regeneration in SCI mice[148].

Myelin-derived Ephrin-B3[151] has also been reported to 
serve as an inhibitor of axon growth[152], but there are few 
reports on the treatment of CNS injury targeted at Ephrin, 
possibly because knockout of Ephrin-B3 is the only feasible 
approach for its inhibition.
Tenascin-R
The expression of tenascin-R, an ECM constituent within 
the glial scar[153], is dramatically upregulated after CNS 
injury, and tenascin-R upregulation is also likely to inhibit 
axon growth[154]. Immunization with an antibody against 
tenascin-R promotes axonal regeneration and functional 
recovery in SCI rats[155].
Removal of Existing Scar Tissue
The above strategies have proven effective for the 
prevention of scar formation and for the restriction of scar-
associated inhibitory molecules in CNS injury. To date, 
however, research has not fully focused on the removal of 
existing scar tissue that often occurs in cases of chronic 
CNS injury. The chronic lesion possesses irregularly 
shaped scar tissue that line the entire perimeter of the 
cavity. As a result, it is difficult to ablate this tissue by 
surgery or laser radiation. Interestingly, after injecting rose 
Bengal, a biological stain, into the cavity at the injury site in 
rat spinal cord, researchers found that the glial scar tissue 
is at least partially ablated by illumination[156]. 

Concluding Remarks 

The scar plays a double-faceted role in CNS injury and 
repair depending on the phase of recovery. In the acute and 
subacute phases, the scar and its components may have 
beneficial effects by sealing the lesion site, remodeling 
the tissue, mediating the ‘SOS’ response, restoring 
homeostasis, providing trophic support, preserving spared 
tissue, and regulating immune activity. As time passes, 
however, the scar gradually has detrimental effects, serving 
as a physical and molecular barrier to axonal regrowth 
during the chronic phase[157]. In this review, we were 
concerned only with the destructive features of the scar, 
especially focusing on therapeutic interventions targeted 
at the modulation of (1) scar formation, (2) scar-associated 
inhibitory molecules, and (3) existing scar tissue. Over 
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the past decades, tremendous efforts have been made 
to identify the complex interactions during scar formation 
(mainly during reactive astrogliosis), to elucidate the 
molecular and cellular basis of scar inhibition, and to further 
develop therapeutic strategies directed at scar modulation 
after CNS injury.     

The strategies outlined in this review have demon-
strated considerable success in animal studies. Their 
drawbacks in clinical trials, however, suggest that biological 
and pharmaceutical treatments based on a single 
mechanism are not efficient enough to allow satisfactory 
recovery of patients with CNS injury. The great challenge 
is how to deliberately manipulate the molecular and 
cellular interactions that lead to scar formation and how 
to accurately control the signaling pathways engaged by 
the scar-associated inhibitory molecules. Clearly, this is 
a challenging task because either the manipulation or 
the control varies as a function of injury severity, injury 
site, intervention timing, and other factors. It is most 
probable that an efficacious treatment of CNS injury is a 
combinatorial strategy that encourages axon growth under 
a favorable environment provided by neural cells and ECM 
molecules without the detrimental effects of the scar. 
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