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Abstract: Multivariate pattern analysis (MVPA) is a recently-developed approach for functional magnetic resonance 
imaging (fMRI) data analyses. Compared with the traditional univariate methods, MVPA is more sensitive to subtle 
changes in multivariate patterns in fMRI data. In this review, we introduce several significant advances in MVPA 
applications and summarize various combinations of algorithms and parameters in different problem settings. The 
limitations of MVPA and some critical questions that need to be addressed in future research are also discussed.
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1    Introduction
Unlike the traditional fMRI studies that mainly focus 

on mapping the magnitude of changes in the blood-oxygen-
dependent level (BOLD) signal in various brain areas and 
during different task paradigms, a novel analytical ap-
proach to fMRI data, multivariate (or multi-voxel) pattern 
analysis (MVPA), aims to extract information from subtle 
voxel-wise activation patterns, and has attracted increasing 
attention[1-7]. Usually, it is also referred to as classification 
or decoding, because the activation of multiple voxels from 
fMRI data is treated as a pattern and this method aims to 
reveal information encoded in this pattern[8,9]. 

Specifically, MVPA considers each pattern (referred 
to as a sample) consisting of n voxels as a vector in an n-
dimensional space. Classifiers are first trained to classify 

a set of samples (training-set) from different experimental 
conditions or brain states and then they are tested with 
another independent set of samples (test-set) to predict 
which conditions they are associated with. The accuracy 
of the prediction is referred to as the generalization perfor-
mance, which indicates how well the classifier performs in 
extracting the differences between the samples from dif-
ferent conditions. Different algorithms can be used in the 
classification. Given the fact that the number of samples is 
usually less than the number of dimensions in fMRI data, 
certain algorithms featuring this case, such as supporting 
vector machine (SVM), are widely used. 

Due to its multivariate nature, the MVPA approach 
is sensitive to differences in the voxel activation patterns 
between different brain states or representational contents[9]. 
It takes account of the relative activation changes across 
the voxels in patterns. In this sense, traditional univariate 
analysis based on the general linear model (GLM) can 
be viewed as a special case that aims to detect voxels 
significantly changing (passing a statistical threshold) 
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in the same direction[8]. Given this constraint, the usual 
practice in univariate methods is to smooth and average 
the activation of the voxels, which may potentially cancel 
out the information encoded among the voxels. MVPA 
preserves more information in fMRI data by extracting 
information from patterns of activity across multiple 
voxels. One striking example is from Kamitani & Tong[10], 
in which the authors demonstrated the capacity of MVPA 
to decode eight perceived orientations in early visual areas. 
Furthermore, they showed that attention strongly biased 
the orientation preference of the voxels. Such findings 
are difficult to obtain with univariate voxel-wise analysis, 
because the size of the voxel in fMRI data is usually much 
larger than the scale of the orientation-selective columns 
in early visual cortex, and thus the effects from neuronal 
populations with different orientation preferences are 
mixed together and hard to detect in a single voxel.

Unlike conventional GLM-based brain mapping, 
MVPA has been widely used to accurately predict (decode) 
behavioral variables encoded in a neuronal system[2]. The 
term ‘MVPA’ is therefore interchangeable with ‘MVPA 
decoding’ in many circumstances. However, the concept 
of treating fMRI data as multivariate patterns has the same 
purpose as GLM, as pointed out by Friston[11]: “showing 
that one decode activity in the visual cortex to classify 
(above-chance) a subject’s percept is exactly the same as 
demonstrating significant visual cortex responses to per-
ceptual changes”. Indeed, recent MVPA studies primarily 
aimed to recover multivariate patterns carrying information 
on behavioral variables, and several sophisticated methods 
(e.g., cross-condition classification and representational 
similarity analysis) have been proposed to achieve this 
end.

Applications of the MVPA have rapidly developed, 
covering studies of neuronal mechanisms in various do-
mains, such as perception[12-17], learning and memory[18-21], 
language[22], intention[23], decision-making[5,24-26], emo-
tion[27-30], and mental disorders[31-33]. Instead of serving as 
a tutorial on applying multivariate classifiers to fMRI data 
(see Pereira et al.[34], an excellent reference for this pur-
pose), this review attempts to give a general introduction 

to recent promising developments branching off from the 
original idea of treating fMRI data as multivariate patterns. 
We therefore classify the methods into two main categories 
according to their primary aims: methods that aim to accu-
rately decode behavioral variables or identify/reconstruct 
stimuli (Sections 2 and 3), and those for identifying the 
brain activity patterns that encode the behavioral variables 
(Sections 4–6). Their features are illustrated with a few re-
cent representative studies. Furthermore, with the rapid de-
velopment of MVPA approaches, various combinations of 
algorithms and parameters have been used. These combi-
nations in different problem settings are also summarized, 
to provide a clearer view from a technical perspective. 
Finally, some interesting questions for future research are 
included.

2    Predicting behavioral variables from 
fMRI data

Besides its ability to detect spatially distributed ef-
fects, MVPA provides a quantitative way to infer the 
representation of a specific mental process from brain ac-
tivity, allowing examination of the predictive power of the 
spatial patterns of brain activity in depth. Recent studies on 
decoding spatial[35] and episodic[18] memory in the human 
hippocampus have clearly demonstrated the applications 
of MVPA and provided promising results. In an interac-
tive virtual-reality navigation task (like a first-person video 
game) that requires a subject to navigate between four ar-
bitrarily chosen target positions, MVPA was applied to the 
voxels within the hippocampus and the wider medial tem-
poral lobe (MTL) in a searchlight manner[3] (see ‘Section 
5 Searchlight MVPA’ for details) to search for local voxel 
activation patterns that carried predictive information 
about where the subjects were. The significance of the 
searchlight maps was assessed by nonparametric statistical 
tests based on permutations of the condition labels of the 
samples. As a result, the position of a subject within this 
virtual-reality environment was accurately decoded solely 
from the pattern of activity in the hippocampus, even when 
the visual input and the task were held constant. The au-
thors also reported a dissociation of the responses in the 
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hippocampus from those in the parahippocampal gyrus, 
suggesting their different roles in navigation[3].

The same group further extended that study by pre-
dicting which clip of episodic memory a person is recalling[18]. 
Compared to the simple virtual-reality environment, hu-
man episodic memory is much richer in content. Intrigu-
ingly, different episodic memory clips were distinguishable 
merely from the activity patterns in some hippocampal 
regions, suggesting that the neuronal traces of episodic 
memories are stable (and thus predictable) even over many 
re-activations. These serial studies have important impli-
cations for understanding how information is represented 
within neuronal populations in the human hippocampus. 
Such findings were not observed using univariate ap-
proaches with fMRI data. Technically, the latter study is an 
excellent example of applying MVPA-searchlight feature 
selection to an fMRI dataset. Importantly, a three-split  
regime of the entire dataset is necessary in such applica-
tions. That is, one needs to first split the dataset into a 
training-set and a test-set, and perform the MVPA-search-
light feature selection only with the training-set to avoid 
circular reasoning issues[36]. To do this, one needs to further 
split the training-set into a sublevel training-set and test-set.

Besides decoding the stimuli from the fMRI signal, 
MVPA has also been used to make accurate predictions 
about the behavioral characteristics of subjects. One typical 
example is by Dosenbach et al., who predicted individual 
maturity from the connectivity pattern across multiple 
brain regions[37]. In this study, supporting vector regression 
(SVR) was used to predict a continuous maturity index 
derived from the functional connectivity across 160 brain 
regions. The “importance” of each connection in the 
prediction was also reported, reflecting the key features 
related to brain maturity. Moreover, MVPA has been 
successfully used to distinguish patients with mental 
disorders from healthy control subjects[38-42]. One typical 
study by Zeng et al.[41] used the functional connectivity 
across 116 anatomical regions covering the entire brain to 
classify major depressive disorder (MDD) patients from 
healthy control subjects. With sophisticated techniques, 
the accuracy of identifying MDD patients reached 100%, 

suggesting the clinical value of combining resting-state 
fMRI with MVPA approaches. 

3    Identifying/reconstructing new stimuli 
from brain activity (“mind-reading”)

In 2006, Thirion et al.[43] originated an attractive ap-
proach that developed MVPA towards “mind-reading”. In 
their study, the retinotopy of the visual cortex was used to 
infer the visual content of real or imagined scenes from 
the brain activation patterns elicited. They successfully re-
constructed a pattern imagined by the subjects. Later, Kay 
et al.[44] developed a more generalized decoding method 
based on quantitative receptive-field (RF) models that 
characterize the relationship between visual stimuli and 
fMRI activity in the early visual areas. Specifically, gray-
scale natural images were modeled with linear combina-
tions of a set of elementary images (basis images) containing 
Gabor wavelet pyramids[45,46]. By recording the activity in 
the early visual cortex with fMRI when the subject was 
viewing a large set of natural images, relationships (RF 
model) between the activation of each voxel and the ba-
sis images were computed (by solving linear equations). 
Combining the estimated RF models from all the voxels 
and their activation evoked by viewing natural images, the 
authors identified what the subject saw from a much larger 
image set. The clever connection of the RF model to the 
multi-voxel activation pattern allows this approach to “read 
out” images that have never been viewed by the subject. 
From a methodological perspective, this approach differs 
from multivariate pattern classification in that it requires 
an a priori explicit model to connect the spatial patterns 
with the stimuli, which enables the identification of novel 
stimuli that are never used in the tuning parameters of the 
model. 

With a similar strategy, Miyawaki et al.[47] showed 
precisely reconstructed images from the early visual 
cortex, and suggested that if a perceptual state can be ex-
pressed by a combination of elemental features, a modular 
decoder can be trained for each feature with a small num-
ber of samples, but their combination can predict numer-
ous states including those that have never been presented. 
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Meanwhile, Mitchell et al.[48] presented an approach to 
“read out” the words the subject was thinking of. They 
modeled the meaning of words with a set of intermediate 
semantic features (basis words), and determined the re-
lationships from a large corpus of texts. After connecting 
this semantic model to the activation patterns of fMRI 
data, they were able to predict the words in the subject’s 
mind by linearly combining the fMRI signatures with each 
of the basis words. Following these studies, more sophis-
ticated models have been proposed to better reconstruct 
the image[49] or generalize the strategy to decode more 
complicated contents of the mind[14,50].

4    Cross-condition pattern classification

Stepping forward from the classic MVPA approach 
that addresses whether the brain representations of differ-
ent mental processes are separable, cross-condition pattern 
classification aims to verify whether the information en-
coded in spatial patterns is consistent across different con-
ditions or tasks. In such analyses, classifiers are trained to 
distinguish two or more mental states with spatial patterns 
obtained in one condition (or task), while their generaliza-
tion performance is tested on spatial patterns observed in 
another condition (or task). An excellent example demon-
strating the power of cross-condition pattern classification 
is from Meyer et al.[51], who demonstrated that the subjec-
tive experience of sound, in the absence of auditory stimu-
lation, is associated with content-specific activity in early 
auditory cortices in humans. In this study, subjects viewed 
nine sound-implying, but silent, visual clips belonging to 
three conceptual categories, animals, musical instruments, 
and objects. With cross-condition pattern classification, the 
authors showed that the classifiers trained using the spa-
tial patterns for two videos per category could accurately 
classify a third video into the correct category and that the 
classifiers trained with the spatial patterns for the silent 
video clips were able to classify the corresponding sound 
into animal or object categories. These results provide 
solid evidence for subjective content-specificity in the pri-
mary auditory cortex. More strikingly, using this method, 
Knops et al.[52] demonstrated a successful transfer of mul-

tivariate patterns across completely different experimental 
conditions by showing that the MVPA classifiers trained 
to distinguish eye movement direction (left versus right) 
could accurately classify arithmetic operations (subtraction 
versus addition).

In the same vein, we used the cross-condition pattern 
classification approach to determine whether the spatial 
patterns in the visual word form area (VWFA) are consis-
tent across different attention levels[17] and different types 
of character (Chinese and Korean[53]). The spatial patterns 
in category-selective visual areas such as the fusiform face 
area (FFA) and the para-hippocampal place area (PPA) 
were shown to be less consistent at a lower than a higher 
attention level[54]. To further determine whether the atten-
tion level modulates the spatial representation of stimuli 
in these category-selective regions (FFA and VWFA), we 
trained linear classifiers to distinguish faces and characters 
with the spatial patterns in the low-attention condition 
and tested their performance with the spatial patterns in 
the high-attention condition. As a result, we found that 
the classification accuracy was higher than chance-level. 
More intriguingly, when increasing the contrast-to-noise 
ratio (CNR) of the spatial patterns in the low-attention 
condition, we found that the accuracy of the cross-
condition classification kept increasing until it achieved 
the accuracy level when training and testing the classifier 
both with the spatial patterns under the high-attention 
condition[17]. This provided innovative evidence for stable 
category-selective spatial representations in the VWFA. 
With a slightly different implementation of the cross-
condition pattern classification, we also demonstrated 
that the similarity of the spatial patterns in the VWFA 
representing Korean and Chinese characters was as high 
as that between Chinese characters[53]. This means that 
Chinese and Korean characters may be processed as a 
single visual category in Chinese-Korean bilinguals.

The above examples demonstrate that cross-condition 
pattern classification provides a tool for neuroscientists to 
determine whether the neuronal representations of differ-
ent stimuli are highly similar. To answer this question in a 
conventional way, the only method is to compare the over-
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all magnitude and the spatial location/extent of the activa-
tion clusters with different stimuli. In addition, the CNR 
manipulation approach we proposed may help to further 
disentangle the impact of CNR from variation of the multi-
variate patterns.

5    Searchlight MVPA

To detect brain regions that carry information about 
stimuli, researchers have developed a searchlight MVPA 
approach based on spatial filtering of the fMRI data[3,55-57]. 
The basic idea is to apply MVPA to classify stimuli within 
the local neighborhood around each voxel on the image, 
and assign the performance metric of the MVPA to the 
center voxel. Exploiting its information-mapping nature, 
a number of studies have applied this approach to a vast 
range of research topics[15,16,22,25,26,30,58-64]. On the other 
hand, searchlight MVPA can be considered as a feature-
selection method that reflects which voxels (features) are 
most informative in distinguishing stimuli (see ‘Section 
7 Summary of MVPA algorithms and parameters’). A 
recent novel application of searchlight MVPA to classify 
obsessive-compulsive disorder (OCD) patients and 
healthy control subjects was demonstrated by Weygandt 
et al.[64]. In this study, the authors first applied whole-brain 
MVPA at the individual level to classify brain responses 
evoked by fear-eliciting and neutral pictures. Thus, the 
classifiers assigned a discrimination value to each voxel. 
The authors then applied searchlight MVPA to local 
patterns of discrimination values to classify OCD patients 
and healthy control subjects, yielding 100% accuracy in 
the orbitofrontal cortex and the caudate nucleus. Despite 
concerns about the impact of head motion[65] and errors 
in image registration, this approach is straightforward in 
detecting biomarkers between populations.

6    Representational similarity analysis

To give MVPA a boarder scope, Kriegeskorte 
et al.[66] proposed an approach aiming to bridge the 
three branches of systems neuroscience: behavioral 
experimentation, brain-activity experimentation, and 
computational modeling, which is termed representation 

similarity analysis (RSA). The core idea of this approach 
is generalizing the concept of voxel activation pattern to 
a more abstract similarity pattern that can be measured 
among different conditions and stimuli. Specifically, there 
are two levels of pattern analysis in this approach. At the 
first level, a representational dissimilarity matrix (RDM) 
is constructed to reveal the similarity (or dissimilarity) 
of the activity patterns evoked by different stimuli or 
predicted by computational models. At the second level, 
the relationships between the RDMs from multi-channel 
measures are tested with nonparametric statistics. The 
authors showed the usefulness of RSA by quantitatively 
relating representations of visual objects in the early visual 
cortex and the FFA as measured with fMRI to computa-
tional models spanning a wide range of complexity. 

7    Summary of MVPA algorithms and pa-
rameters

With the rapid development of MVPA, various 
techniques in the machine-learning field have been 
introduced into the analysis of fMRI data, yielding 
various combinations of algorithms and parameters used 
at stages of different analyses. In Table 1, we list different 
combinations of ‘features’, ‘feature selection methods’, 
‘classifiers’, ‘performance metrics’, ‘validation schemes’, 
and ‘significance tests’ reported in the most recent studies 
using MVPA (most published in 2011 and 2012). The term 
‘features’ stands for the metrics that compose the patterns 
in the analysis. The most common features used in MVPA 
are either raw data volumes or regression coefficients 
obtained from canonical GLM analysis. The former is 
usually from studies using block or slow event-related 
studies[17,60,64,67], while the latter choice can be found in fast 
event-related studies[21,62,68,69]. Another alternative feature is 
coefficients from GLM using impulse response (IRF) basis 
functions[58,59]. In MVPA studies aiming to classify subjects 
into different groups, the choice of features is much wider, 
including but not limited to raw fMRI data[40], grey matter 
density[70], volumetric brain morphometry[71], and functional 
connectivity measures[37,41]. The ‘feature selection methods’ 
are used to reduce the number of variables (dimensionality) 
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Table 1. Summary of algorithms and parameters used in recent MVPA applications

 Examples Features Feature Classifiers Performance metrics Validation schemes Significance tests
                                                                               selection methods

Classification [64] Raw data volumes  N/A* L-SVC Classification accuracy Split-half Permutation test

of stimuli  in block
 [67] Averaged raw data Functional  L-SVC Classification accuracy Leave-one-out  Group-level t-test 

   localizer   cross-validation
 [25, 58] IRF coefficients Searchlight L-SVC Classification accuracy Leave-one-out  Group-level t-test

      cross-validation

 [60] Averaged raw data Searchlight L-SVC Classification accuracy Leave-one-out  Permutation test

      cross-validation

 [15, 16, 22,  Canonical GLM  Searchlight L-SVC Classification accuracy Leave-one-out  Group-level t-test
 30, 59, 61, coefficients    cross-validation

 72]

 [68] Canonical GLM  Functional  L-SVC Classification accuracy Leave-one-run-out  Group-level t-test

  coefficients localizer   cross-validation
 [62] Canonical GLM  Searchlight NL-SVR Classification accuracy Leave-one-run-out  Group-level t-test 

  coefficients    cross-validation
 [21] Canonical GLM  Searchlight L-SVR Correlation between  Leave-one-run-out  Group-level t-test

  coefficients   predicted and actual  cross-validation

     behavior metrics

Classification  [64] Discrimination values  Searchlight L-SVC Classification accuracy Leave-two (a pair)-  Binomial distribution;

of subjects  from stimuli classifications    out cross-validation  permutation test 
 [73] Volumetric brain  Nonlinear   NL-SVR Correlation coefficients Nested cross-validation Permutation test

  morphometry multivariate

    RGS; PCA; 

   MRMR
 [41] Functional connectivity  Kendall rank  L-SVC Classification accuracy Leave-one-out  Permutation test 

  across 116 brain regions correlation   cross-validation
 [37] Functional connectivity  Leave-one- L-SVR Correlation coefficients Nested cross-validation Permutation test 

  across 160 brain regions out SVC
 [40] Averaged raw data; can- N/A* L-SVC Classification accuracy Leave-one-block-out  Binomial distribution 

  onical GLM coefficients    cross-validation 
 [70] Gray matter density N/A*  SMLR Classification accuracy Leave-one-out  Permutation test

      cross-validation

Cross-task  [17] Raw data volumes  Functional  L-BP Classification accuracy Leave-one-block-out  Group-level t-test

classification  in block localizer   cross-validation
 [53] Canonical GLM  Functional  Pearson's  Correlation coefficients N/A Group-level t-test 

  coefficients localizer correlation
 [63] Canonical GLM  Searchlight L-SVC Classification accuracy Leave-one-run-out  Group-level t-test 

  coefficients    cross-validation
 [15] Canonical GLM  Searchlight Pearson's  Correlation coefficients N/A Group-level t-test 

  coefficients  correlation
 [69] Canonical GLM  Functional  L-SVC Classification accuracy Leave-one-run-out  Group-level t-test

  coefficients localizer   cross-validation

Note: *Anatomical brain masks were used to exclude non-brain voxels. GLM, general linear model; L-BP, linear back-propagation neural network; L-SVC, linear 

supporting vector classifier; L-SVR, linear supporting vector regression; MRMR, maximal relevance-minimal redundancy feature selection; NL-SVR, nonlinear 

supporting vector regression; RGS, nearest-neighbor-based filter algorithm; SMLR, sparse multinomial logistic regression classifier.
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to avoid over-fitting the data with limited training samples. 
Most studies either used separate functional localizers to 
define features or directly applied searchlight MVPA to 
reveal the features. Much more sophisticated techniques 
from machine-learning theories have been applied 
in studies aiming to classify subjects (see Table 1 for 
details). For ‘classifiers’, the mainstream is the SVM, 
since it fits well to the data with high dimensionality and 
a small number of samples. Besides the supporting vector 
classifier (SVC), some studies used supporting vector 
regression (SVR) to predict continuous scales in behavioral 
performance and demographic measures. Instead of the 
SVC that decides among a finite number of classes, SVR 
can be a “predictor” of daily behavior that may contain 
up-to-infinite possibilities. A few studies simply used 
correlation coefficients to measure the similarity between 
patterns[15,53]. The advantage of this method is that the 
relationships between patterns from each trial are clearly 
revealed. Therefore, this is more suitable for investigating 
the fine-grained functional organization of very localized 
brain regions. The ‘validation schemes’ are used to assess 
the performance of the trained classifier. To train the 
classifiers with maximal samples, most studies chose to 
apply the ‘leave-one-out cross-validation’ scheme, which 
uses n–1 of the total n samples to train the classifier and 
test it with the one sample left. Depending on the features 
used in the studies, ‘leave-one-run-out’ and ‘leave-one-
block-out’ schemes have also been used. To evaluate the 
significance of the MVPA accuracy at the group-level, 
both the t-test and non-parametrical permutation test were 
applied in previous studies, but there has not been a clear 
conclusion as to which test is optimal for this purpose.

8    Limitations and questions for future research

MVPA has been deemed sensitive in detecting 
information encoded in multivariate patterns of brain 
activity. However, some recent studies have urged caution 
when interpreting MVPA results. For example, a study by 
Kamitani and Tong[72] showed that MVPA is able to decode 
orientation performance in the early visual cortex even 
from neuronal structures smaller than the voxel size in 

fMRI images. Conversely, a recent study showed evidence 
for a topographic map of orientation-preference in human 
V1 at a much coarser scale, suggesting that the successful 
MVPA decoding of orientation still depends on the 
information revealed in fMRI voxels[73]. Another common 
flaw is the “reverse inference” that reasons backward from 
patterns of activation to infer the engagement of specific 
mental processes[74,75]. For example, highly sensitive 
multivariate classifiers may be able to distinguish face and 
house stimuli based on activation patterns in the primary 
visual cortex (V1), even though this region is not known 
to have category-preference. With a priori knowledge 
about V1, researchers can attribute the results to the subtle 
differences in the basic physical properties in the stimuli. 

However, this inference is risky when a priori knowl-
edge is unavailable[76]. From a more substantial perspec-
tive, Logothetis[77] stated that the presence of “voxels selec-
tive to two different stimuli attributes could be potentially 
detected by modern classifiers, yet the existence of two 
types of patterns does not necessarily imply the existence 
of two different types of neural populations”. Thereby, an 
important question for future methodology research is how 
to identify patterns that not only are informative but also 
are really used to process the stimuli. 

Finally, since different classifiers use different means 
of extracting information from data, an interesting ques-
tion is how different types of classifiers affect MVPA per-
formance[8]. For example, different classifiers encode the 
feature covariance in different ways. Linear discrimination 
analysis and quadratic discriminant analysis explicitly 
encode the covariance of the features, while the logistic 
regression, SVM, and random forest classifiers implicitly 
encode the covariance, and the Gaussian naïve Bayesian 
classifier does not encode the covariance. It would be inter-
esting to see how this difference affects their performance 
in different problem settings. This is not merely a technical 
question, because performance differences between clas-
sifiers with different learning strategies may have implica-
tions for our understanding of the organization of neuronal 
encoding. 

In conclusion, we have summarized both the applica-
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tion and technical aspects of recent advances in MVPA 
methodologies. Despite some unsolved problems and 
controversies, the development of MVPA has allowed 
us to better exploit the information in fMRI signals. The 
methodology is still developing rapidly, and we believe it 
will provide further insights into the understanding of the 
human brain.
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