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Abstract For the development of the efficient bio-refinery

process or biochemical producer, metabolic engineering has

become an attractive choice recently. However, engineered

metabolic pathways often suffer from flux imbalances due

to a lack of corresponding regulatory mechanisms associated

with natural metabolism. The interaction among different

enzymes within a metabolic pathway plays an important

role in regulating the efficiency of metabolic processes.

Consequently, the creation of protein scaffolds has helped

with the spatial co-localization of proteins in metabolic

engineering. Research on protein scaffolds indicated scaffold

systems may enhance metabolic productivity further. In

this review, the specificity, selectivity, and regulatory

mechanisms of protein-protein interactions are discussed in

the context of the important effects that they exert on

various biological processes.

Keywords: scaffold protein, metabolic engineering, synthetic

biology, Escherichia coli 

1. Introduction

Producing fuel from renewable resources, particularly by

converting biomass into specialty chemicals, has become

an attractive research challenge [1]. Advanced technologies

have enabled DNA synthesis, microbial genome sequencing,

and extraction and redesign of systems in user-friendly

hosts such as Escherichia coli. Such engineered bacterial

strains have increased recombinant protein production [2].

However, enzymatic reaction’s flux within biochemical

pathways, particularly the breakdown of toxic intermediates,

needs to be balanced to achieve high product titers.

The scaffold systems (DNA, RNA and protein) are

multifunctional enzyme system mimicking natural systems,

which presents a versatile approach in synthetic biology

[3]. This technology involves designing and engineering

DNA or RNA molecules that serve as scaffolds to bring

enzymes and other biomolecules together in a specific

spatial configuration. The use of scaffolds (DNA, RNA

and protein) has several advantages over traditional methods

of metabolic engineering, such as the use of synthetic

protein scaffolds. DNA and RNA scaffolds can be designed

and synthesized using simple molecular biology techniques,

allowing for easy and flexible modification of their

properties [4]. 

Scaffold proteins have been observed by their spatial

proximity to enzymes and have critical roles in cellular

signaling pathways [4]. The “scaffold” concept was created

by building the module block (Fig. 1). Scaffold proteins

engage multiple binding partners and facilitate their concerted

interaction and function, such that they reduce the diffusion

or competing pathways of biochemical intermediates,

decrease their transit times, and avoid unfavorable kinetic

equilibria resulting from metabolite concentrations in the

bulk phase [5].

Several protein-protein interaction modules have been

investigated in detail including PDZ (postsynaptic density

95/discs large/zona occludens-1), SH2, SH3 (Src homology),

GTPase protein binding (GBD) domain [6], mitogen-

activated protein kinase (MAPK) signaling during mating

in the budding yeast, using the scaffold Ste5p [7], neuronal
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synaptic signaling exploiting PSD-95 [8], and photosensory

reception in drosophila signaling using InaD [9].

2. Protein Scaffolds

In the target proteins, protein interaction modules are often

described by short amino acid motifs at the C-termini. The

most notable modules among these are PDZ, SH2, SH3

(Src homology), and GBD domains [10]. The concept is

used often in research because of the advancement of

peptide motifs and cognate adaptor domains. A variety of

target metabolites, including catechin [11], D-glucaric acid

[12], H2 [13], resveratrol [14], butyrate [15], gamma-

aminobutyric acid (GABA) [16], mevalonate [17], and

itaconate [18], have been produced successfully by applying

SH2, SH3, GBD, and PDZ domains. These proteins have

a sequence motif, which is a small protein domain. The

scaffold’s binding nature differs based on the protein’s

physiological roles [19]. Protein interactions are termed

short linear interaction motifs (SLiM) in those cases where

the adaptor domain adopts a globular, three-dimensional

structure. The shape of the scaffold is critically affected by

three factors, including the domain, the linker, and the

peptide ligand.

The concept of scaffolding proteins proposes the SLiM

as the binding partner for protein adaptor domains. SLiMs

usually encompass only 3–10 amino acids and possess

several properties, which are suitable as synthetic biology

ligands. Since they are short motifs, they often occur in

disordered protein regions. These peptide motifs occur in

20–50% of all eukaryotic proteins, and 17% of these are

muddled in eukaryotic cells. Around 300 such motif

patterns are listed in the eukaryotic linear motif resources,

including the ELM database [20], PROSITE [21], and

Minimotif-Miner [22]. To ensure fitting spacing between

the binding residues, SLiMs generally comprise variable

residues such as the SLiM sequence patterns for binding to

SH3 domains or a phosphorylated tyrosine residue, with a

peculiar sequence nearby for binding to SH2 domains.

Fig. 1. A schematic drawing showing the mechanism of the synthetic scaffold in intracellular metabolism. By the introduction of the
synthetic scaffold, the substrate can react with desired pathway enzymes, and metabolic flux can be derived to the desired product.
Scaffold protein is leading to increased catalytic performance and product yield.
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Adaptor domains must exhibit a strong affinity toward

their specific peptide ligands. This feature allows defined

paring even during the simultaneous usage of several

domain-ligand pairs. Koch et al. [23] reported that the first

mediate interaction with SLiMs is exhibited by the “Src

homology 2” (SH2) and “Src homology 3” (SH3) domains.

The SH3 domains are small modules of 60 amino acids

with proline-rich ligands capable of binding to the surface

of three hollow grooves domains. The aromatic residues

are conserved and exhibit two different binding orientations

[24]. The 100 amino acids are highly conserved structures

of SH2 domains, comprised of two α-helices and seven β-

strands, and contain an N-terminal catalytic domain [25].

Several SH3 and SH2 domains with different ligand binding

specificities have been described in the last decade [26].

PDZ domains are similar in size to SH2 domains but

contain specific motifs at the C-terminus of their binding

partners. Over 200 PDZ domain structures have been

reported so far [27]. Most peptide ligands adopt a β-strand

conformation and extend an existing β-sheet within the

PDZ domain upon binding [28]. The most recently reported

protein-peptide scaffolding is the GBDs. In contrast to

other scaffolds, under physiological conditions, the GBD

domains do not exhibit a single adopter, but rather show

multiple, loosely-packed conformations in solution [29,30].

SH2, SH3, PDZ, and GBD exhibit sufficiently high affinities

and specificities for their ligand.

One of the important constituents of modular protein

scaffolding is the linker. The protein construct’s activity and

folding properties could be affected by the linker’s length

and amino acid composition [31-33]. Among the two

reported data guiding the artificial linkers’ rational design,

one presents a preferred mean linker length of 6.5 residues

[34], while the second suggests this length is 10.0±5.8

residues [35]. The designed linkers may be classified and

defined according to their functionality and structure [36].

The MAPK cascades are often used in all eukaryotic cells

as a center for complex signal transduction pathways [37].

Some serially activated protein kinases are named by the

last kinase of the series in every MAPK cascade within a

module. Surprisingly, the identical MAPK cascade can

perform different functions in response to different stimuli

or different levels of the same stimulus [38]. A scaffold was

introduced in the yeast Saccharomyces cerevisiae to increase

the local concentration of proteins of the phosphorylation

cascade to facilitate the functioning of this cascade [39].

Ste5p, a protein of unknown biochemical function, interacts

with protein kinases that operate at each step of the MAPK

pathway, namely, Fus3p (a MAPK), Ste7p (a MAPKK),

and Ste11p (a MAPKKK) signal cascade involved in the

mating of budding yeast [7]. Ste5p reportedly serves as a

scaffold to connect the interactions among various members

of the kinase cascade. This allows a more efficient signal

propagation and attenuation and minimizes crosstalk with

other MAPK cascades, which thus ensures the integrity of

the pheromone response pathway.

3. Application to Metabolic Engineering

Metabolic engineering is an advantage in providing environ-

mentally safe, using cheap, and special sources in the

production of high-value compounds. Metabolic engineering

requires complementary strategies to achieve desired

production yields that are near the theoretical maximum,

which is essential for industrial viability. Several technologies

improve production, including modeling metabolic and

cellular behavior [40], predictable control over gene

expression [41,42], and directed evolutionary approaches

to improve enzyme characteristics [43]. In this review, we

focus on the impact of scaffolding proteins in metabolic

engineering (Fig. 2).

In nature, for optimal metabolic pathway performance,

numerous examples of enzymes forming complexes are

observed. Such as tryptophan synthase, carbamoyl phosphate

synthase, and glutamine phosphoribosyl pyrophosphate

amidotransferase, which protected reactive intermediates

from the bulk solution by tunnels connecting the catalytic

site structure [44].

The primary consideration when introducing scaffolding

within metabolic pathways choosing colocation components.

Each enzyme is combined with a specific ligand which is

specularly interacted with a protein-protein domain. This

renders the protein-protein interaction domains structural

modularity play an important role in controlling the

binding activity in the non-native context of translational

fusions. The SH3, PDZ, GBD, and leucine zipper families,

tend to hold the binding activities of N- & C-terminal, or

internal fusions and, given sufficient linker lengths, but not

often required for the optimization of linkers to achieve the

binding activity. Despite the robust binding activity, scaffold

architecture, which is described by linker length and the

number of protein-protein interaction domains, also influences

overall flux improvement. Another important parameter is

designing scaffolds in the low or lower micro-molar range

of target enzymes. Protein-protein interaction domains are

the members of families which have particularly attractive

choices for scaffolding cause of a set of domains that

potentially recognize specific ligands orthogonally. For

example, the SH3 domains freely interact with other SH3

domain family ligands within the S. cerevisiae [45]. Thus,

SH3 selection should reduce crosstalk and the number of

orthogonal domain/ligand pairs available for simultaneous

use is appreciably increased.
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3.1. Mevalonate

Mevalonate has been widely used in cosmetics as a building

block to produce sustainable polymers (Table 1) [46].

Mevalonate is present in eukaryotes, archaea, and some

prokaryotes. Since 1956, mevalonate has been produced by

fermentation technology [47]. However, the best-identified

organism for its production, namely Saccharomycopsis

fibuligera NRRL Y-7069, exhibits a low mevalonate titer

(0.9 g/L) [48].

One of the most prominent examples of peptide motif

and cognate adaptor domains in metabolic engineering is the

scaffold system engineered for the three-step synthesis of

mevalonate [49]. From acetyl-CoA, this system is comprised

of three enzymes, namely acetoacetyl-CoA thiolase (AtoB),

hydroxymethyl glutaryl-CoA synthase (HMGS), and

hydroxymethyl glutaryl-CoA reductase (HMGR), respectively.

Fig. 2. Application of scaffolding proteins to metabolic engineering. Enzymes performing the sequential multistep transformation of a
substrate are co-localized into the scaffold. AtoB: acetoacetyl-CoA thiolase, HMGS: hydroxymethyl glutaryl-CoA synthase, HMGR:
hydroxymethyl glutaryl-CoA reductase, Ino1: myoinositol-1-phosphate synthase, MIOX: myoinositol oxygenase, Udh: uronate
dehydrogenase, Crt: 3-hydroxybutyryl-CoA dehydratase, Ter: trans-enoyl-coenzyme A reductase, TesB: acyl-CoA thioesterase II, 4CL:
4-coumarate: CoA ligase, STS: stilbene synthase, GadA/B: glutamate decarboxylase, GadC: glutamate/GABA antiporter, GABA:
gamma-aminobutyric acid, PEP: Phosphoenolpyruvate.

Table 1. Application of peptide motifs and cognate adaptor domains in metabolic engineering

Metabolites Enzyme pathways Scaffold model Host Titer Reference

Glucaric acid Myoinositol-1-phosphate synthase, myoinositol 
oxygenase, uronate dehydrogenase 

SH3/PDZ E. coli 2.37 g/L [12]

Mevalonate Acetoacetyl-CoA thiolase, hydroxymethyl glutaryl-CoA 
synthase, hydroxymethyl glutaryl-CoA reductase

GBD1/SH3/
PDZ2

E. coli 5 mM [17]

GABA Glutamate decarboxylase, glutamate/GABA antiporter SH3 E. coli 1.01 g/L [57]

GABA Glutamate decarboxylase, glutamate/GABA antiporter SH3/PDZ E. coli 5.26 g/L [58]

Resveratrol 4-coumarate: CoA ligase, stilbene synthase SH3/PDZ S. cerevisiae 14.4 mg/L [14]

Butyrate Acetoacetyl-CoA thiolase, 3-hydroxy butyryl-CoA 
dehydrogenase, 3-hydroxy butyryl-CoA dehydratase, 
trans-enoyl-coenzyme A reductase, acyl-CoA 
thioesterase II

GBD/SH3/
PDZ

E. coli 7.2 g/L [52]

GABA: gamma-aminobutyric acid, PDZ: postsynaptic density 95/discs large/zona occludens-1, SH3: Src homology 3, E. coli: Escherichia coli, S.
cerevisiae: Saccharomyces cerevisiae.
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There are only the AtoB enzyme is native to the host

E. coli system, the other two enzymes were imported from

S. cerevisiae. The scaffold was constructed by flexibly

connecting three domains, GBD, SH3, and PDZ with their

linkers to AtoB, HMGS, and HMGR. The scaffold

advantage helps metabolic avoid flux imbalances and leads

to an increase the overall production. By searching for the

different architectures of the scaffold, they revealed the

best concept for this system to be GBD1–SH32–PDZ2,

which indicated that one GBD domain was linked to two

SH3 and two PDZ domains. 77-fold mevalonate product

yield was significantly increased.

3.2. Glucaric acid

D-glucaric acid known as saccharic acid was classified as

a top value-added production chemical from biomass [50].

However, the complex biological route for glucaric acid

production requires new strategies involving high selectivity

for the product. D-glucaric acid produces from D-glucose,

via synthetic scaffold protein, by co-expressing three

enzymes myoinositol-1-phosphate synthase (Ino1) from S.

cerevisiae, myoinositol oxygenase (MIOX) from mouse,

and uronate dehydrogenase (Udh) from Pseudomonas

syringae in E. coli [12]. When compared to the original

system, the scaffold system which connected the two

enzymes Ino1 and MIOX, equipped with the respective

peptide ligand sequences, significantly raised the product

titer to three-fold (Table 1) [17]. Optimization of the system

by varying the number of cognate domains, including Udh,

allowed a production increase of about ~50% [12].

3.3. Butyrate

Butyrate, a 4-carbon, short-chain, fatty acid, is a major

carbon source for colonic epithelium. Butyrate functions as

a signaling molecule in various human metabolic and

immune system pathways [51]. It is used in the chemical,

food, pharmaceutical, and plastic industries [52]. Industrial

production of butyrate by microbial fermentation has been

investigated using species of Clostridium [52]; however, its

prospects are limited by the lack of genetic engineering

tools [53].

Engineered E. coli with the same scaffolding domains,

including GBD, SH3, and PDZ, were used to increase

butyrate production. The biosynthetic pathway was

completed by five enzymes, AtoB, 3-hydroxybutyryl-CoA

dehydrogenase (Hbd), 3-hydroxybutyryl-CoA dehydratase

(Crt), trans-enoyl-coenzyme A reductase (Ter), and acyl-

CoA thioesterase II (TesB). In the E. coli host, a domain

scaffold was created and overexpressed. The variation of

domain frequency scaffold reported that butyrate production

increased three-fold.

3.4. Resveratrol

Resveratrol (3,5,4′-trans hydroxy stilbene), well-known for

its presence in red wine, is one of the most widely studied

plant-produced polyphenols. In the host strains S. cerevisiae,

by composing GBD, SH3, and PDZ domains with two

enzymes, 4-coumarate: CoA ligase and stilbene synthase

which were covalently attached to SH3 and PDZ peptide

ligands. The product yield increased five-fold when

compared with the non-scaffold proteins system and also

2.7 fold yield increased when compares to the fusion

protein approach.

3.5. Gamma-aminobutyric acid 

In biotechnology industries, GABA is a non-protein amino

acid that is used as a monomer to produce the biopolymer

nylon-4 [54,55]. GABA also acts as a neurotransmitter in

the central nervous system and exerts several beneficial

physiological functions, such as hypotensive induction,

diuretic, and tranquilizing effects [56]. Due to its various

beneficial effects, particularly blood pressure reduction,

anxiety inhibition, and metabolic function acceleration,

GABA is used extensively in pharmaceuticals and functional

foods. Due to the low production cost of using E. coli in

industrial fermentation, it is a suitable host for engineering

its pathway to produce a high GABA yield [57].

In the E. coli BL21 strain, enhanced GABA production

was reported upon overexpression of glutamate decarboxylase

(GadA/B) enzyme from Lactobacillus brevis [55]. The

exploitation of domain-ligand interactions is also done

beside the creation of multiple adaptor domains contained

in a scaffold protein [58]. To enhance GABA production in

E. coli, the enzyme GadA/GadB was attached to the

membrane protein glutamate/GABA antiporter (GadC) via

the SH3 domain, and the peptide ligand was separated with

flexible linkers. GABA productivity subsequently increased

2.5-fold.

4. Conclusions and Future Perspectives

The synthetic protein scaffold strategy has enormous potential

for application in next-generation pathway engineering

studies. When pathway enzymes are not closely associated

with each other, the metabolic flux towards the target pathway

is reduced, resulting in a decrease in the production of

target metabolites. The studies reviewed in this manuscript

demonstrate that the introduction of a synthetic scaffold

complex between pathway enzymes can closely co-localize

the enzymes, thereby increasing the metabolic flux to the

target pathway and boosting the production of target

metabolites. Consequently, we believe that the synthetic
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protein scaffold strategy can be applied to chemical networks

that use a series of biochemical reactions and enzymes to

convert raw materials into target products. Additionally,

metabolic engineering strains can be developed to produce

novel medicinal products, such as drugs and vaccines.
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