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Abstract Transcriptional regulation is essential for

maintaining the natural cell metabolism of microbes and

therefore important for metabolic engineering. The

development of non-native transcriptional regulation tools

in engineered microbes may change the gene expression

and metabolic flux, and shall benefit the product titer and

yield in bioprocess. CRISPR interference (CRISPRi), as an

artificial transcriptor which may regulate any gene at

different scales, has rapidly gained popularity for metabolic

engineering strains. This article briefly describes the mecha-

nism and development of CRISPRi, including inhibition

and activation of two forms of action and several different

sources of dCas9 protein. And we summarize the applications

of CRISPRi in regulating the metabolic pathway, changing

the physiological state of the host, and genomic screening.

Finally, we analyze a few limitations of the CRISPRi

system and summarize some ways to improve them.

Keywords: CRISPRi, transcriptional regulation, metabolic

engineering, high-throughput screening.

1. Introduction

The development of metabolic engineering allowed us to

produce a variety of compounds from the microbial cell

factories, including chemicals, drugs, biodegradable plastics,

and biofuels [1,2], and brought enormous economic,

environmental, and social benefits [3-6]. In fact, the

metabolic network of host cell is extraordinarily complex

and possess a series of strict regulatory mechanisms, such

as negative feedback inhibition by downstream metabolites,

transcriptional activation by special signaling molecules, the

balance of competitive pathway, cofactor, energy provision,

etc. Transcriptional regulation of the metabolic network is

widespread in microbial cells and plays an important role

in different physiological processes. The transcriptional

regulators able to activate or repress the expression of

relevant genes through binding to the specific DNA operator

sequences and altering the transcription of targeted operons.

These mechanisms allow cells to respond to various intra-

and extracellular signals and eliciting responses. Most

transcriptional regulators response to a certain single and

controlling the expression of a specific operon, such as LacI,

TetR, AraR, etc [7-9]. However, global transcriptional

regulators, such as CRP, ArcA and FNR, can simultaneously

regulate multiple genes containing the corresponding DNA

operator region [10]. The most representative CRP protein

directly regulates the expression of 400 genes and able to

affect the expression of more than half of the genes in

Escherichia coli by indirectly regulating other transcriptional

regulators [11,12]. These complex transcriptional regulatory

mechanisms interact with each other and ultimately

determine the metabolic properties of cells. 

Therefore, to maximize the flux from the substrates to the

final products, a variety of transcriptional regulation tools

have been developed [13-18], such as RNA interference

(RNAi), Metabolite-sensing riboswitches [19-21], Hfq-

associated regulatory small RNA [22,23], Zinc-finger

nucleases (ZFN), and transcription activator-like effector

nucleases (TALEN) [24,25]. The RNAi-mediated regulation
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of gene expression has been wildly used in clinical research,

drug discovery, disease detection, and crop pest control.

Down-regulation of gene expression was achieved by

synthetic small interfering RNA (siRNA) or short hairpin

RNA (shRNA) that binding to the homologous region of

mRNA and inducing degradation. However, these methods

have serious off-target effects and limit its use in metabolic

engineering [26]. ZNF and TALEN were composed of a

sequence-specific DNA binding domain and a non-specific

DNA cleavage domain. The DNA binding domain can be

programmed by specific amino acid combination, but the

entire construction process is time consuming and laborious

[27,28].

Recently, the development of clustered regularly

interspaced short palindromic repeats (CRISPR)/CRISPR-

associated (CRISPR/Cas) system have brought new oppor-

tunity to modify the cell genetic characteristics [29,30].

The most representative CRISPR-Cas9 system, only requires

an endonuclease Cas9 protein and a chimeric gRNA to

target DNA sequence of interest and create double-strands

break (DSB). DSB can be repaired either by homologous

recombination (HR) or non-homologous end joining

(NHEJ), achieving the editing of target sequence [31-33].

A catalytically inactive version of Cas9 retaining only

the ability to bind double-stranded DNA can be repurposed

as a platform for RNA-guided transcription regulation

without genetically altering the target sequence. This

transcriptional regulatory tool is known as CRISPR

interference (CRISPRi), and should have many advantages

compared to other systems [34-36]. This review briefly

introduces the basic working principle of CRISPRi, focuses

on the application of CRISPRi in metabolic engineering,

and discusses the perspective.

2. The Establishment and Working Mechanism of
CRISPRi System

There are three essential components for the CRISPR-Cas9

system: a mature CRISPR RNA (crRNA), a partially

complementary trans-activating crRNA (tracrRNA), and a

Cas9 protein [32,33]. TracrRNA and RNase III are required

for the mutation of crRNA, which has a spacer binding

target DNA and a direct repeat portion complementary to

tracrRNA. To further make the tool convenient, an

engineered chimeric guide RNA (gRNA) containing a

hairpin that mimics the tracrRNA-crRNA complex has

been designed, which makes the system simple and easy.

The Cas9 protein contains two endonuclease domains,

HNH and RuvC [37,38]. HNH domain is responsible for

complementary sequence cleavage of target DNA, while

RuvC is responsible for the non-complementary sequence

cleavage [33]. Under the guidance of the tracrRNA-crRNA

complex or gRNA, the targeted dsDNA is cleaved by Cas9

protein.

CRISPRi was established by replacement of Cas9 with

a catalytically inactive Cas9 (dCas9), which is obtained by

introducing mutation (D10A/H840A) to inactivate HNH

and RuvC. The binding of dCas9 protein on DNA could

block the passage of RNA polymerase (RNAP) by physical

collision, thereby preventing transcription and repress the

expression of genes (Fig. 1A) [39,40].

In eukaryotes, it is difficult to block mRNA transcription

via dCas9 complex binding to the specific DNA sequence

[41-44]. In order to enhance the inhibitory efficiency,

dCas9 protein is usually fused to various transcriptional

effect domains, and the target gene is maximally interfered

by the dual inhibitory effect. Transcriptional repressors

include the myc-associated factor X (MAX)-interacting

proteins 1 (MXI1), the Krüppel-associated box (KRAB)

domain of Kox1, the chromo shadow (CS) domain of

HP1α, the hairy-related basic helix-loop-helix repressor

proteins (WRPW) domain of Hes1, and the SID4X domain

(Fig. 1B) [28,45-50].

When the dCas9 protein was fused to a transcriptional

activator, this system can promote the expression of the

target gene [49], which is called CRISPRa (Fig. 1C). In this

case, the dCas9-transcriptional activator complex targets

the upstream of the specific target gene, and recruits RNAP

to activate transcription, therefore, enhances the expression

of the target gene. Transcriptional activators include the

transactivator domain of the herpes simplex viral protein

16 (VP16), multiple copies of VP16 (VP64 or VP160), or

the transactivator domain of nuclear factor kappa B (p65)

[51-54]. Fusing multiple copies of the transactivator domains

to dCas9 can increase the efficiency of activation. Based on

this principle, new CRISPRa systems incorporating a

multi-copy transactivator domain were designed, such as

SunTag, SAM, VPR and SPH systems [55-59]. And scaffold

RNA (scRNA) has also been constructed to achieve

simultaneous activation of multiple genes. Contrary to

eukaryotic cells, there are not many alternative transcriptional

activators in prokaryotic cells, which limits the use of

CRISPRa in prokaryotic cells [60]. Among bacteria, dCas9

can directly fuse RNA polymerase subunits such as the ω

subunit, RpoZ, or fuse transcriptional activator such as SoxS

to activate the complete RNA polymerase [40,60-64].

In addition, CRISPR-SpdCas9 system derived from

Streptococcus pyogenes can be combined with other

orthogonal CRISPR systems to regulate or knockout multiple

genes simultaneously. The orthogonality of several Cas9

variants came from different microorganisms were compared,

establishing the orthogonal CRISPRi and CRISPRko systems

consisting of SpdCas9 and Streptococcus thermophilius
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CRISPR1 (St1Cas9). This system was used to increase the

production of succinic acid in E. coli [65]. Type III CRISPR/

Cas-associated Csy4 endoribonuclease from Pseudomonas

aeruginosa has the RNA processing capacity to generate

multiple gRNAs from a single transcript. This property

allows Cys4 to be introduced into Saccharomyces cerevisiae

to achieve multi-gene editing and regulation of its genome

[66].

CRISPRi other than CRISPR Cas9 system was also

developed. Cpf1 is a single RNA-guided endonuclease of

a Class 2 type V CRISPR-Cas system. Unlike Cas9, the

maturation of crRNA requires only the action of the Cpf1

protein. Cpf1 forms a Cpf1-crRNA complex with the

matured crRNA, recognizes and cleaves the target gene

sequence, and does not require the participation of

tracrRNA. Cpf1 recognizes PAM sequences which are

predominantly T-rich, so in areas rich in AT, are easier to

find suitable recognition sites than Cas9 [67]. CRISPR-

Cpf1 system proves to be a highly efficient tool for genetic

modification of some important industrial strains that

cannot utilize the SpCRISPR-Cas9 system. Cpf1 has only

one nuclease domain-RuvC, which can be mutated to

obtain DNase-deactivated Cpf1 (dCpf1), such as FndCpf1

(D917A) [67] from Francisella novicida and AsCpf1 from

Acidaminococcus sp. (E993A) [68]. A mature gene regulatory

system based on FndCpf1-KRAB or FndCpf1 (from

Francisella novicida) was established in Yarrowia lipolytica

and Streptomyces hygroscopicus SIPI-KF, expanding the

CRISPRi metabolic engineering toolbox [69,70]. 

After a preliminary understanding of the mechanism of

CRISPRi, the convenient gene regulation technology

established on this basis is rapidly applied in various fields

of biology, including metabolic engineering (Table 1).

3. Regulating the Metabolic Pathway with CRISPRi

In order to obtain higher yields and productivity, regulating

the expression of key enzymes to redirect the metabolic

flux to desired products is pathway is one of the commonly

used strategies. Recombineering has been broadly used to

block the gene expression by direct gene knockout or

replacement gene upstream cis-acting element. However,

this method has a long experimental period and high-

intensity workload. CRISPR based genome editing enables

rapid knockout of the gene of interest, greatly reducing the

experimental time. Nonetheless, many genes of interest are

essential genes for cell survival and cannot be direct

knockout. CRISPRi and CRISPRa system able to change

the expression of the gene of interest at the transcriptional

level, thereby optimizing the metabolic pathway. The

degree of gene inhibition can be controlled by regulating

the expression of dCas9 or regulating the binding position

of gRNA. Those features have made CRISPRi widely used

in the field of metabolic engineering and play an important

role in regulating the metabolic pathway [89]. The gltA

encodes the citrate synthase (CS). Repression of this gene

by CRISPRi increased the production of L-lysine in

Corynebacterium, while in Synechocystis sp. PCC 6803,

the titer of biofuels such as ethanol and butanol were

increased [71,72]. PlsX is a C18-specific phosphoacyltrans-

ferase which is essential for membrane lipid biosynthesis.

The inhibition of PlsX activity by Synechocystis causes the

flux of fatty acids to shift from membrane biosynthesis to

fatty alcohols, and the production of fatty alcohols is

increased by a factor of three [73]. The application of

CRISPRa in metabolic engineering with the eukaryotic

host is comparative maturity. The dCas9 fused with the

Fig. 1. The biological mechanisms of CRISPRi/a. (A) CRISPR/dCas9 which guided by gRNA regulates transcription through blocking
RNAP. (B) The dCas9 fused transcriptional repressor (red) has a preferable inhibitory effect. (C) Transcriptional activator (green) can
recruit RNA polymerase to activate gene expression. The CRISPRa system combining with transcriptional activator can upregulate the
expression of genes.
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synthetic tripartite activator VPR able to active the native

β-glucosidase expression, and promote the growth of

Yarrowia lipolytica with cellobiose as the sole carbon

source [74]. In prokaryotes, CRISPRa has not been wildly

applied due to the lack of suitable transcriptional activators.

Chen Dong et al. compared 11 potential activators and

constructed an efficient CRISPRa system using SoxS. SoxS

can recruit RNA polymerase to activate gene expression

under the oxidative stress environment. The SoxS-based

CRISPRa system has been used to upregulate the expression

of a heterologous pdc adhB gene cassette from Zymomonas

mobilis, and improved the yield of ethanol three times than

that of the control E. coli [60].

The microbial metabolism is an extremely complex

network, so that regulating a single intermediate reaction

often has an unsatisfactory effect. CRISPRi only requires

20 bp of complementary RNA sequence to target the specific

site, which has significant advantages in high-throughput

gene regulation on the genome scale. Simultaneous

regulation of multiple genes can be achieved simply by the

concatenation of designed multiple gRNAs with different

targeting sequences. A xylose-induced inhibition system

was established that represses the expression of three

genes, zwf, pfkA, and glmM. These genes belong to the

pentose phosphate pathway (PPP, also referred to as hexose

monophosphate shunt (HMP shunt)), the glycolytic pathway

and the peptidoglycan synthesis pathway (PSP) respectively.

By inhibiting the expression of these genes, carbon catabolite

repression (CCR) was broken, and Bacillus subtilis could

utilize xylose to produce N-acetylglucosamine (GlcNAc)

[75]. Using multiplexed CRISPR interference in E. coli

which targeting three key enzyme (pyruvate carboxylase

(PC), citrate synthase (CS), and malate synthase (MS)) genes

simultaneously, the metabolic constraints were eliminated

by rationally assigning an optimal gene expression pattern

for each pathway module. Then the production of malic

acid was increased by a factor of 2.3 [76]. By combining

CRISPRi with genetically encoded sensors, the dynamic

multigenes regulation can be implemented in metabolic

engineering. These sensors could respond to various signals

such as external environmental signals (O2, temperature,

pH), the internal cell state (metabolites, growth phase,

stress response, redox), the depletion of carbon feedstock

(glucose), cell density, or the accumulation of products and

by- products (acetate). Dynamic regulation is an important

regulation strategy that may improve product titer. The

dynamic regulation of the metabolic pathway by CRISPRi

can be achieved by coupling these sensors to the expression

of different gRNAs. Three E. coli sensors that respond to

the consumption of feedstock (glucose), dissolved oxygen,

and by- product accumulation (acetate) were constructed

and optimized to establish a combinatorial logic circuit

which can dynamically regulate endogenous metabolism in

E. coli [77]. CRISPRi systems except dCas9 have also

been established for metabolism pathway modification.

Multi-gene repression based on SpdCas9 was also used in

combination with other orthogonal Cas proteins, allowing

the CRISPR and CRISPRi systems to be established

simultaneously in the same host strain. Cas9 variants from

Staphylococcus aureus (SaCas9) and Streptococcus thermo-

philius CRISPR1 (St1Cas9) as well as Cas12a derived

from Francisella novicida (FnCas12a) were introduced in

E. coli, and assessed the ability to induce DSB by a death

assay. ScCas9 and St1Cas9 are able to achieve 99% lethal

efficiency, and FnCas12a is only 60%. Further test results

indicated that SpCas9, SaCas9, and St1Cas9 were orthogonal

without mutual interference in E. coli. Then the St1Cas9

system to integrate SpdCas9 and sgRNA arrays were

harnessed for constitutive knockdown of three genes (ptsG,

ldhA, and pflB), knock- in pyc and knockout adhE. The

combination of orthogonal CRISPR/CRISPRi for metabolic

engineering enhanced succinate production while inhibiting

byproduct formation [65]. Cpf1 system is also established

as a multi-gene transcriptional regulation tool in different

organisms. In Yarrowia lipolytica, four forms of CRISPRi

systems, such as DNase-deactivated Cpf1 (dCpf1) from

Francisella novicida, deactivated Cas9 (dCas9) from

Streptococcus pyogenes, and two fusion proteins (dCpf1-

KRAB and dCas9-KRAB), were used to operate single gene

and multiple genes repression. Taking the PVA pathway as

an example, the expression of gRNA arrays targeting three

enzymes was designed, and the PVA relative absorbance

was reduced by 61% (dCpf1) and 75% (dCas9) [69]. Cpf1

and dCpf1 have also been successfully introduced in

Streptomyces for gene editing and transcriptional regulation.

Lei Li et al. verified the ability of dCpf1 to simultaneously

regulate multiple endogenous genes in Streptomyces coeli-

color by using three pigmented antibiotic production genes

redX, actI-orf1, and cpkA. The expression levels of the

three mRNAs were reduced by 70.6%, 67.4%, and 69.9%,

respectively [70].

The composition of CRISPRi system is simple and easy

to establish in different microorganisms. As a multicellularity

model for prokaryotic cells, Anabaena sp. A. 7120 has

important research value. The CRISPRi system was

constructed in Anabaena sp. and successfully inhibited the

gene glnA which encodes glutamine synthetase. GlnA is

the initial enzyme of the nitrogen assimilation pathway, the

inhibition of this gene leads to ammonium efflux, which

increases the yield of ammonium [78]. Clostridium

ljungdahlii has emerged as an attractive candidate for the

bioconversion of synthesis gas (CO, CO2, H2) to a variety

of fuels and chemicals through the Wood-Ljungdahl

pathway. CRISPRi has used to inhibit the expression of
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aor2 and pta, transferring carbon flux from producing

acetic acid to 3HB [79]. Kluyveromyces marxianus is a

nonconventional yeast, which can tolerate high temperature

and low pH, and produce volatile esters at a high rate.

CRISPRi system has been established in this strain to the

production of acetoacetate [80].

4. Changing the Physiological State of the Host
with CRISPRi

The capacity of CRISPRi to regulate essential genes makes

it easy to fine-tune cell physiological traits. Therefore,

CRISPRi is very useful for investigating the relationship

between genotype and physiological traits of cells. CRISPRi

represses the expression of murE (encoding an ligase that

catalyze the addition of the third amino acid to the peptide

moiety of the monomer unit of peptidoglycan), murD

(encoding UDP-N-acetylmuramoyl-L-alanine: D-glutamate

ligase) [90], mraY (The expression of encoding phosphor-

N-acetylmuramoyl-pentapeptide transferase) [91] and/or

ftsW (encoding a lipid II flippase acting to transport lipid-

linked peptidoglycan precursors across the inner membrane)

[92] to weaken cell wall synthesis and reduce the mechanical

strength of the cells, making the engineering strain hold

more PHB particles. At the same time, cell wall synthesis

competes with PHB production on carbon source glucose

was reduced. Repressing the peptidoglycan synthesis

increases the flow of glucose to the product synthesis

pathway, which increases the titer of PHB. In addition, the

excessive accumulation of PHB in weakened cell walls

generated larger or even broken bacterial cells, which

simplifies the process of PHB purification in industrial

production [81]. Modification of biofilm is important for

wastewater treatment and biological production. Therefore,

a synthetic gene circuits based on CRISPRi has been

designed to control the formation of biofilm by inhibiting

the expression of wcaF in E. coli [93]. The expression of

Fig. 2. The CRISPR- Lim, PROTi and CRiPi systems. (A) CRISPR- Lim consists of two parts, the aTc-induced CRISPRi system and
the IPTG-induced T7 expression system. The repressor lacI regulates the expression of T7 RNAP and the T7 promoter PT7lacO-1. Then
CRISPRi targets to the T7 promoter so that the T7 promoter is dually inhibited by the lacI repressor and dCas9 protein, increasing the
stringency of the T7 expression system. (B) The PROTi tag (purple) which integrated into the N-terminus of the target protein using
CRMAGE contains the N-degron (dark yellow) shaded by the TEV site (red). When rhamnose is added to induce expression of TEV
(brown), the TEV site is degraded, exposing N-degron. Then the target protein is degraded by the N-degron-mediated N-end rule
pathway. (C) The CRiPi system combines PROTi and CRISPRi. The expression of the target protein is reduced by targeting CRISPRi to
the coding sequences. And PROTi system accelerates the degradation of the target protein.
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wcaF can be regulated on the time (regulating the time of

addition of inducer) and space (bluelight-mediated gene

circuit) dimension [82]. Industrial production strains need

to consume a large portion of feedstock to produce biomass.

Dynamically regulation of cell growth through CRISPRi

could increase production yield. Cell growth is inhibited,

while protein and compound yields are increased by

designing gRNA that target DNA replication (dnaA or

oriC) or nucleotide synthesis (pyrF or thyA) related genes.

The promotion of yield was the most remarkable when

targeting pyrF, and the GFP fluorescence intensity and

MVA yield were increased by up to 2.15-fold and 41%,

respectively [83].

The introduction of exogenous genes is also a common

strategy for genetic engineering. The enzymes expressed

by exogenous genes usually have higher activity than the

original homologous enzymes, or may introduce new

metabolic pathway. Some exogenous proteins have varying

degrees of toxicity, therefore, the expression needs to be

tightly controlled. Several systems based on CRISPRi have

been designed to solve this problem. CRISPR- dCas9-

Based Leaky- Expression Inhibition Module (CRISPR-

Lim) (Fig. 2A) was designed to reduce the leakage of the

T7 promoter. CRISPR-Lim consists of two parts, the aTc-

induced CRISPRi system and the IPTG-induced T7

expression system. CRISPRi targets to the T7 promoter so

that the T7 promoter is dually inhibited by the lacI repressor

and dCas9 protein, increasing the stringency of the T7

expression system [84]. A CRiPi system (Fig. 2C) consisting

of the protein interference system (PROTi) (Fig. 2B) and

CRISPRi system able to efficient control the expression of

target protein. In PROTi system an N-degrons degradation

tag with a TEV site is added to the N-terminus of the target

protein. Upon induction of the TEV protease, the exposure

of N-degron leads to protein degradation by the N-end rule

pathway. At the same time, CRISPRi can reduce the

expression of the target protein at transcription level and

accelerate the consumption of the target protein, achieving

rapidly and dynamically regulating the expression of the

specific protein [85]. Virginia Martínez et al. explored

CRiPi’ potential as a tool for creating antibiotic hyper-

sensitive strains for use in antibiotic discovery. MurE, as

same as MurA, is a central enzyme in peptidoglycan

biosynthesis. Fosfomycin is an antibiotic that causes

specific inhibition of the enzyme MurA. When CRiPi targets

murE, the sensitivity to the antibiotic increased, depicted as

complete growth inhibition at lower concentrations of the

antibiotic, compared to the non-induced control. Then

murE is demonstrated as a potential target for creating

hypersensitive strains that can be used for screening

compound libraries to identify agents with antibacterial

activity [94].

5. CRISPRi as a Tool for Genomic Screening

With the development of DNA high throughput sequencing

technology, genome-scale research has gradually attracted

widespread attention. Prior to CRISPRi, the primary tool

for genome-wide perturbation screening was RNAi [95-

97]. However, RNAi has obvious limitations such as high

sequence-specific off-target effect, different knockdown

efficiencies, and inapplicability to prokaryotes [98-101].

Compared with RNAi, CRISPRi has a lower risk of off-

target and has been successfully used in genome screening

experiments [101]. CRISPRi-mediated genomic screening

can be combined with bioinformatics to rapidly screen for

genes with a specific function. First, gRNA library is

obtained based on the special bioinformatics alignment to

exclude the inefficient sites and avoid off-target effects.

Then the sgRNA library is transferred to the target

organism and activated the CRISPRi screening system.

Finally, the corresponding phenotype can be enriched

under the specific screening environment. To screen for

unknown carboxylesterases in Corynebacterium, a candidate

sequence highly homologous to the known lipase PvMekB

was found by bioinformatics analysis and the candidate

sequences were characterized for inhibition by the CRISPRi

library. Finally, the Cg0961 gene with natural esterase

activity was successfully identified [86]. CRISPRi-mediated

genomic screening can also randomly target the whole

genome to interrogate the relationship between genotype

and phenotype. 92,000 gRNAs were synthesized to targeted

to the entire genome of E. coli randomly. The cultured

gRNA abundance was tested to verify the necessity of 79%

of the previously reported essential genes. Some phage

host factors have also been identified, and colanic acid

capsule synthesis is a shared resistance mechanism to

phages λ, 186 and T4 [87]. Besides, Ana M. Mariscal et al.

created a functional CRISPRi gene suppression system for

Mycoplasma pneumoniae and Mycoplasma mycoides to

unobstructed explore the function of essential genes [88].

6. The Limitation of CRISPRi and Future
Perspectives

The widespread utilization of CRISPR gene editing

technology promoting the development of biotechnology.

CRISPRi derived from the CRISPR system is also important

in its specific area, especially for regulation. The features

of simple, economical, manageable, reversible, and the

ability that does not completely block the expression of

target gene confer CRISPRi an unparalleled advantage in

regulating essential gene expression, interrogating unknown

gene functions, and screening target genes on a genome scale.
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Of course, CRISRRi/a also has some limitations (Table 2).

Off-target binding can block the expression of essential or

fitness genes with as little as 9 nt of identity in the seed

sequence, and an unexplained sequence-specific toxicity

“bad-seed” effect has been determined by the 5 PAM-

proximal bases [102]. These lead to overexpression of dCas9

in many bacteria are often toxic [103,104]. Furthermore,

the effects of various gRNAs targeting the same gene are

great different, which influence the accuracy of high-

throughput genomic screening based on CRISPRi [28].

Studies have shown that when gRNA was designed to

targeting the cis-acting element upstream of the gene

sequence or the coding region close to the transcription

start site (TSS), the inhibitory effect of CRISPRi is

remarkable [39]. Moreover, the structure and kinetics of

chromatin also affect the binding efficiency of dCas9

complex, thereby impacting regulation effect of target

genes [105,106]. In prokaryotes, CRISPRa has not been

widely used due to the lack of suitable transcriptional

activators. Besides, the optimal activation effect achieved

by CRISPRa requires targeting a narrow region of about

90 bp upstream the TSS. This limits the application of

CRISPRa in genes that have no identifiable PAM sites near

the 90 bp upstream of TSS [60]. Furthermore, some special

sites, such as where multiple genes transcribed via the

same transcript or some two-way promoter regions are

superimposed, CRISPRi is no longer the optimal choice

[98,107]. Finally, construction of complex multi-gene

regulatory systems remains difficult. Multiple sgRNAs

compete for binding to a limited number of dCas9, leading

to abnormity of activity [108-110]. Multi-gRNA containing

complex repetitive sequences is unstable and tends to

homologous recombination. 

There have been several strategies proposed to improve

these restrictions (Table 2). Decreasing the expression of

dCas9 can significantly alleviate the growth inhibition

caused by the “bad seed” effect [102]. At the same time,

many methods to reduce off-target risk have been designed.

One of the simplest measures is the use of a truncated

gRNA, which is 17–18 rather than 20 nt in length. Critical

to specific binding is 12 bp seed sequences, so the truncated

gRNAs could reduce the binding energy to an extent that

is just sufficient to bind a perfect target, but not targets

containing mismatches [111-113]. More recently, improved

versions of Cas9 have been developed, such as the

enhanced specificity Cas9 (eSpCas9) and the high-fidelity

variant SpCas9-HF1. Both of eSpCas9 and SpCas9-HF1

reduced the binding energy and making the Cas9/gRNA

complex less tolerant of mismatches [114,115]. It is also

necessary to use gRNA prediction software such as the

ViennaRNA web services (http://rna.tbi.univie.ac.at/) and

CRISPy-web (http://crispy.secondarymetabolites.org/) to

assess the off-target risk and predict secondary structure

during design of gRNA [116,117]. Studies have shown that

gRNA can achieve a desired inhibitory effect when targeting

a transcriptional start site (TSS) or an upstream cis-acting

Table 2. Limitations in CRISPRi/a system and the corresponding improvement strategies.

Limitations Possible reasons Improvement strategies

Toxicity of dcas9 to host cell 
[103,104]

The “bad-seed” effect [102] Decreasing the expression or strictly regulating the 
expression at certain time point [102]

Off-target effect [102] Truncating the length of gRNA; predicting the off-
target effect via bioinformatic tools; engineering the 
dCas9 protein to enhance the specificity of DNA 
binding [111-115]

Variable efficiency of different 
sgRNA [28]

The binding position and secondary structure 
of gRNA [39] 

Targeting to the cis-acting element upstream of the 
gene sequence or the coding region close to TSS; 
predicting the advanced structure of gRNA via 
bioinformatic tools [39,116,117]

The structure and kinetics of chromatin 
affect the binding of dCas9 protein [105,106]

Design multiple gRNAs targeting the same gene

Less efficiency of CRISPRa in 
prokaryotes [60]

dCas9 binding sites is limited by PAM 
sequence [60]

Engineering of dCas9 to recognize more PAM 
sequence [118,119]

Few effective transcriptional activators [60] Finding more potential transcriptional activators 
[60]

The exist of inapplicable sites 
for dCas9 [101]

Multiple genes transcribed via the same 
transcript [101]

Some two-way promoter regions are 
superimposed [101,107]

Targeting the coding region of genes

Complexity of multi genes 
regulatory systems 

Activation of multiple gRNAs requires high 
concentrations of dCas9 protein [108-110]

Increasing the expression of dCas9[120]

Instability of the repeat sequence Using a variety of sequences and components [121]
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element such as a promoter region. When targeting the

coding strand of the coding region, the closer the gRNA

binding site is to TTS, the more remarkable the repression

effect. Conversely, it is more difficult to obtain the desired

suppression effect when moving away from the TTS. It

should be noted that there is no inhibitory effect when the

gRNA targets the template strand. Therefore, gRNA

should be designed to target upstream cis-acting elements

or near the TSS [39]. For complex chromatin regions,

multiple gRNAs targeting the same gene should be designed

to guarantee the regulation effect. xCas9 and SpCas9-NG

reduce the Cas9 protein's requirement for the third base of

the PAM site, making the recognition of PAM site from

NGG to NG [118,119]. More transcriptional activators

have been tested for prokaryotic CRISPRa systems, and it

is believed that stronger, more flexible, and more versatile

prokaryotic CRISPRa systems will be developed [60]. For

construction of complex multi-gene regulatory systems, the

dCas9*_PhlF, with mutation (R1335K) impaired the ability

of recognizing PAM and fused a PhlF repressor to recovery

specific regulation, significantly reduced dCas9 protein

toxicity, resulting in increased the concentration of dCas9

[120]. Increasing the sequences diversity can reduce the

occurrence of recombination and improve the CRISPRi/a

stability. At the same time, the introduction of logic gates and

oscillators makes the dynamic and reasonable expression

of the control system, which can reduce the loss of

resources and weaken the interference to the normal life of

the host [121].

7. Conclusion

In short, the CRISPRi system is a powerful genome-wide

transcriptional regulation system whose potential is far

from fully developed. With the discovery of other orthogonal

Cas proteins, more candidate repressors and activators

tested and screened, innovative applications by combining

other biology components, CRISPRi will play a pivotal

role in improving production of the product, dynamically

analyzing the specific metabolic process, designing new

synthetic pathways, and creating chassis microbial cells

with excellent performance.
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